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Abstract: In this paper, we consider the optimal investment strategy which maximizes the utility

of the terminal wealth of an insurer with SAHARA utility functions. This class of utility functions

has non-monotone absolute risk aversion, which is more flexible than the CARA and CRRA utility

functions. In the case that the risk process is modeled as a Brownian motion and the stock process

is modeled as a geometric Brownian motion, we get the closed-form solutions for our problem by

the martingale method for both the constant threshold and when the threshold evolves dynamically

according to a specific process. Finally, we show that the optimal strategy is state-dependent.
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§1. Introduction

In recent years, there is a vast literature on the optimal investment problems for an

insurer. Maximizing the utility of the terminal wealth of the insurer is a popular criterion.

To obtain closed-form solutions, the CARA and CRRA utility functions are mostly used in

solving this kind of problems. Browne [1] considers a model in which the aggregate claims

are modeled by a Brownian motion with drift, and the risky asset is modeled by a geometric

Brownian motion. Yang and Zhang [2] considers the same problem with the assumption

that the risk process of the insurer is a jump diffusion process. By the martingale and

dual methods, Wang et al. [3] discusses a more general model in which the risk process

of the insurer is a Lévy process. Besides some other criterions, e.g. minimizing the ruin

probability and mean-variance criterion, the exponential utility function is adopted in all

of these papers.
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Nowadays, there is an increasing interest in solving the optimal investment problems

under different utility functions. Berkelaar et al. [4] considers the portfolio selection prob-

lem under a specific two-piece power utility function. Considering specific HARA utility

functions, Sotomayor and Cadenillas [5] obtains the explicit solution to the consumption-

investment problem in a regime switching model. Chen et al. [6] introduces a new class of

utility functions which is called Symmetric Asymptotic Hyperbolic Absolute Risk Aver-

sion (SAHARA) class. Under this class of utility functions, they obtained the closed-form

solution to the optimal investment problem for an ordinary investor (without the risk

process).

Similar to the exponential utility functions, the SAHARA utility functions are also

defined on the whole real line. Sometimes this is useful and convenient, for example, there

are many papers (see, e.g. [7] and [8], among others) assume that the insurer can still run

the business for a certain time when the surplus becomes negative.

As we will see, the power and exponential utility functions are limiting cases of SA-

HARA utility functions. For every SAHARA utility function, there exists a level of wealth,

which is called threshold wealth, where the absolute risk aversion attains a finite maximal

value. When the level of wealth is above the threshold wealth, the risk aversion decreas-

es as increasing the wealth; when the level of wealth is below the threshold wealth, the

risk aversion decreases as decreasing the wealth. Thus, unlike the exponential and power

utility functions, the SAHARA utility functions have a distinguishing feature that they

allow the flexibility that the absolute risk aversion to be non-monotone and implement

the assumption that agents may become less risk averse for very low values of wealth.

However, the risk aversion can never be negative, i.e., the investor with SARAHA utility

never becomes risk-seeking, which happens in the prospect theory (see, [9] and [10]).

In this paper we consider the optimal investment problem for an insurer with the

SAHARA utility function. Similar to Barberis et al. [11], we model the risk process of

the insurer by a Brownian motion with drift and the stock price by a geometric Brownian

motion. In contrast to Chen et al. [6] which considers the zero threshold wealth, we consider

a dynamically updated threshold wealth. This is a more general and more reasonable case,

since the investor will update her threshold wealth (or reference point) throughout time,

depending on the performance of his wealth process (see, e.g. [4], [11] and [12]). This is

completed in two steps. First, we consider the SAHARA utility function with constant

threshold wealth, and by the similar techniques of [3], we obtain the closed-form solution

for the optimal investment strategy as well as the optimal terminal wealth. Second, given

a specific dynamics of the threshold wealth, we show that it is equivalent to solve the
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problem considered in the first step with some specific constant threshold wealth. Our

results show that the optimal strategy is state-dependent.

As we all know that the utility functions are widely used in actuarial science, such as

premium principle and indifference pricing of insurance products, etc. Usually, the CARA

and CRRA utility functions are considered. This paper shows that we can still get the

closed-form solution even we consider a more flexible utility function.

This paper is organized as follows. In Section 2, we introduce the SAHARA utility

functions as well as the financial market model. In Section 3, we derive our main results for

the optimal investment problem. In Section 4, we illustrate our results by some numerical

examples.

§2. Preliminaries

2.1 SAHARA Utility Functions

The class of SAHARA utility functions was first proposed by [6]. We list the definition

and some useful properties in this subsection.

Definition 1 A utility function U with domain R is of the SAHARA class if its

absolute risk aversion function A(x) = −U ′′(x)/U ′(x) is well defined on its entire domain

and satisfies

A(x) =
α√

γ2 + (x− κ)2
> 0

for a given γ > 0 (the scale parameter), α > 0 (the risk aversion parameter) and κ ∈ R (the

threshold wealth).

It is worth noting that the threshold wealth κ plays a role as the reference point in the

prospect theory. In other words, when the wealth is above κ, the investor is in the domain

of gains; when the wealth is below κ, the investor is in the domain of losses. Motivated by

this feature of κ, we will consider a dynamically updated threshold wealth in this paper.

Note that the power and exponential utility functions are limiting cases of SAHARA

utility functions. Specifically, when κ = 0 and γ ↓ 0, it becomes the class of HARA

utilities with the risk aversion function A(x) = α/x, x > 0 for all α ∈ (0, 1); whereas when

taken κ = 0, α = θγ and γ →∞, it leads to an exponential utility function with constant

absolute risk aversion parameter θ.

We now introduce some properties for the class of SAHARA utility functions.

Proposition 2 Let U be a SAHARA utility function with scale parameter γ > 0, risk

aversion parameter α > 0, and threshold wealth κ ∈ R. Then
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(i) There exists constants c1 and c2 such that U(x) = c1 + c2Û(x) with

Û(x) =



1

1− α2

[
(x− κ) +

√
γ2 + (x− κ)2

]−α
×
[
(x− κ) + α

√
γ2 + (x− κ)2

]
, α 6= 1;

1

2

[
(x− κ) +

√
γ2 + (x− κ)2

]
+

1

2
γ−2(x− κ)

[√
γ2 + (x− κ)2 − (x− κ)

]
, α = 1.

We take c1 = 0 and c2 = 1 in the following context for simplicity.

(ii) The first-order derivative of U is given by

U ′(x) =
[
(x− κ) +

√
γ2 + (x− κ)2

]−α
= γ−α exp

{
− α arcsinh

(x− κ
γ

)}
> 0.

The proof is similar to [6] which considers a zero threshold wealth, i.e., κ = 0. For

more propositions on the SAHARA utility functions, we refer the readers to [6].

Remark 3 The above results are based on the assumption γ < ∞. By (ii), the

second-order derivative satisfies U ′′(x) < 0, which implies that U is a strictly increasing,

strictly concave and second-order continuously differential function with U ′(κ) := lim
x→κ

U ′(x)

= γ−α <∞ and U ′(∞) := lim
x→∞

U ′(x) = 0.

2.2 The Market Model

We consider a financial market consisting of one bond and one stock. Let T > 0 be

a fixed time horizon. The prices of the bond and the stock are denoted by B(t) and S(t),

respectively. Assume that B(t) satisfies

dB(t) = rB(t)dt, B(0) = 1,

where r is the risk-free interest rate, and the dynamics of the stock price is given by

dS(t) = S(t)[µdt+ σdW (t)], 0 6 t 6 T, (1)

where µ is the appreciation rate and σ > 0 is the volatility. W is a standard Brownian

motion defined on the probability space (Ω,F ,P). Denote by R(t) the risk process of the

insurer and assume it follows

dR(t) = λdt+ βdW (t), 0 6 t 6 T, (2)

where λ and β > 0 are constants.
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The insurer is allowed to invest in the stock as well as in the bond. Let π(t) be the

dollar amount invested in the stock at time t. We say π(t) is an admissible investment

strategy if it is an {Ft}-progressively measurable, real-valued process satisfying

E
[ ∫ T

0
π2(t)dt

]
<∞. (3)

We denote by Π the set of all admissible investment strategies.

The wealth process Xx,π corresponding to trading strategy π is given by

dXx,π(t) = [Xx,π(t)− π(t)]rdt+ π(t)[µdt+ σdW (t)] + dR(t)

= [rXx,π(t) + π(t)(µ− r) + λ]dt+ [σπ(t) + β]dW (t), (4)

with Xx,π(0) = x. Then the discounted wealth process satisfies

d(e−rtXx,π(t)) = e−rt{[π(t)(µ− r) + λ]dt+ [σπ(t) + β]dW (t)}.

Thus, we have

Xx,π(t) = ert
{
x+

∫ t

0
e−rs[π(s)(µ− r) + λ]ds+

∫ t

0
e−rs[σπ(s) + β]dW (s)

}
= xert − λ

r
(1− ert) + (µ− r)

∫ t

0
e−r(s−t)π(s)ds

+

∫ t

0
e−r(s−t)[σπ(s) + β]dW (s). (5)

With the SAHARA utilities, the objective of the insurer is to specify an optimal in-

vestment strategy π∗ such that the expected utility of the terminal wealth, E[U(Xx,π∗
(T ))],

is maximized, i.e.,

E[U(Xx,π∗
(T ))] = sup

π∈Π
E[U(Xx,π(T ))].

Since a SAHARA utility function is strictly concave and continuously differentiable

on (−∞,∞), there exists at most a unique optimal terminal wealth for the company. The

following proposition is taken from [3].

Proposition 4 If there exists a strategy π∗ ∈ Π such that

E[U ′(Xx,π∗
(T ))Xx,π(T )] is constant over π ∈ Π, (6)

then π∗ is the optimal trading strategy.
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§3. Main Results

3.1 Constant Threshold Wealth

In the case of SAHARA utility with constant threshold wealth κ, we have

U ′(x) = γ−α exp
[
− α arcsinh

(x− κ
γ

)]
,

and the condition (6) can be expressed as

E
{

exp
[
− α arcsinh

(Xx,π∗
(T )− κ
γ

)]
×
[ ∫ T

0
(µ− r)e−rsπ(s)ds+

∫ T

0
σe−rsπ(s)dW (s)

]}
is constant over π ∈ Π. (7)

Next we will conjecture the form of the optimal strategies π∗ from condition (7), and then

verify it.

Put

Z∗(t) := E
{

exp
[
− α arcsinh

(Xx,π∗
(T )− κ
γ

)] ∣∣∣Ft

}
, t ∈ [0, T ],

then

Z∗(T ) = exp
[
− α arcsinh

(Xx,π∗
(T )− κ
γ

)]
,

and Z∗(τ) = E[Z∗(T ) |Fτ ], a.s. for any stopping time τ 6 T .

Lemma 5 Let π∗ ∈ Π, then π∗ satisfies condition (7) if and only if the triple

(Xx,π∗
, π∗, Z∗) solves the following forward-backward stochastic differential equation (FB-

SDE) 

dX(t) = [rX(t) + π(t)(µ− r) + λ]dt+ [σπ(t) + β]dW (t),

X(0) = x,

dZ(t) = −µ− r
σ

Z(t)dW (t),

Z(T ) = exp
[
− α arcsinh

(X(T )− κ
γ

)]
,

(8)

for (X,π, Z) ∈ L2
F ×Π×L2

F . Here L2
F denotes the set of all Ft-adapted process X(t) with

cadlag paths such that E
[

sup
06t6T

|X(t)|2
]
<∞.

Proof Assume that π∗ satisfies condition (7). It is clear that Xx,π∗ ∈ L2
F is a

solution to the forward SDE in (8) for X and that Z∗(t) is a square-integrable martingale.
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Let πτ (t) = 1{t6τ} for any stopping time τ 6 T , then πτ ∈ Π. Substituting πτ into

(7), we obtain

E
{
Z∗(T )

[ ∫ τ

0
(µ− r)e−rsds+

∫ τ

0
σe−rsdW (s)

]}
= E

{
E[Z∗(T ) |Fτ ]

[ ∫ τ

0
(µ− r)e−rsds+

∫ τ

0
σe−rsdW (s)

]}
= E

{
Z∗(τ)

[ ∫ τ

0
(µ− r)e−rsds+

∫ τ

0
σe−rsdW (s)

]}
is constant over all stopping time τ 6 T a.s., which implies that

Z∗(t)
[ ∫ t

0
(µ− r)e−rsds+

∫ t

0
σe−rsdW (s)

]
is a martingale. (9)

Since Z∗(t) is a square-integrable martingale, then by the martingale representation the-

orem (see e.g. [3; Lemma 2.1]), there exists an Ft-predictable, R-valued process θ(t)

satisfying

E
[ ∫ T

0
|θ(t)|2dt

]
<∞,

such that

dZ∗(t) = θ(t)dW (t), ∀ t ∈ [0, T ].

Therefore by Itô formula, we obtain

d
(
Z∗(t)

[ ∫ t

0
(µ− r)e−rsds+

∫ t

0
σe−rsdW (s)

])
= [σθ(t) + (µ− r)Z∗(t)]e−rtdt+ σZ∗(t)e−rtdW (t),

which together with (9) implies σθ(t) + (µ− r)Z∗(t) = 0, i.e.,

θ(t) = −µ− r
σ

Z∗(t).

Therefore we know that Z∗ solves the backward SDE in (8) for Z. Hence it follows that

(Xx,π∗
, π∗, Z∗) solves the FBSDE (8).

Conversely, suppose that there exists Z∗ ∈ L2
F such that (Xx,π∗

, π∗, Z∗) solves FBSDE

(8). It is easy to check by Itô formula that for any π ∈ Π, Z∗(t)Mπ(t) is a local martingale,

where

Mπ(t) :=

∫ t

0
(µ− r)e−rsπ(s)ds+

∫ t

0
σe−rsπ(s)dW (s). (10)

Furthermore, for any π ∈ Π, it is clear that Mπ ∈ L2
F . It follows that

E
[

sup
06t6T

|Z∗(t)Mπ(t)|
]
6
√
E
[

sup
06t6T

|Z∗(t)|2
]
E
[

sup
06t6T

|Mπ(t)|2
]
<∞.
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Therefore, the family {Z∗(τ)Mπ(τ) : τ is a stopping time and τ 6 T} is uniformly inte-

grable and thus Z∗Mπ is a martingale.

Then we have E[Z∗(T )Mπ(T )] = 0 for any π ∈ Π, which implies that π∗ satisfies

condition (7). �

In what follows, we will solve the FBSDE (8) by two steps: first, we conjecture the

form of the solution and then we verify it.

Step 1: Let us define

A1(t) := exp
[ ∫ t

0
a1(s)ds

]
, A2(t) := exp

[ ∫ t

0
a2(s)ds

]
, t ∈ [0, T ],

where a1(t) and a2(t) are non-random Lebesgue-integrable functions to be determined.

By Itô formula, we have that

Zpi(T ) =
Zpi(0)

Ai(T )
− (µ− r)

σ

∫ T

0

piAi(s)Z
pi(s)

Ai(T )
dW (s)

+

∫ T

0

[1

2
pi(pi − 1)

(µ− r
σ

)2
+ ai(s)

]Ai(s)Zpi(s)
Ai(T )

ds, i = 1, 2,

where p1 = −1/α and p2 = 1/α.

Therefore,

γ

2

[
Z−1/α(T )− Z1/α(T )

]
+ κ

=
γ

2

[Z−1/α(0)

A1(T )
− Z1/α(0)

A2(T )

]
+ κ

+
γ(µ− r)

2σα

∫ T

0

[ A1(s)

A1(T )
Z−1/α(s) +

A2(s)

A2(T )
Z1/α(s)

]
dW (s)

+
γ

2

∫ T

0

[(α+ 1

2α2

)(µ− r
σ

)2
+ a1(s)

] A1(s)

A1(T )
Z−1/α(s)

+
[(α− 1

2α2

)(µ− r
σ

)2
− a2(s)

] A2(s)

A2(T )
Z1/α(s)ds. (11)

Let (X,π, Z) be a solution of the FBSDE (8), then there must be that

Xx,π(T ) =
γ

2

[
Z−1/α(T )− Z1/α(T )

]
+ κ.

Comparing the dW (t)-terms in (11) and (5), it is reasonable to conjecture that

γ(µ− r)
2σα

[ A1(s)

A1(T )
Z−1/α(s) +

A2(s)

A2(T )
Z1/α(s)

]
= e−r(s−T )(σπ(s) + β),

i.e.,

π(s) =
γ(µ− r)

2σ2α
er(s−T )

[ A1(s)

A1(T )
Z−1/α(s) +

A2(s)

A2(T )
Z1/α(s)

]
− β

σ
. (12)
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After substituting (12) into (5), we have

Xx,π(T ) = x∗ +
γ(µ− r)2

2σ2α

∫ T

0

[ A1(s)

A1(T )
Z−1/α(s) +

A2(s)

A2(T )
Z1/α(s)

]
ds

+
γ(µ− r)

2σα

∫ T

0

[ A1(s)

A1(T )
Z−1/α(s) +

A2(s)

A2(T )
Z1/α(s)

]
dW (s),

where

x∗ = x+
[
x+

λ

r
− (µ− r)β

rσ

]
(erT − 1). (13)

Then

γ

2

[
Z−1/α(T )− Z1/α(T )

]
+ κ

= Xx,π(T ) +
γ

2

[Z−1/α(0)

A1(T )
− Z1/α(0)

A2(T )

]
+ κ− x∗

+

∫ T

0

γ

2

[(α+ 1

2α2

)(µ− r
σ

)2
+ a1(s)

] A1(s)

A1(T )
Z−1/α(s)

+
γ

2

[(α− 1

2α2

)(µ− r
σ

)2
− a2(s)

] A2(s)

A2(T )
Z1/α(s)ds

− γ(µ− r)2

2σ2α

∫ T

0

[ A1(s)

A1(T )
Z−1/α(s) +

A2(s)

A2(T )
Z1/α(s)

]
ds. (14)

If we take 
a1(t) =

α− 1

2α2

(µ− r
σ

)2
,

a2(t) = −α+ 1

2α2

(µ− r
σ

)2

and

Z(0) = e−[(µ−r)/σ]2T/2 exp
[
− α arcsinh

(x∗ − κ
cγ

)]
,

where

c = exp
[(µ− r)2

2σ2α2
T
]
, (15)

we have that
γ

2

[
Z−1/α(T )− Z1/α(T )

]
+ κ = Xx,π(T ),

i.e.,

Z(T ) = exp
[
− α arcsinh

(Xx,π(T )− κ
γ

)]
.

Step 2: Now we verify the conjectures in Step 1.

Let

Z∗(0) = e−[(µ−r)/σ]2T/2 exp
[
− α arcsinh

(x∗ − κ
cγ

)]
, (16)
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then the SDE

dZ(t) = −µ− r
σ

Z(t)dW (t)

has a solution

Z∗(t) = Z∗(0) exp
[
− µ− r

σ
W (t)− 1

2

(µ− r
σ

)2
t
]
. (17)

Furthermore, let

π∗(t) =
γ(µ− r)

2σ2α
er(t−T )

{
e[(α−1)/(2α2)][(µ−r)/σ]2(t−T )[Z∗(t)]−1/α

+ e−[(α+1)/(2α2)][(µ−r)/σ]2(t−T )[Z∗(t)]1/α
}
− β

σ

=
γ(µ− r)
σ2α

e{r−[1/(2α2)][(µ−r)/σ]2}(t−T )

× cosh
(
− 1

α
lnZ∗(t) +

1

2α

(µ− r
σ

)2
(t− T )

)
− β

σ
. (18)

Then, by a procedure similar to the one used in (14), it is easy to show that

Xx,π∗
(T ) =

γ

2

{
[Z∗(T )]−1/α − [Z∗(T )]1/α

}
+ κ, (19)

i.e.,

Z∗(T ) = exp
[
− α arcsinh

(Xx,π∗(T ) − κ
γ

)]
.

Therefore, (Xx,π∗
, π∗, Z∗) is a solution of the FBSDE (8). We finally get the following

theorem.

Theorem 6 The admissible strategy π∗ defined in (18) is the optimal strategy for

the SAHARA utility with constant threshold wealth κ.

Example 7 When κ = λ = β = 0, our problem degenerates to the one considered

in [6]. Substituting (17) into (19), it is easy to check that the optimal terminal wealth

given by (19) is equal to the one obtained in [6]. Similarly, replacing Z∗(t) in (18) by the

right-hand-side of Equation (17) yields that

π∗(t) =
γ(µ− r)
σ2α

e{r−[1/(2α2)][(µ−r)/σ]2}(t−T ) cosh(Y (t)),

where

Y (t) =
(µ− r)2

σ2α
t+

µ− r
ασ

W (t) + arcsinh
(x∗
cγ

)
.

On the other hand, using that arcsinh(x) = ln(x +
√

1 + x2), we can rewrite the optimal

strategy obtained in Theorem 3.2 of [6] as

γ(µ− r)
σ2α

e{r−[1/(2α2)][(µ−r)/σ]2}(t−T )
[
eY (t) − sinh(Y (t))

]
.

Noting that cosh(x) = ex − sinh(x), we get the same optimal investment strategy.
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Example 8 When κ = 0 and α = ϑγ in (18), letting γ → ∞ and noting that

cosh(0) = 1, we get that

π∗(t) =
µ− r
σ2ϑ

er(t−T ) − β

σ
,

which is the optimal investment strategy for the exponential utility functions with constant

absolute risk aversion ϑ. This is consistent with the definition of f∗t (x) given on Page 954

of [1] with ρ = 1. Furthermore, if the interest rate r = 0, the above equation becomes the

Equation (9) in [1] with ρ = 1.

Example 9 When κ = 0 and γ → 0, the SAHARA utility function becomes the

power utility function with absolute risk aversion α/x, where α ∈ (0, 1) and x > 0. In this

case, from (18), we know that the optimal investment strategy is −β/σ. It is worth noting

that this is consistent with the result given in Section 4 of [1] (with ρ = 1), where he considers

the strategy in which the ruin probability is minimized. This is reasonable since the power

utility function is defined on [0,∞).

3.2 Dynamically Updated Threshold Wealth

Let κ(t) denote the threshold wealth of the insurer at time t. Similar to [4] (see also,

[11] and [12]), we assume that the insurer continuously adjusts his initial threshold wealth

κ with the constant riskless rate r, weighted by (1− ρ), and with the change of his wealth

dXx,π(t), weighted by ρ. Hence, starting from time t = 0, the insurer’s threshold wealth

evolves dynamically according to the following process:

dκ(t) = (1− ρ)κrdt+ ρdXx,π(t), 0 6 t 6 T, (20)

with 0 6 ρ < 1.

Note that the threshold wealth is a nondecreasing function of the investors current

wealth. This is reasonable by recalling that κ measures both gains and losses. For example,

an investor with 100 dollars may take 110 as her threshold wealth, but when her wealth

increases to 200 dollars, she would like to take another higher threshold wealth.

After integrating (20), we get the threshold wealth κ(T ) at the maturity time T as

follows:

κ(T ) = κ+ (1− ρ)κrT + ρ[Xx,π(T )− x], (21)

with 0 6 ρ < 1.

Therefore, the SAHARA utility of the terminal wealth Xx,π(T ) with a stochastic
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threshold wealth is given by

U(Xx,π(T )) =



1

1− α2

{
[Xx,π(T )− κ(T )] +

√
γ2 + [Xx,π(T )− κ(T )]2

}−α
×
{

[Xx,π(T )− κ(T )] + α
√
γ2 + [Xx,π(T )− κ(T )]2

}
, α 6= 1;

1

2
γ−2[Xx,π(T )− κ(T )]

{√
γ2 + [Xx,π(T )− κ(T )]2 − [Xx,π(T )− κ(T )]

}
+

1

2
ln
{

[Xx,π(T )− κ(T )] +
√
γ2 + [Xx,π(T )− κ(T )]2

}
, α = 1.

(22)

To solve the utility maximization problem with a stochastic threshold wealth κ(t), we

first show that it is equivalent to a utility maximization problem with a constant threshold

wealth. Substituting (21) into (22), we can rewrite the utility function as follows:

U(Xx,π(T )) =



(1− ρ)1−α

1− α2

{
[Xx,π(T )− κ∗T (ρ)] +

√
γ2
ρ + [Xx,π(T )− κ∗T (ρ)]2

}−α
×
{

[Xx,π(T )− κ∗T (ρ)] + α
√
γ2
ρ + [Xx,π(T )− κ∗T (ρ)]2

}
, α 6= 1;

1

2
γ−2
ρ [Xx,π(T )− κ∗T (ρ)]

{√
γ2
ρ+[Xx,π(T )−κ∗T (ρ)]2 − [Xx,π(T )−κ∗T (ρ)]

}
+

1

2
ln
{

[Xx,π(T )− κ∗T (ρ)] +
√
γ2
ρ + [Xx,π(T )− κ∗T (ρ)]2

}
+

1

2
ln(1− ρ), α = 1,

(23)

where γρ = γ/(1− ρ), and

κ∗T (ρ) =
1

1− ρ
[κ+ (1− ρ)κrT − ρx] (24)

is a deterministic constant depending on ρ, κ, r, x and T .

Equation (23) shows that it is sufficient to consider the SAHARA utility function

Uρ(x) with scale parameter γρ, risk aversion parameter α and threshold wealth κ∗T (ρ).

Furthermore, we have

U ′ρ(x) = γ−αρ (1− ρ)1−α exp
[
− α arcsinh

(x− κ∗T (ρ)

γρ

)]
.

From the results of last subsection, we have the following results for the SAHARA

utility with stochastic threshold wealth κ(t) defined by (20).

Theorem 10 For the SAHARA utility function with stochastic threshold wealth κ(t)

defined by (20), the optimal strategy π∗ρ is given by

π∗ρ(t) =
γρ(µ− r)
σ2α

e{r−[1/(2α2)][(µ−r)/σ]2}(t−T ) cosh
[
− 1

α
lnZ∗ρ(t)+

1

2α

(µ− r
σ

)2
(t−T )

]
− β
σ
,
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where

Z∗ρ(t) = Z∗ρ(0) exp
[
− µ− r

σ
W (t)− 1

2

(µ− r
σ

)2
t
]
, (25)

and

Z∗ρ(0) = e−[(µ−r)/σ]2T/2 exp
[
− α arcsinh

(x∗ − κ∗T (ρ)

cγρ

)]
.

The optimal terminal wealth is

Xx,π∗
ρ (T ) =

γρ
2

{
[Z∗ρ(T )]−1/α − [Z∗ρ(T )]1/α

}
+ κ∗T (ρ).

Here, x∗, c and κ∗T (ρ) are given by (13), (15) and (24), respectively.

§4. Numerical Illustrations

From the results of the last section, we know that the optimal strategy and the

optimal terminal wealth are dependent on Z∗(t). However, the insurer can not observe

Z∗(t) directly from the market. From (1), (17) and (25), we have

Z∗(t) = Z∗(0) exp
{
− µ− r

σ2

[
ln
S(t)

S(0)
−
(
µ− 1

2
σ2
)
t
]
− 1

2

(µ− r
σ

)2
t
}
,

and

Z∗ρ(t) = Z∗ρ(0) exp
{
− µ− r

σ2

[
ln
S(t)

S(0)
−
(
µ− 1

2
σ2
)
t
]
− 1

2

(µ− r
σ

)2
t
}
,

which imply that the insurer can make her decision based on the observations of the stock

prices.

For the numerical example, we assume the fixed time horizon T = 1. The parameters

of the financial market are listed in Table 1.

Table 1 The parameters of financial market

r µ σ λ β X(0) S(0)

0.03 0.08 0.15 0.1 0.25 1 1

In Figure 1, we set κ = 0 and α = 2γ. In sub-figure (a), it illustrates the optimal

strategies at time t = 0.5, i.e. π∗(0.5), versus S(0.5) with γ approaching to infinity. The

curve for γ = ∞ is the optimal strategy under the exponential utility functions with

absolute risk aversion ϑ = 2. It is obvious that there exists a threshold price such that an

insurer with SAHARA utility invests less money into the risk asset both when the asset

price approaches to it from above and below. Furthermore, when γ → ∞, this threshold

price approaches to the threshold wealth κ = 0. We also note that the optimal strategy
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Figure 1 The optimal strategies and the optimal terminal wealth when γ →∞

π∗ decreases (which means that the SAHARA agent is more risk averse) when γ increases.

Sub-figure (b) plots the optimal terminal wealth Xx,π∗
(T ) versus the terminal realization

of the risky asset S(T ) for different values of γ. It shows that the curves for γ = 5 and

γ = 10 are almost overlapped. Thus, both of these two curves show the optimal terminal

wealth in the limiting case, i.e., γ = ∞. Apparently, there is a positive relation between

the optimal terminal wealth Xx,π∗
(T ) and S(T ) for all the cases. A smaller value of γ

(less risk aversion) leads to a larger positive terminal wealth in a flourishing market, also

a larger negative final wealth in an unfavorable market.
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Figure 2 The optimal strategies and the optimal terminal wealth when γ → 0

In Figure 2, we set κ = 0 and α = 0.6. In sub-figure (a), we show the optimal

strategies at time t = 0.5 versus S(0.5) with γ approaching to 0. The curve for γ = 0 is

the optimal strategy under the power utility functions with risk aversion function 0.6/x,

x > 0. Obviously, the optimal strategy π∗ from the power utility always under-performs

the SAHARA utility. It also shows that there exists a threshold price such that an insurer
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with SAHARA utility invests less money into the risk asset both when the asset price

approaches to it from above and below. In contrast to Figure 1 (a), the optimal strategy

π∗ increases (which means that the SAHARA agent is less risk averse) when γ increases.

Sub-figure (b) plots the optimal terminal wealth versus S(T ) for different values of γ.

Similarly, the curves for γ = 0.01 and γ = 0.001 are almost overlapped above the horizon

axis, and they show the optimal terminal wealth in the limiting case, i.e., γ = 0. There

is also a positive relation between the optimal terminal wealth Xx,π∗
(T ) and S(T ) for all

the cases.
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Figure 3 The optimal strategies and the optimal terminal wealth for different κ

In Figure 3, we set α = 1, γ = 0.5, and κ∗T (ρ) is calculated with ρ = 0.5 and initial

value 0. Sub-figure (a) plots the optimal strategies versus S(0.5), while sub-figure (b)

plots the optimal terminal wealth versus S(T ) for both constant and dynamically updat-

ed threshold wealth. It shows that for most values of S(0.5) the optimal strategy with

dynamically updated threshold wealth (starts form zero) is located between the optimal

strategies for a positive threshold κ = 2 and a negative threshold κ = −2. This also

happens to the optimal terminal wealth. This may imply that comparing with a con-

stant threshold wealth, a dynamically updated threshold wealth is an “average” threshold

wealth.
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