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Abstract: We consider a critical branching process with ψ-mixing immigration and prove a func-

tional limit theorem, improving the results in previous literatures. As applications, we obtain

central limit theorems for an estimator of the offspring mean.
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§1. Introduction

Suppose {Xni, n, i > 1} are independent and identically distributed (i.i.d.) non-

negative integer-valued random variables. {ξn, n > 1} is another sequence of non-negative

integer-valued random variables, which is independent of {Xni, n, i > 1}. Define {Z(n),

n > 0} recursively as

Z(n) =
Z(n−1)∑
i=1

Xni + ξn, n > 1; Z(0) = 0. (1)

Suppose A := EXni = 1 and B := Var (Xni) ∈ (0,∞). Define E ξn = α(n), Var (ξn) =

β(n). {Z(n), n > 0} is called a critical Galton-Watson (GW) branching process with

immigration.

There have been many research works on the limit theorems of branching processes

with immigration. For instance, Wei and Winnicki [1] studied the model (1) where {ξn} is

an i.i.d. sequence with finite variance, and proved a functional limit theorem for Z([nt])/n

(t > 0). Ispány et.al. [2] investigated a sequence of nearly critical GW branching processes

with immigration, where the offspring variance tends to 0. Rahimov [3] also considered
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the process defined by (1), where {ξn} are independent and α(n) → ∞, β(n) → ∞.

Three different limit theorems were obtained, depending on the relation of α(n) and β(n).

Furthermore, Guo and Zhang [4] generalized one of the results in [3], by supposing {ξn}
are N -dependent (N > 2) and β(n) = o(nα(n)).

In this paper, we are interested in the process {Z(n), n > 0} defined by (1), where

the immigration satisfies the following ψ-mixing condition:

Definition 1 Suppose {Yi} is a sequence of random variables. Let Fmn = σ(Yi : n 6

i 6 m), 1 6 n 6 m 6∞. Define

ψ(m) = sup
{∣∣∣ P(AB)

P(A)P(B)
− 1
∣∣∣ : A ∈ F k1 , B ∈ F∞m+k, P(A)P(B) 6= 0, k > 1

}
.

The sequence {Yn, n > 1} is said to be ψ-mixing, if ψ(n)→ 0 as n→∞.

We shall base our discussion on the following condition:

(H) The two sequences {Xni, n, i > 1} and {ξn, n > 1} are independent with each

other. {ξn, n > 1} is a sequence of ψ-mixing random variables satisfying
∞∑
k=1

ψ(k) <∞.

And we always assume

lim
n→∞

nα(n)

β(n)
= 0. (2)

In the paper, under (H) and (2), we shall prove a functional central limit theorem of

Z(n), generalizing the results of [3] (independent immigration case) and [4] (N -dependent

immigration case). As applications, we obtain some central limit theorems of the estimator

Ân of the offspring mean A. We shall see that the limit is normal or the change of a normal

variable, according to the relation of α(n) and β(n).

To get the proofs, we shall split the normalized process of Z(n) into two parts: repro-

duction process and immigration process (see (11) and (12)). For the first part, we prove

that it converges weakly to 0 by martingale central limit theorem. This proof is inspired

by Rahimov [3]. For the second part, in our case, the immigration at different generation

are not independent of each other. To deal with it, we use the invariance principle for

mixing sequences (see for example, [5–7]). One shall see that under the assumption (2),

the immigration variance β(n) plays an important role in the proofs. We mention that

our technical tool of the proof of main theorem can also be used to deal with the case

β(n) = o(nα(n)), which was discussed in [4] by different decomposition.

The remainder of the paper is organized as follows. The main result is given in Section

2. Section 3 contains some preliminary lemmas and their proofs. Section 4 is devoted to
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the proof of the main theorem. Finally, applications in parameter estimate are given in

Section 5.

In what follows, we write an ∼ bn if and only if lim
n→∞

an/bn = 1; an = o(bn) if and

only if lim
n→∞

an/bn = 0. ‘
D−→’, ‘

d−→’ and ‘
P−→’ denote the convergence of random functions

in Skorokhod space, the convergence of random variables in distribution, and convergence

in probability, respectively.

§2. Functional Limit Theorem

For each k > 0, let F (k) = σ{Z(i), 1 6 i 6 k} and Fn
m = σ{Z(i), m 6 i 6 n}. For

each n > 1, suppose α(n) and β(n) are regularly varying functions as n→∞, i.e.

α(n) = nαLα(n), β(n) = nβLβ(n), (3)

where α, β > 0, and Lα(n) and Lβ(n) are slowly varying functions as n→∞. Denote

A(n) = E[Z(n)], B2(n) = Var [Z(n)].

By (1), for n > 1,

A(n) = E
( Z(n−1)∑

i=1
Xni

)
+ E ξn = E[Z(n− 1)] + α(n) = · · · =

n∑
k=1

α(k),

and

B2(n) = ∆2(n) + σ2(n) + 2
n−1∑
i=1

n∑
k=i+1

Cov (ξi, ξk) := ∆2(n) + σ̃2(n),

where

∆2(n) = B
n−1∑
k=1

A(k), σ2(n) =
n∑
k=1

β(k). (4)

For t > 0, define

Yn(t) =
Z([nt])−A([nt])

B(n)
, n > 1, (5)

and for each ε > 0, define

δn(ε) =
1

σ2(n)

n∑
k=1

E{|ξk − α(k)|2; |ξk − α(k)| > εσ(n)},

where [nt] is the largest integer before nt.

Moreover, we always assume

lim
n→∞

σ(n)

σ̃(n)
= c∗ (6)

holds for some positive constant c∗. The following is our main theorem of this paper.
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Theorem 2 Suppose condition (H), (2) and (6) hold. If δn(ε) → 0 for any ε > 0,

then

Yn(t)
D−→W (t1+β), n→∞

in Skorokhod space D(R+,R), where W (t) is the standard Brownian motion.

§3. Preliminary Results

Lemma 3 ([8; Lemma 1.2.11]) Let {Xn, n > 1} be a sequence of ψ-mixing random

variables. Let X ∈ F k
1 , Y ∈ F∞k+n, E|X| <∞, E|Y | <∞. Then, E|XY | <∞ and

|EXY − EXEY | 6 ψ(n)E|X|E|Y |.

Remark 4 Consider the immigration sequence {ξn}. Using Lemma 3, we get

σ̃2(n) = Var {[ξ1 − α(1)] + [ξ2 − α(2)] + · · ·+ [ξn − α(n)]}

=
n∑
k=1

Var (ξk) + 2
n−1∑
i=1

n∑
j=i+1

Cov (ξi − α(i), ξj − α(j))

6
n∑
k=1

Var (ξk) + 2
n−1∑
i=1

n∑
j=i+1

ψ(j − i)E|ξi − α(i)|E|ξj − α(j)|

6
n∑
k=1

Var (ξk) +
[
2
∞∑
k=1

ψ(k)
] n∑
i=1

E[ξi − α(i)]2

6
[
1 + 2

∞∑
k=1

ψ(k)
]
σ2(n).

Hence the assumption (6) is reasonable. Particularly, if the sequence {ξn, n > 1} is positively

associated, then (6) holds.

Lemma 5 ([3; Lemma 3]) Assume ∆2(n) and σ2(n) are defined by (4). As n→∞,

(i) ∆2(n) ∼ Bn2α(n)

(α+ 1)(α+ 2)
, σ2(n) ∼ nβ(n)

β + 1
;

(ii) For γ > 0,
n∑
k=1

Aγ(k) ∼ nAγ(n)

γα+ γ + 1
, A(n) ∼ nα(n)

1 + α
.

Applying Lemma 5, (2) and (6), as n→∞,

σ̃(n) ∼ B(n), σ(n) ∼ c∗B(n). (7)
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Lemma 6 If α(n)→∞ as n→∞, then

(i) B−4(n)Var
[ [nt]∑
k=1

Z(k)
]
→ 0;

(ii) B−4(n)
[nt]∑
k=1

EZ2(k)→ 0.

Proof For part (i), by Hölder’s inequality, the upper bound

B−4(n)Var
[ [nt]∑
k=1

Z(k)
]

= B−4(n)
[nt]∑
k=1

B2(k) + 2B−4(n)
[nt]−1∑
i=1

[nt]∑
j=i+1

Cov (Z(i), Z(j))

6 B−4(n)
[nt]∑
k=1

B2(k) + 2B−4(n)
[nt]∑
i=1

B(i)
[nt]∑
j=1

B(j)

6
Ctn

2B2(n)

B4(n)
→ 0

holds as n→∞, where Ct is a positive constant depending only on t.

For part (ii), in fact,

EZ2(k) = B2(k) +A2(k).

Using Lemma 5, we complete the proof. �

For n > 1, let

M(n) = Z(n)− Z(n− 1)− α(n), (8)

and for k > 1,

T (k) =
Z(k−1)∑
i=1

(Xki − 1), (9)

Here we denote
0∑
i=1

= 0. Then

M(n) = T (n) + ξn − α(n). (10)

By (1), (8) and (10), Yn(t) given by (5) can be written as

Yn(t) = B−1(n)
[nt]∑
k=1

M(k) = Y (1)
n (t) + Y (2)

n (t), (11)

where

Y (1)
n (t) = B−1(n)

[nt]∑
k=1

T (k), Y (2)
n (t) = B−1(n)

[nt]∑
k=1

[ξk − α(k)]. (12)

Next, we consider the property of T (k) defined by (9).
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Lemma 7 For i > 1,

E[T (i)T (j)] =

BA(i− 1), i = j;

0, i 6= j.

Proof Considering the independence of reproduction process and immigration, we

know that

E[T (k) |F (k − 1)] = Z(k − 1)E(X11 − 1) = 0, (13)

and

E[T 2(k) |F (k − 1)] = Z(k − 1)E(X11 − 1)2 = BZ(k − 1).

Using the property of conditional expectation, we get

E[T (i)T (j)] = E{T (i)E[T (j) |F (j − 1)]} = 0

for j > i, and

E[T 2(i)] = E{E[T 2(i) |F (i− 1)]} = BA(i− 1). �

For ε > 0 and t > 0, let

I(n) = B−2(n)
[nt]∑
k=1

E[T 2(k)1{|T (k)|>εB(n)} |F (k − 1)].

Lemma 8 Assume (2) and (6) hold. Then

I(n)
P−→ 0, n→∞. (14)

Proof Obviously,

I(n) 6
1

B2(n)

[nt]∑
k=1

E[T 2(k) |F (k − 1)].

By Lemma 7, Lemma 5 and noticing that nα(n) = o(β(n)), as n→∞,

1

B2(n)

[nt]∑
k=1

E[(T (k))2] =
1

B2(n)

[nt]∑
k=1

BA(k − 1)

∼ B

α+ 2
· [nt]A([nt])

∆2(n) + σ̃2(n)

→ 0,

hence
1

B2(n)

[nt]∑
k=1

E[(T (k))2 |F (k − 1)]
P−→ 0. (15)

Then, we obtain the result. �
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Lemma 9 ([9] and [3]) Let {Unk , k > 1} for each n > 1 be a sequence of martingale

differences with respect to some filtration {F̃n
k , k > 1}, such that the conditional Lindeberg

condition
[nt]∑
k=1

E[(Unk )21{|Unk |>ε} | F̃
n
k−1]

P−→ 0

holds as n→∞ for all ε > 0 and t ∈ R+. Then

[nt]∑
k=1

Unk
D−→ U(t)

in Skorokhod space D(R+,R) as n → ∞, where U(t) is a continuous Gaussian martingale

with mean 0 and covariance function C(t), t ∈ R+, if and only if

[nt]∑
k=1

E[(Unk )2 | F̃n
k−1]

P−→ C(t)

as n→∞ for each t ∈ R+.

Lemma 10 ([6; Theorem 1]) Let {Xk, k > 1} be a centered ψ-mixing sequence of

random variables having finite second moments. Suppose {kn, n > 0} satisfies

0 = k0 < k1 < · · · , lim
n→∞

max
16i6n

(ki − ki−1)/kn = 0, (16)

and

s2n = knh(kn),

where h : R+ → R+ is a slowly varying function, and

Sn =
n∑
k=1

Xk, s2n = ES2
n.

Define

mn(t) = max{i > 0 : ki 6 tkn}, Wn(t) = Smn(t)/sn, t ∈ [0, 1].

If {Xk, k > 1} satisfies

lim
n→∞

s−2n
n∑
k=1

E[X2
k1{|Xk|>εsn}] = 0 for any ε > 0 (17)

and

lim
n→∞

s−1n

(
max
16k6n

E|Xk|
) n∑
k=1

ψ(k) = 0, (18)

then

Wn(t)
D−→W (t) in D[0, 1], n→∞.

Remark 11 If kn ↑ ∞ as n→∞, then condition (16) is equivalent to lim
n→∞

kn+1/kn

= 1.



338 Chinese Journal of Applied Probability and Statistics Vol. 36

§4. Proofs of Main Theorem

To prove Theorem 2, we need the following propositions.

Proposition 12 Suppose condition (H), (2) and (6) hold. Then

Y (1)
n (t)

D−→ 0, n→∞

in D(R+,R).

Proof First, by (13), we know that {T (k), k > 1} is a sequence of martingale

differences with respect to {F (k), k > 1}. Let Unk = T (k)/B(n) and F̃n
k = F (k) in

Lemma 9. Combing with (14) and (15), we complete the proof. �

Proposition 13 Suppose condition (H), (2) and (6) hold. If δn(ε)→ 0 for any ε > 0,

then

Y (2)
n (t)

D−→W (t1+β), n→∞

in Skorokhod space D(R+,R), where {W (t), t ∈ R+} is the standard Brownian motion.

Proof Let Xk = ξk − α(k) in Lemma 10. Then

sn = σ̃(n) ∼ B(n), n→∞. (19)

From Lindeberg condition, we know (17) is satisfied. Moreover, by Hölder’s inequality,

E|Xk| 6
√
E|Xk|2 =

√
β(k), we then have

s−1n

(
max
16k6n

E|Xk|
) n∑
k=1

ψ(k) 6
∞∑
k=1

ψ(k)

√
β(n)

σ̃(n)
.

Recalling (6) and Lemma 5 (i), we get (18). So, conditions of Lemma 10 are satisfied. Let

kn = n1+β, then mn(t) = [nt1/(1+β)]. Thus, we obtain

Wn(t) =
S[nt1/(1+β)]

sn

D−→W (t) (20)

as n→∞. Setting u = t1/(1+β) in (20), we get

S[nu]/sn
D−→W (u1+β).

Together with (19), we end the proof. �

Proof of Theorem 2 Combining Proposition 12 with Proposition 13, we complete

the proof of Theorem 2. �
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§5. Applications

Rahimov [10] obtained limit distributions of the conditional least-squares estimator

(CLSE) Ân of the offspring mean A (A = 1) with independent immigration. In the

present paper, {ξn, n > 1} are not mutually independent, as a result, the estimator

Ân =

n∑
k=1

[Z(k)− α(k)]Z(k − 1)

n∑
k=1

Z2(k − 1)

(21)

is not the CLSE of A any more. However, under condition (H) and some moment condi-

tions, the central limit theorems of Ân still hold. The results are classified into three cases

as follows:

nα(n) = o(β(n)) and β(n) = o(nα2(n)), n→∞; (22)

nα2(n) = o(β(n)), n→∞; (23)

nα2(n) ∼ d0β(n), d0 ∈ (0,∞), n→∞. (24)

Theorem 14 Assume (22). If δn(ε)→ 0 for any ε > 0, then

n3/2α(n)√
β(n)

(Ân − 1)
d−→ N(0, a2), n→∞,

where N(0, a2) is a normal random variable with mean 0 and variance

a2 =
(1 + α)2(2α+ 3)2

(2α+ β + 3)(c∗)2
.

Theorem 15 Suppose (23) and there exists 0 6 δ < 1 such that E(ξ4k) 6 kδ+2β

(k > 1). If δn(ε)→ 0 for any ε > 0, then

n(Ân − 1)
d−→ W 2(1)− (c∗)2

2

∫ 1

0
W 2(t1+β)dt

, n→∞.

Theorem 16 Suppose (24) and there exists 0 6 δ < 1 such that E(ξ4k) 6 kδ+2β

(k > 1). If δn(ε)→ 0 for any ε > 0, then

n(Ân − 1)
d−→ 2−1[W 2(1)− (c∗)2] + c0η

c20/(2α+ 3) + ζ
, n→∞,

where

c0 =
c∗
√
d0(1 + β)

1 + α
, η = (1 + α)

∫ 1

0
[W (1)−W (t1+β)]tαdt,

ζ = 2c0

∫ 1

0
W (t1+β)t1+αdt+

∫ 1

0
W 2(t1+β)dt.
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Remark 17 The proofs of Theorems 14 – 16 are parallel to [10; Theorems 2 – 4]. We

only explain the differences here. Our key step is to prove that as n→∞,

1

B2(n)

n∑
k=1

M2(k)
P−→ (c∗)2. (25)

Using Lemma 5 and (2), we derive

1

B2(n)

n∑
k=1

T 2(k)
P−→ 0,

1

B2(n)

n∑
k=1

T (k)(ξk − α(k))
P−→ 0.

Then, (25) is equivalent to

1

B2(n)

n∑
k=1

(ξk − α(k))2
P−→ (c∗)2. (26)

By (4) and (6),

E
{ 1

B2(n)

n∑
k=1

[ξk − α(k)]2
}
→ (c∗)2. (27)

Using Lemma 3, as n→∞,

Var
{ 1

B2(n)

n∑
k=1

[ξk − α(k)]2
}

6 B−4(n)
{ n∑
k=1

Var {[ξk − α(k)]2}+
[
2
∞∑
k=1

ψ(k)
] n∑
i=1

E[ξi − α(i)]4
}

= B−4(n)
{[

1 + 2
∞∑
k=1

ψ(k)
] n∑
i=1

E[ξi − α(i)]4
}
−B−4(n)

n∑
k=1

β2(k)

6
C

B4(n)

n∑
k=1

E(ξ4k)

→ 0. (28)

Therefore, (26) follows from (27) and (28).
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