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Abstract: We employ a linear Bayes procedure to estimate the unknown parameter of the uni-

form distribution R(−θ, θ) and propose a linear approximate Bayes estimator (LABE) for θ, which

has a closed analytic solution form and is convenient to use. Numerical simulations indicate that

the proposed LABE is close to the ordinary Bayes estimator (BE), which is calculated by numerical

integration and the so-called brute-force method as well. Furthermore, we compare the proposed

LABE with the Lindley’s approximation. The superiorities of the LABE over the classical estima-

tors are also established in terms of the mean squared error (MSE) criterion.
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§1. Introduction

Perhaps one of the most important distributions is the uniform distribution for con-

tinuous random variables and it has been applied in many fields including natural and

social sciences. The theory of uniform distribution first appeared in Hermann’s paper

published in 1916 and since then many scholars have paid attention to it. Chen and Ni [1]

gave some conventional estimators for the parameter of uniform distribution including

the maximum likelihood estimator (MLE) and the uniformly minimum variance unbiased

estimator (UMVUE) and so on, which are commonly used in classical statistics.

Hartigan [2] considered the linear regression from a Bayesian point of view and pro-

posed a method of linear prediction, which uses only the first two moments of the distri-

bution of parameters and observations, rather than the complete probability distribution
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model. Subsequently, Rao [3] proposed the Linear Bayes procedure from a linear optimiza-

tion viewpoint. Recently, Wei and Zhang [4] discussed the linear Bayesian estimation and

its superiorities for linear model. Wang and Singh [5] studied the linear Bayesian estimation

of the two-parameter exponential distribution and exhibited the superiorities of the linear

Bayes procedure over some classical estimators. In application fields, Kuo [6] explored the

linear Bayes estimators on the class of potency curves in quantal bioassay under the inte-

grated squared error loss. In Bayesian statistics, the posterior distribution offers a sensible

compromise between the prior and the observed data, and combined strength of the two

sources of information leads to increased precision in the understanding of the parameter,

which improves the effect of statistical inference.

We consider the following uniform distribution:

X ∼ R(−θ, θ), θ > 0.

Let X1, X2, · · · , Xn be independently drawn from the distribution and denote M =

max
i
Xi, m = min

i
Xi.

Then, the joint probability density function of the samples X = (X1, X2, · · · , Xn) is

f(x | θ) = f(x1, x2, · · · , xn | θ) =


1

(2θ)n
, −θ < m < M < θ;

0, otherwise.

If we assume that the prior distribution of θ is π(θ), then the posterior distribution

of θ, say π(θ |x), can be obtained by

dπ(θ |x) ∝ f(x | θ)dπ(θ).

Thus, under the squared loss function

L(θ̂, θ) = (θ̂ − θ)2, (1)

the BE would be the posterior expectation of π(θ |x). However, the BE is somewhat

complicated and inconvenient to use when the integrals appear in the posterior density are

not tractable, which causes the BE has no explicit expression and thus must be evaluated

numerically. Therefore, in this case we generally use simulation-based methods to obtain

approximate Bayesian estimations which can escape this unpleasant situation. Lindley [7]

developed asymptotic expansions for the ratios of integrals that occur in Bayesian analysis.

However, calculating the third derivative of the posterior density function is often an

arduous task. Also, Tierney and Kadane [8] proposed an approximation procedure to the

posterior moments and marginal densities, but this approximation process needs to satisfy
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a main condition that the product of the likelihood and the prior is unimodal, which more

or less limits its application.

This paper finds that when the prior distribution is specified as Pareto distribution,

the posterior expectation has an explicit form, but integral difficulties often occur with

other prior distributions specified. Therefore, a linear Bayes procedure is employed to

estimate the unknown parameter, and numerical simulations show that the proposed linear

approximate Bayes estimator is easy to use, which not only has an explicit form but also

performs well.

The paper is organized as follows. In Section 2, we first illustrate some properties

of the uniform distribution and its sufficient and complete statistic. Then, we employ

the linear Bayes procedure to construct the linear approximate Bayes estimator (LABE)

for the parameter. We also investigate the superiorities of the LABE over some classical

estimators in terms of the mean squared error (MSE) criterion. Numerical simulations are

carried out in Section 3 to make comparisons between the LABE and the BE, the latter

is obtained via numerical integration and validated by the brute-force method. Also, we

compare the proposed LABE with the Lindley’s approximation. Section 4 is devoted to

conclusions.

§2. LABE and Its Superiorities

As indicated in the previous section, by denoting M = max
i
Xi, m = min

i
Xi, we can

get the sufficient and complete statistic T = max{M,−m} and its probability density

function f(t | θ) = ntn−1/θn, where 0 < t < θ. We omit the proof processes since they

are relatively simple. Note that information in samples is all derived from the statistic T .

Then we can employ it to compute the posterior density function of θ.

First, we consider the case that the prior distribution is specified as Pareto distribu-

tion, which is the conjugate prior distribution of the uniform distribution. We state the

following Theorem.

Theorem 1 Let X1, X2, · · · , Xn be independently drawn from the distribution

R(−θ, θ) and the prior of θ is Pareto(θ0, α), where θ0 > 0, α > 0, then under the squared loss

function the Bayes estimator of θ is θ̂BE = (α+ n)(α+ n− 1)−1θ1, where θ1 = max(t, θ0).

Proof The density function of Pareto(θ0, α) is

π(θ) =
αθα0
θα+1

, θ > θ0.
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Denote θ1 = max(t, θ0), together with the density function of T , we have

π(θ | t) ∝ f(t | θ)π(θ) ∝ 1

θα+n+1
, θ > θ1,

which exactly follows the distribution of Pareto(θ1, α+ n).

Then, we can get the posterior density of θ is

π(θ | t) =
(α+ n)θα+n1

θα+n+1
, θ > θ1.

Obviously, the posterior expectation is E(θ | t) = (α+ n)(α+ n− 1)−1θ1.

Hence, under the loss function (1), the Bayes estimator of θ is

θ̂BE = (α+ n)(α+ n− 1)−1θ1.

We obtain the conclusion of Theorem 1. �

If other prior distributions are adopted, there may arise some troubles in integration

and the Bayesian estimation obtained by numerical simulations may not have an explicit

expression, which imposes certain limitations on the application of Bayesian estimation.

Enlightened by Theorem 1, we employ T to construct a linear estimator of θ. Define

the LABE θ̂LB be of the form θ̂LB = aT + b satisfying

R(θ̂LB, θ) = min
a,b

E(T,θ)(θ̂LB − θ)2, (2)

E(T,θ)(θ̂LB − θ) = 0, (3)

where a and b are unknown scalars, E(T,θ) indicates that the expectation is with respect

to the joint distribution of T and θ.

Assume that the prior distribution π(θ) of the parameter θ belongs to the following

prior family:

ζ = {π(θ) : Eθ2 <∞}. (4)

Thus we can get the following Theorem.

Theorem 2 Under the prior assumption (4), the expression of θ̂LB satisfying the

conditions (3) and (2) is given as follows

θ̂LB = cVar (θ)MT + Eθ − c2Var (θ)MEθ, (5)

where E(T | θ) = cθ, W = Eθ[Var (T | θ)], and M = [W + c2Var (θ)]−1 with c = n/(n+ 1).
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Proof From E(T,θ)(aT + b− θ) = 0, we know

b = E(T,θ)θ − aE(T,θ)T = Eθ − aE[E(T | θ)] = Eθ − acEθ.

Hence, R(θ̂, θ) can be written as

R(θ̂, θ) = E(T,θ)(aT + b− θ)2

= E(T,θ)(aT + Eθ − acEθ − θ)2

= E(T,θ)[a(T − cEθ) + (Eθ − θ)]2

= a2E(T,θ)(T − cEθ)2 + E(T,θ)(Eθ − θ)2 + 2aE(T,θ)(T − cEθ)(Eθ − θ)

= a2EθET |θ(T − cθ + cθ − cEθ)2 + Var (θ) + 2aEθET |θ(T − cEθ)(Eθ − θ)

= a2EθVar (T | θ) + a2c2Var (θ) + Var (θ)− 2acVar (θ).

Let ∂R(θ̂, θ)/∂a = 0, then

∂R(θ̂, θ)

∂a
= 2aEθVar (T | θ) + 2ac2Var (θ)− 2cVar (θ) = 0,

which yields

a = cVar (θ)[EθVar (T | θ) + c2Var (θ)]−1 = cVar (θ)M.

Together with

b = Eθ − c2Var (θ)MEθ,

we come to the conclusion of Theorem 2. The proof Theorem 2 is complete. �

Remark 3 There are some unknown elements in the equation (5) related to the prior

distribution of θ, such as Eθ, Var (θ) and M , which can be figured out for a specific prior

distribution.

In what follows, we discuss the superiorities of the proposed LABE over some classical

estimators. Note that the UMVUE (the uniformly minimum variance unbiased estimator)

of the parameter θ is [(n+ 1)/n]T , which can be represented as

θ̂U =
n+ 1

n
T = c−1T. (6)

And it is easy to see that the MLE (maximum likelihood estimator) of θ is T , that is

θ̂ML = T.

Theorem 4 Let θ̂LB and θ̂U be given by (5) and (6) respectively, then θ̂LB is superior

to θ̂U in terms of MSE criterion, i.e. MSE (θ̂LB) 6 MSE (θ̂U).
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Proof Note that the MSE of the θ̂U is

MSE (θ̂U) = E(T,θ)(θ̂U − θ)2 = EθET |θ(c
−1T − θ)2

= Eθ{Var T |θ(c−1T ) + [ET |θ(c
−1T − θ)]2}

= c−2EθVar (T | θ) = c−2W. (7)

On the other hand, it is readily seen that

MSE (θ̂LB) = E(T,θ)(θ̂LB − θ)2 = Var [E(θ̂LB − θ|θ)] + E[Var (θ̂LB − θ|θ)]

= Var [c2Var (θ)Mθ + Eθ − c2Var (θ)MEθ − θ]

+ E{Var [cVar (θ)MT + Eθ − c2Var (θ)MEθ]}

= Var [c2Var (θ)M(θ − Eθ)− (θ − Eθ)] + E{Var [cVar (θ)MT ]}

= Var {[c2Var (θ)M − 1](θ − Eθ)}+ [cVar (θ)M ]2EθVar (T | θ)

= [c2Var (θ)M − 1]2Var (θ) + [cVar (θ)M ]2W

= [cVar (θ)M ]2[c2Var (θ) +W ]− 2[cVar (θ)]2M + Var (θ)

= [cVar (θ)]2M − 2[cVar (θ)]2M + Var (θ)

= − c−2(M−1 −W )2M + c−2(M−1 −W )

= c−2W − c−2W 2M. (8)

Comparing (7) with (8), we conclude that MSE (θ̂LB) 6 MSE (θ̂U). The proof of

Theorem 4 is complete. �

Similarly, mimicking the proof processes of the Theorem 4, we can prove that θ̂LB

is superior to θ̂ML. Hence, we can get the conclusion that MSE (θ̂LB) is less than both

MSE (θ̂ML) and MSE (θ̂U), which indicates the superiorities of the proposed LABE over

the classical estimators under the MSE criterion.

§3. Numerical Comparisons

At the beginning of this section, we present the numerical comparisons between the

θ̂LB and θ̂BE by |θ̂LB − θ̂BE| under the specific prior distribution Pareto(α, θ0) in Table 1,

in this case the ordinary Bayes estimator has an explicit form. It should be noted that

those simulation results are based on 1 000 replications and the true value of θ is specified

as 5. Also, we compute the MSE of the LABE to assess the accuracy of the linear Bayes

method, which is defined as

MSE (θ̂LB) =
1

1 000

1 000∑
i=1

(θ̂LB,i − θ)2.
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Moreover, we use the Lindley’s approximation as a contrast. We will give the expres-

sion of the Lindley’s approximation θ̂Lindley later.

Table 1 θ ∼ Pareto(α, θ0)

n α θ0 |θ̂LB − θ̂BE| |θ̂Lindley − θ̂BE| MSE (θ̂LB)

30

5 3 0 0.6645 4.526× 10−6

3 3 0 0.3328 5.267× 10−7

3 4 0 0.3325 1.653× 10−6

50

5 3 0 0.3995 8.019× 10−7

3 3 0 0.1999 1.833× 10−6

3 4 0 0.1998 3.481× 10−7

100

5 3 0 0.1999 6.017× 10−6

3 3 0 0.1000 1.399× 10−6

3 4 0 0.0999 1.960× 10−6

It is easily seen from Table 1 that θ̂LB is equal to the θ̂BE, which means in this

situation the BE is the linear form of the statistic T and θ̂LB is better than the Lindley’s

approximation obviously. Also, we find that θ̂Lindley also approximates well and tends to

be closer to the θ̂BE with the increasing of sample size.

However, θ̂BE may have no explicit form when we select other prior distributions. In

what follows, for some other priors, we make some numerical comparisons between the

proposed LABE, the BE obtained by numerical integration and the Lindley’s approxima-

tion method as well. The prior distributions are listed in Table 2, where we use beta and

gamma prior distributions and assign two different values to the hyperparameters. They

obviously belong to the prior family (4). Moreover, the variance of the prior distributions

is used to measure the variation of the prior information, that is, the smaller variance

represents the more prior information.

Table 2 Priors of θ

Prior distributions Variance of the prior

Pr1: θ ∼ B(2, 2) 0.05

Pr2: θ ∼ B(10, 10) 0.0119

Pr3: θ ∼ Γ(5, 2) 1.25

Pr4: θ ∼ Γ(5, 10) 0.05

In order to solve the complex integral problem appears in the expectation of the
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posterior distribution, Lindley [7] proposed a kind of approximate method, which has been

used in many Bayes computations. For the parameter θ, the Lindley’s approximation

θ̂Lindley is defined as follows:

θ̂Lindley = θ̂ML + ρ1σ
2 +

1

2
L3σ

4,

where ρ1= d lnπ(θ)/dθ with π(θ) being a specific prior distribution, L2 = d ln2 f(t | θ)/dθ2,
L3 = d ln3 f(t | θ)/dθ3, σ2 = −L−12 and σ4 = (σ2)2, where ln f(t | θ) is the log-likelihood

function.

According to the prior distributions of θ and computing the above expressions, we can

obtain the Lindley’s approximation θ̂Lindley. Furthermore, we also exhibit the distances

|θ̂BE−θ| and |θ̂LB−θ|, from which we can see the differences between various of estimators

and the true values of θ. Here we adopt two different prior distributions, the true values

of θ are specified as 0.5 and 1, respectively.

Table 3 θ ∼ B(a, b)

n Prior |θ̂LB − θ̂BE| |θ̂Lindley − θ̂BE| |θ̂BE − θ| |θ̂LB − θ| MSE (θ̂LB)

30
Pr1 1.100× 10−3 3.431× 10−2 5.104× 10−5 5.181× 10−5 2.685× 10−6

Pr2 7.047× 10−4 4.162× 10−2 5.487× 10−5 5.534× 10−5 3.063× 10−6

50
Pr1 3.977× 10−4 2.037× 10−2 8.256× 10−6 7.840× 10−6 6.147× 10−8

Pr2 3.201× 10−4 2.312× 10−2 1.370× 10−7 1.847× 10−7 3.408× 10−11

100
Pr1 9.990× 10−5 1.010× 10−2 4.130× 10−6 4.028× 10−6 1.623× 10−8

Pr2 9.088× 10−5 1.083× 10−2 7.249× 10−7 7.336× 10−7 1.530× 10−8

Table 4 θ ∼ Γ(α, λ)

n Prior |θ̂LB − θ̂BE| |θ̂Lindley − θ̂BE| |θ̂BE − θ| |θ̂LB − θ| MSE (θ̂LB)

30
Pr3 4.486× 10−3 1.358× 10−1 9.058× 10−6 1.351× 10−5 1.824× 10−7

Pr4 9.129× 10−4 1.234× 10−1 1.750× 10−5 1.854× 10−5 3.439× 10−7

50
Pr3 1.773× 10−3 8.084× 10−2 1.483× 10−5 1.656× 10−5 2.743× 10−7

Pr4 3.591× 10−4 7.611× 10−2 1.660× 10−5 1.701× 10−5 2.893× 10−7

100
Pr3 4.718× 10−4 4.021× 10−2 7.197× 10−6 7.663× 10−6 5.873× 10−8

Pr4 9.590× 10−5 3.899× 10−2 1.297× 10−5 1.289× 10−5 1.661× 10−7

From Table 3 and Table 4, we can see that the distance |θ̂LB− θ̂BE| tends to decrease

as the prior information gets more concentrated for the two kinds of prior distributions,

respectively, which indicates that a more informative prior may lead to the LABE θ̂LB be
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closer to the BE θ̂BE. In addition, it is readily seen that when the prior distribution of

θ is changed from the beta distributions to the gamma distributions, the LABE θ̂LB has

a little change, but it is not so sensitive to the choice of the prior distributions, which

reflects the robustness of the linear Bayes estimator.

Moreover, we easily see that all |θ̂LB − θ̂BE|s are relatively small and |θ̂LB − θ̂BE| 6
|θ̂Lindley− θ̂BE| can be found from all the numerical comparison results, which implies that

as an approximation to the BE the LABE outperforms the Lindley’s approximation for

the above cases. When comparing the distances |θ̂LB− θ| with |θ̂BE− θ|, we can find that

the LABE is close to the true value of θ and sometimes even performs better than the BE.

Note that the proposed LABE possesses an explicit form and is easy to use. Hence, it is

suitable to employ the linear Bayes method to estimate θ.

Furthermore, for the two kinds of prior distributions, we display the distances |θ̂LB−
θ̂BE| varying with the sample size n in Figure 1 (a) and (b), respectively. From Figure

1, we find that the distance |θ̂LB − θ̂BE| has a decreasing trend with the increasing of

sample size, and the choice of the prior distribution has little effect on the approximate

performance. Also, we can find that a more informative prior distribution helps obtain a

closer LABE to the BE.
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Figure 1 The distances |θ̂LB − θ̂BE| vary with the sample size under the beta prior

distributions in (a) and under the gamma prior distributions in (b)

Finally, in order to further illustrate the robustness of the linear Bayes estimator to

the choice of the prior distributions, we use the inverse gamma distribution as prior. For

n = 50 and θ = 1.5, we compute |θ̂LB − θ̂BE|, |θ̂Lindley − θ̂BE|, |θ̂LB − θ|, |θ̂Lindley − θ| and

the results are shown in Table 5 and Table 6. From Table 6, we see that |θ̂LB − θ̂BE| and

|θ̂LB − θ| are both smaller, which means the LABE is both closer to the θ̂BE and the true
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value of θ when compared with the Lindley’s approximation θ̂Lindley.

Table 5 θ ∼ Γ−1(α, λ)

Prior θ̂BE θ̂LB θ̂Lindley

Pr5: θ ∼ Γ−1(5, 20) 1.5066 1.5056 1.2179

Table 6 Distances under the Pr5

Prior |θ̂LB − θ̂BE| |θ̂Lindley − θ̂BE| |θ̂BE − θ| |θ̂LB − θ| MSE (θ̂LB)

Pr5 0.0011 0.2888 0.0056 0.2821 1.212× 10−7

Also, we present the frequency histograms of the four distances |θ̂LB − θ̂BE|, |θ̂Lindley
− θ̂BE|, |θ̂LB − θ| and |θ̂Lindley − θ| in Figure 2 under the inverse gamma distribution

Γ−1(5, 20). They are obtained by repeating the simulations 1 000 times, which further

show that the linear Bayes procedure performs well.
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Figure 2 The histograms of the distances for n = 50 and θ = 1.5 under the Pr5
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Besides the numerical integration method to obtain the BE, there are some other

methods, such as the brute-force method (see [9], etc.), the simulation-based MCMC

methods (see [10,11], etc.) including Metropolis-Hastings procedure and Gibbs procedure,

which are suggested to obtain the approximate Bayes estimator. Here, we produce the

simulation results by the brute-force method under the Pr1 and the Pr3 and present them

in Figure 3.
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Figure 3 Histograms of the samples from the posterior distributions under the Pr1

in (a) and under the Pr3 in (b)

For the prior distributions Pr1 and Pr3, it is easily seen that the samples from the

posterior distributions are concentrated at the value 0.5 and 1 (the true values of θ that we

specified) respectively, which means that the outcomes are very similar to the numerical

integration method.

§4. Conclusions

This article employs the linear Bayes method to estimate the parameter θ of the

uniform distribution R(−θ, θ) and proposes a linear approximate Bayes estimator (LABE).

Under several different prior distributions, we compare the LABE with the BE and the

Lindley’s approximation numerically. Moreover, the superiorities of the LABE over some

classical estimators in terms of the MSE criterion are also exhibited.

Compared with the BE and the Lindley’s approximation, we find that the proposed

LABE is not only simple and easy to calculate but also is a good approximation, and

in numerical simulations the LABE is very close to the BE regardless of the choice of

priors and the change of the hyperparameters. Also, we find that the LABE outperforms

the Lindley’s approximation for our cases, which furthermore reveals the efficiency of the
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proposed LABE. The procedure used in this article can be extended easily to many other

useful distributions such as normal, log-normal, exponential family, etc.
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ÜÂ� �áS

(�®�Ï�ÆnÆ�, �®, 100044)

Á �: �©|^�5��d�{�Oþ!©Ù R(−θ, θ) ���ëê, JÑ
 θ ��5Cq��d�O

(LABE), LABE äkµ4)Û)�/ª�Bu¦^. ê��[L²�©JÑ� LABE �ÊÏ���d�

O (BE)é�C, Ù¥ BEdê�È©��, ·��¦^
¤¢�rå�{5¼� BE. ?�Ú, ·�'�


LABE� LindleyCq. 3þ�Ø�OKe, LABE�éu²;�Oþ�`�5���y².
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