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§1. Introduction

Asset allocation and reinsurance business are two important issues in insurance indus-

try. Reinsurance is an effective way to diversify risk for large losses while asset allocation

is an increasing requirement to achieve its management objective. Therefore, optimization

problems with various objectives have attracted much attention in actuarial science and

risk management in recent decades. These objectives mainly include the utility of wealth,

return and risk of the strategies. For example, in terms of minimizing the ruin proba-

bility, Promislow and Young [1] consider the optimal investment-reinsurance problems for

an insurer and Meng et al. [2] study an optimal reinsurance problem in which insurance

risk is partially transferred to two reinsurers. Yang and Zhang [3] focus on seeking the

optimal strategies for an insurer with jump-diffusion risk process in order to maximize

the expected exponential utility from terminal wealth. Zhao et al. [4] consider maximizing

the expected discounted exponential utility of the consumption and terminal wealth of
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an insurer. Measuring the risk by Capital-at-Risk (CaR), Zeng and Li [5] investigate an

optimal mean-CaR investment-reinsurance problem. Sun and Guo [6] consider an optimal

investment-reinsurance problem for a mean-variance insurer with stochastic volatility. A-

mong all optimization criteria, mean-risk models have obtained more and more attraction

since it can control the return and risk directly.

As a typical mean-risk model, mean-variance (MV) model pioneered by Markowitz [7]

has long been recognized as the milestone of modern portfolio theory and has stimulated

numerous extensions. Bai and Zhang [8] solve an optimal investment-reinsurance prob-

lem for a mean-variance insurer in a classical risk model and a diffusion model. Zeng

and Li [9] find the optimal time-consistent strategies of an investment-reinsurance prob-

lem and an investment-only problem for mean-variance insurers respectively. Considering

time-consistent mean-variance portfolio selection with only risky assets, Pun [10] obtains

the exact analytical solution in a continuous-time setting. In a non-Markovian regime-

switching framework, Wang and Wei [11] obtain the optimal investment policy based on

mean-variance criteria. For more literatures on this topic, one may refer to Kolm et al. [12]

who review the development, challenges and trends of MV optimization problems.

However, variance, as a risk measure, can only limit the volatility around the expected

return, but ignore the loss that occurs in the worst-case scenario. To measure the risk

concerned with the left tails of distributions, some risk measures such as expectile, Value-

at-Risk (VaR), CaR and Conditional Value-at-Risk (CVaR) are introduced into the study

of optimal strategy in finance and insurance management, see [13–18] and the reference

therein. Additionally, CVaR has attracted more attention and widely accepted since it has

excellent theoretical properties consistent with practice. As we know, the computation of

a risk measure is central in all problems related to risk measure and risk management.

In the above literature, normal assumption on asset or return is generally supposed, and

hence VaR, CaR and CVaR can be written as a linear combination of mean and variance

in a closed analytical form, which can be incorporated into optimization problem easily.

Under non-normal situation, their computation is still a problem till the year of 2000.

Rockafellar and Uryasev [19, 20] propose a minimization formulation in which the value of

CVaR can be found through a convex optimization problem. These desirable aspects

of CVaR have paved the way of its use in risk management and non-normal/nonlinear

portfolio optimization, see [21] and the references therein.

Different risk measures emphasize different aspects of random loss. Variance measures

the deviation of the random variable from the expected value while CVaR is an average

of losses over a certain threshold (VaR). The optimal strategy generated from mean-

CVaR portfolio model could induce a very large variance while the CVaR of the portfolio

generating from the traditional MV model could be also unacceptably large. To balance the
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portfolio policies generated from the MV and mean-CVaR models, Roman et al. [22] propose

a static multi-objective optimization model on the basis of three statistics: expected value,

variance and CVaR. Li et al. [23] study investment policy of China sovereign wealth fund

based on mean-variance-CVaR model, and Younes et al. [24] devote to solve this model

via a linear weighted sum method. Assuming the market coefficients are deterministic,

Gao et al. [25] expand the above static mean-variance-CVaR model to dynamic portfolio

selection and derive the analytical forms of the portfolio policy for mean-variance-CVaR

optimization models. They also find that the portfolio policies of mean-variance-CVaR

model exhibit a feature of curved V-shape by some illustrative examples.

In this paper, we construct an optimal asset allocation and reinsurance model un-

der mean-variance-CVaR criterion in continuous-time. Specifically, the surplus process of

the insurer is described by a diffusion model, which is an approximation of the classical

Cramér-Lundberg model. The insurer can invest in a financial market with one risk-free

asset and multiple risky assets whose returns follow geometric Brownian motions and

purchase proportional reinsurance or acquire new business. We construct a dynamic opti-

mization problem in the sense of minimizing a linear combination of variance and CVaR.

We obtain the closed-form expressions of optimal investment and reinsurance strategies

and optimal wealth value for the optimization problem by using martingale approach. The

main theoretical contribution of this paper is that variance and CVaR are embedded into

the dynamic optimal asset allocation and reinsurance problem which is not confined by

any distribution assumption.

The remaining of this paper is organized as follows. Section 2 introduces the mod-

el and the formulation of the problem. Section 3 shows the optimal strategy of the

investment-reinsurance problem under the mean-variance-CVaR criterion by using the

martingale method. Section 4 provides a numerical analysis and discusses the trend of

the optimal wealth, asset allocation and reinsurance policy in terms of different coefficient

assumptions and market conditions. Section 5 concludes the paper.

§2. The Model

Let T > 0 be a fixed time horizon. All the randomness is modeled by a complete

filtered probability space {Ω,F , {Ft}t>0,P}, on which a one-dimensional Brownian mo-

tion W0(t) and an n-dimensional Brownian motion W (t) = (W1(t),W2(t), · · · ,Wn(t))′ are

defined. We assume that W (t) and W0(t) are independent of each other and denote by W̃

the n+ 1 dimensional standard Brownian motion W̃ (t) = (W0(t),W1(t), · · · ,Wn(t))′.

The insurer’s surplus process is described by a diffusion approximation model. By

Grandell [26], the classical Cramér-Lundberg model can be approximated by the following
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diffusion model, which works well for large insurance portfolios:

dR(t) = µ0dt+ σ0dW0(t), t > 0,

where µ0 > 0 denotes the premium return rate of insurance business, σ0 > 0 measures

risk level of insurance business.

To manage risk effectively, the insurer is assumed to purchase proportional reinsurance

or acquire new business with the retention level a(t) > 0 for t ∈ [0, T ]. For convenience,

we call the process of risk exposure {a(t)}t∈[0,T ] as a reinsurance policy. Specifically, a

chosen reinsurance policy a(t) ∈ [0, 1] denotes the portion of the claims retained by the

insurer and shows that the cedent should divert part of the premium to the reinsurer at

the rate of [1 − a(t)]θ, where θ > µ0 can be regarded as the premium return rate of the

reinsurer; a(t) > 1 means that the insurer acquires a new reinsurance business. When a(t)

is adopted, the corresponding diffusion approximation dynamics for the surplus process

{R(t)}t∈[0,T ] becomes

dR(t) = {µ0 − [1− a(t)]θ}dt+ σ0a(t)dW0(t).

We consider a financial market with one risk-free asset and n risky assets, which can

be traded continuously within a time horizon [0, T ]. The price process of the risk-free asset

S0(t) follows

dS0(t) = r0S0(t)dt, S0(0) = s0 > 0,

where r0 > 0 is the constant risk-free return rate.

The price process of the i-th risky asset Si(t) (i = 1, 2, · · · , n) satisfies the following

stochastic differential equation

dSi(t) = Si(t)
[
µi(t)dt+

n∑
j=1

σij(t)dWj(t)
]
, Si(0) = si > 0,

where the mean rate of return µi(t) and the dispersion σij(t) are positive continuous

bounded deterministic functions. Let σ(t) = (σij(t))n×n satisfy the nondegeneracy con-

dition, i.e., σ(t)σ′(t) > εIn×n, for all t > 0 and some ε > 0, and In×n is the identity

matrix.

Suppose that the insurer can dynamically purchase proportional reinsurance/acquire

new business and invest in the financial market over the time interval [0, T ], and that there

is no transaction cost in the financial market and insurance market.

Let L 2
F (0, T ;Rn) be the set of all Rn-valued, Ft-adapted and square integrable s-

tochastic processes, and L 2
FT

(Ω;Rn) be the set of all Rn-valued, FT -measurable random

variables. Define strategies process as π′(t) = {(a(t), b′(t))} ∈ L 2
F (0, T ;Rn+1), where



540 Chinese Journal of Applied Probability and Statistics Vol. 36

a(t) > 0 corresponds to the value of risk exposure at time t, b(t) := (b1(t), b2(t), · · · , bn(t))′,

bi(t) is the dollar amount invested in the i-th risky asset at time t.

Denote by X(t) the wealth at time t under strategy π(t).Then the wealth process

X(t) is given by
dX(t) =

{
r0X(t) +

n∑
i=1

[µi(t)− r0]bi(t) + θa(t) + µ0 − θ
}

dt

+σ0a(t)dW0(t) + b(t)′σ(t)dW (t),

X(0) = x0.

Let h = µ0 − θ, r(t) = (θ, µ1(t)− r0, µ2(t)− r0, · · · , µn(t)− r0)′,

σ̃(t) =


σ0 0 · · · 0

0 σ11(t) · · · σ1n(t)
...

...
. . .

...

0 σn1(t) · · · σnn(t)


which satisfies the nondegeneracy condition. Then the wealth process X(t) can be rewrit-

ten as dX(t) = [r0X(t) + r(t)′π(t) + h]dt+ π(t)′σ̃(t)dW̃ (t),

X(0) = x0.
(1)

In this paper, both variance and CVaR are chosen to measure the risk generated from

the wealth process. Let V [X(T )] denote the variance of the terminal wealth X(T ), and

the loss function of the terminal wealth is given by L(X(t)) = X(0) − X(T ). We adopt

the CVaR definition of the loss given by Rockafellar and Uryasey [19, 20], which is a unified

definition applied for all loss functions with a continuous or a discrete distribution. Define

the cumulative distribution function of L(X(t)) as ψ(y) = P(L(X(t)) 6 y). For a given

confidence level β, the correspondent β-tail distribution of the loss function L(X(t)) is

given by

ψβ(y) =

0, if y < VaRβ;

[ψ(y)− β]/(1− β), if y > VaRβ,

where VaRβ = inf{y |ψ(y) > β}.
According to Rockafellar and Uryasey [19, 20], the CVaR of the loss function L(X(T ))

can be obtained as follows,

CVaRβ[L(X(T ))] = min
α

{
α+

1

1− β
E[(X(0)−X(T )− α)+]

}
, (2)

where α is an auxiliary variable and (x)+ = max{x, 0}.
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Now we formulate the dynamic mean-variance-CVaR (MVC) optimization problem

as follows,

Pmvc(ω) : min
π(·)∈L 2

F (0,T ;Rn+1)
V [X(T )] + ωCVaRβ[L(X(T ))], (3)

s.t. E[X(T )] = d, (4)

dX(t) = [r0X(t) + r(t)′π(t) + h]dt+ π(t)′σ̃(t)dW̃ (t), (5)

X(T ) > 0, (6)

X(0) = x0, (7)

where d is the target value of the expected terminal wealth and ω > 0 is a weighting

parameter, which balances the importance of the two risk measures. Equation (6) indicates

that the insurer has to obtain a positive wealth value at terminal period.

§3. Main Results

Letting X̃(t) = X(t) + h/r0, we convert equation (1) intodX̃(t) = [r0X̃(t) + r(t)′π(t)]dt+ π(t)′σ̃(t)dW̃ (t),

X̃(0) = x0 + h/r0.

Subsequently, considering equation (2) and Pmvc(ω), we can get the following problem

with a fixed value of α,

P̃mvc(ω, α) : min
π(·)∈L 2

F (0,T ;Rn+1)
V [X̃(T )] + ω̂E[(q − X̃(T ))+],

s.t. E[X̃(T )] = d+
h

r0
,

dX̃(t) = [r0X̃(t) + r(t)′π(t)]dt+ π(t)′σ̃(t)dW̃ (t),

X̃(T ) >
h

r0
,

X̃(0) = x0 +
h

r0
,

where q = x0 + h/r0 − α and ω̂ = ω/(1− β).

Following the idea in [25], we use martingale approach to solve P̃mvc(ω, α).

At first, we solve a static optimization problem to determine the optimal terminal

wealth X̃∗(T ). Let δ(t) = σ̃−1r(t) denote the market price of risk. We define the deflator

process dz(t) = −z(t)(r0dt + δ′(t)dW̃ (t)) with z(0) = 1, or equivalently, the exponential
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martingale,

z(t) = exp
{
−
∫ t

0

[
r0 +

1

2
‖δ(τ)‖2

]
dτ −

∫ t

0
δ′(τ)dW̃ (τ)

}
, (8)

with z(0) = 1 (see, e.g., [27]).

We define the lower and upper bounds of z(T ) as

ξ = inf{c ∈ R : P(z(T ) 6 c) > 0}, ξ = sup{c ∈ R : P(z(T ) > c) > 0}.

Under the assumption that the market parameters r(t) and σ(t) are deterministic functions

of t and r0 is a constant, we have ξ = 0 and ξ = +∞ (see, e.g., [27]). The deflator process

z(t) changes the wealth process to a martingale, i.e., z(t)X̃(t) = E[z(s)X̃(s) |Ft], for any

0 6 t < s 6 T . Thus, the optimal terminal wealth X̃∗(T ) of the problem P̃mvc(ω, α) can

be found by the following static optimization problem:

P̃aux
mvc : min

X̃(T )∈L 2
FT

(Ω;R)
E[X̃2(T )− d2] + ω̂E[(q − X̃(T ))+],

s.t. E[X̃(T )] = d+
h

r0
,

E[z(T )X̃(T )] = x0 +
h

r0
,

X̃(T ) >
h

r0
.

And the above static optimization problem can be solved by Lagrangian multiplier.

Proposition 1 Under the assumption that 0 < (x0 +h/r0)/d < E[z(T )], the optimal

terminal wealth X̃∗(T ) of problem P̃aux
mvc is given as follows,

X̃∗(T ) =



(λ− ηz(T ))/2, if ηz(T ) 6 λ− 2q;

q, if λ− 2q < ηz(T ) < λ− 2q + ω̂;

(λ− ηz(T ) + ω̂)/2, if λ− 2q + ω̂ 6 ηz(T ) 6 λ+ ω̂ − 2h/r0;

h/r0, if ηz(T ) > λ+ ω̂ − 2h/r0,

(9)

where λ and η > 0 solves the following system of equations:

E[(λ− 2q − ηz(T ))+]− E[(λ− 2q + ω̂ − ηz(T ))+]

+ E[(λ+ ω̂ − 2h/r0 − ηz(T ))+] = 2(d+ h/r0),

E[z(T )(λ− 2q − ηz(T ))+]− E[z(T )(λ− 2q + ω̂ − ηz(T ))+]

+ E[z(T )(λ+ ω̂ − 2h/r0 − ηz(T ))+] = 2(x0 + h/r0).
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The proof of the above proposition is similar to Proof of Proposition 3.2 and 3.3 in

[25].

The deflator process z(t) defined in equation (8) implies that z(T )/z(t) follows a

log-normal distribution, i.e., ln(z(T )/z(t)) ∼ N(m(t), v2(t)), where

m(t) := −
∫ T

t

(
r0 +

1

2
‖δ(τ)‖2

)
dτ, t ∈ [0, T ],

v2(t) :=

∫ T

t
‖δ(τ)‖2dτ, t ∈ [0, T ].

Since the market parameters r(t) and σ(t) are deterministic functions of t and r0 is a con-

stant, we have E[z(T )] = e−r0T . Thus the condition ξ < (x0 + h/r0)/d < E[z(T )] becomes

d > (x0 + h/r0)er0T , which implies that the expected target terminal wealth d should be

larger than the terminal wealth generated from keeping all wealth in the risk free account.

To simplify the notations, we denote the first and second moment of z(T )/z(t) as A(t) :=

E[z(T )/z(t)] = em(t)+v(t)2/2 = e−
∫ T
t r0ds and B(t) := E[(z(T )/z(t))2] = e2m(t)+2v(t)2 , re-

spectively.

Once the optimal terminal wealth X̃∗(T ) ∈ L 2
FT

(Ω;R) is known, the optimal wealth

process X̃∗(t) and optimal strategy π∗(t) can be obtained by solving the following back-

ward stochastic differential equation (BSDE),dX̃(t) = [r0X̃(t) + δ(t)′y(t)]dt+ y(t)′dW̃ (t),

X̃(T ) = X̃∗(T ),

where y(·) = σ̃(·)π(·). The optimal wealth process can be expressed as X̃∗(t) = E[(z(T )/

z(t))X̃∗(T ) |Ft] because of martingale property. Subsequently, the optimal strategy π∗(t)

can be given by

π∗(t) = −(σ̃(t)σ̃(t)′)−1r(t)
∂X̃∗(t)

∂z(t)
. (10)

According to the martingale property X̃∗(t) = E[(z(T )/z(t))X̃∗(T ) |Ft] and equation

(9), we have

X̃∗(t, α) =
1

2
E
[z(T )

z(t)
(λ− ηz(T ))1z(T )6(λ−2q)/η

∣∣∣Ft

]
+ qE

[z(T )

z(t)
1(λ−2q)/η<z(T )<(λ−2q+ω̂)/η

∣∣∣Ft

]
+

1

2
E
[z(T )

z(t)
(λ+ ω̂ − ηz(T ))1(λ−2q+ω̂)/η6z(T )6[r0(λ+ω̂)+2h]/(ηr0)

∣∣∣Ft

]
+
h

r0
E
[z(T )

z(t)
1z(T )>[r0(λ+ω̂)+2h]/(ηr0)

∣∣∣Ft

]
, t ∈ [0, T ].
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Applying Proposition 7.1 in [25], we can obtain the explicit expression of X̃∗(t, α), and

then π∗(t, α) can be computed based on equation (10).

Proposition 2 Under the assumption that d > (x0 + h/r0)er0T , the optimal wealth

process X̃∗(t, α) and the optimal portfolio policy π∗(t, α) of problem P̃mvc(ω, α) are given

respectively as follows,

X̃∗(t, α) =
A(t)

2

[
(λ− 2q)Φ(k1(t))− (λ− 2q + ω̂)Φ(k2(t))

+
(
λ+ ω̂ − h

r0

)
Φ(k3(t))

]
− z(t)ηB(t)

2
[Φ(k1(t)− v(t))

− Φ(k2(t)− v(t)) + Φ(k3(t)− v(t))], t ∈ [0, T ], (11)

π∗(t, α) =
1

2
(σ̃(t)σ̃(t)′)−1r(t)

{A(t)

v(t)

[
(λ− 2q)φ(k1(t))

− (λ− 2q + ω̂)φ(k2(t)) +
(
λ+ ω̂ − h

r0

)
φ(k3(t))

]
+ z(t)ηB(t)

× {[Φ(k1(t)− v(t))− Φ(k2(t)− v(t)) + Φ(k3(t)− v(t))]

− 1

v(t)
[φ(k1(t)− v(t))− φ(k2(t)− v(t)) + φ(k3(t)− v(t))]}

}
, t ∈ [0, T ], (12)

where k1(t) = [ln(((λ−2q)/η)+)−ln z(t)−m(t)]/v(t)−v(t), k2(t) = [ln(((λ−2q+ω̂)/η)+)−
ln z(t)−m(t)]/v(t)−v(t), and k3(t) = [ln(((r0λ+r0ω̂−2h)/(r0η))+)−ln z(t)−m(t)]/v(t)−
v(t). The Lagrange multipliers λ and η are the solutions to the following system of equations,

(λ− 2q)Φ(k1(0) + v(0))− (λ− 2q + ω̂)Φ(k2(0) + v(0))

+ (λ+ ω̂ − h/r0)Φ(k3(0) + v(0))− ηA(0)

× [Φ(k1(0))− Φ(k2(0)) + Φ(k3(0))] = 2(d+ h/r0),

A(0)[(λ− 2q)Φ(k1(0))− (λ− 2q + ω̂)Φ(k2(0))

+ (λ+ ω̂ − h/r0)Φ(k3(0))]− ηB(0)[Φ(k1(0)− v(0))

− Φ(k2(0)− v(0)) + Φ(k3(0)− v(0))] = 2(x0 + h/r0).

(13)

In the following, we minimize the value function of P̃mvc(ω, α) over α to get the

optimal strategies of problem Pmvc(ω). That is, to minimize the CVaR term in objective

function of P̃mvc(ω, α). Applying Proposition 7.1 in [25], we can obtained the explicit

expression of the CVaR term based on equation (2) and (9).

Proposition 3 The optimal wealth process X̃∗(t) and the optimal strategy π∗(t) of

problem Pmvc(ω) are given by X̃∗(t) = X̃∗(t, α∗),

π∗(t) = π∗(t, α∗),
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for some λ∗, η∗ and α∗. Here α∗ = argmin
α

GCVaR(α) with

GCVaR(α) =



[(−r0λ− r0ω̂ + 2h)/2r0][Φ(k3(0) + v(0))− Φ(k2(0) + v(0))]

+ (ηA(0)/2)[Φ(k3(0))− Φ(k2(0))]

+ (x0 + h/r0 − α)[1− Φ(k2(0) + v(0))], if α < x0 + h/r0,

α, if α > x0 + h/r0,

(14)

where λ∗ and η∗ solve equation (13) with α = α∗. Furthermore, under the optimal portfolio

policy π∗(t), the correspondent CVaR of the loss function is given by CVaRβ[L(X̃(T ))] =

GCVaR(α∗).

Then, the optimal wealth X∗(t) is given by

X∗(t) = X̃∗(t)− h

r0
, t ∈ [0, T ]. (15)

§4. Numerical Analysis

In this section, we present a numerical example to investigate the properties of rein-

surance policies and portfolio policies derived from P̃mvc(ω, α) based on results in Section

3. The procedure of numerical analysis is given as follows:

Step 1: Under different parameter settings, compute the values of λ, η and α numeri-

cally according to equation (13) and (14).

Step 2: Generate 1 000 discrete values of z(t) randomly based on equation (8).

Step 3: Find the optimal wealth value X∗(t), reinsurance level a∗(t), portfolio level

b∗(t) under different assumptions according to equation (11), (12) and (15).

4.1 The Effect of Weighting Coefficient ω

In this subsection, we analyze how the weighting coefficient ω influences the optimal

wealth value, reinsurance level and portfolio level. We consider a financial market consist-

ing of one risk-free asset and one risky asset. The annually based market parameters are

given as r0 = 0.0408, r1 = 0.1068, and σ1 = 0.22, which can be seen in [25]. For insurer’s

surplus process, we set the parameters to be µ0 = 0.5, θ = 0.52, and σ0 = 1, which can be

seen in [5]. And the insurer’s initial wealth is assumed to be X(0) = 1 (million) and the

target feedback is about 10 percent (i.e., d = 1.1) of the portfolio return in T = 1 year.

The insurer guides his strategy through models P̃mvc(ω, α) (with confidence level being

β = 95%), where the weighting coefficient ω is set at ω = 0, ω = 0.5 and ω = 2. Following

Step 1, we can get the values of parameters λ∗, η∗ and α∗ in Table 1.
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Table 1 λ∗, η∗ and α∗ for P̃mvc(ω, α)

ω α∗ λ∗ η∗

0 0.5092 2.8906 2.1506

0.5 0.5083 4.7068 3.7189

2 0.5068 10.3665 12.2697

Following Step 2 and Step 3, we can obtain the optimal wealth value X∗(t), reinsur-

ance level a∗(t), portfolio level b∗(t) at t = 0.5. Similarly, the optimal terminal wealth

X∗(T ) can be derived under T = 1. Figure 1 shows the optimal wealth X∗(t), reinsur-

ance level a∗(t), portfolio level b∗(t) at t = 0.5 and the optimal terminal wealth X∗(T )

for P̃mvc(ω, α). The X-axis represents the value of z(t). Under t = 0.5, z(t)min = 0.015,

E[z(t)] = 0.81, z(t)max = 8.84 and 99% of z(t) falls into the interval (0, 4.79], which means

that 0.81 is the dividing point between a good market and a bad market. Bigger z(t)

means worse market condition and the market is extremely bad if z(t) > 4.79.

(a) The wealth X∗(t) at t = 0.5 (b) The investment policy b∗(t) at t = 0.5

(c) The reinsurance policy a∗(t) at t = 0.5 (d) The terminal wealth X∗(T )

Figure 1 The results of P̃mvc(ω, α)

Problem P̃mvc(ω, α) degenerates to the dynamic MV portfolio selection model when

ω = 0. It can be observed from Figure 1(a) that X∗(t) generated from P̃mvc(ω, α)

(ω > 0) is higher than the one from MV portfolio selection model (ω = 0) when the

market condition is good (e.g. z(t) = 0.5) and more weight allocated to the risk measure
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CVaR results in a higher X∗(t). Therefore, the insurer can increase the value of optimal

intermediate wealth by adjusting the weight ω. When the market condition is bad (z(t)

is large), X∗(t) generated based on MV portfolio selection model is still lower, but the

change of ω has less significant effect on the value of X∗(t). Undoubtedly, from the point

of view of optimal wealth X∗(t), mean-variance-CVaR model is better than MV model in

most cases.

Figure 1(b) shows the allocation in the risky asset derived from P̃mvc(ω, α) is more

sensitive to the market condition when the market is good, and more risky asset is required

in optimal asset allocation. As the market becomes worse, the proportion of risky asset in

optimal strategy drops sharply, and even below the result in MV model. This finding tells

that the CVaR term is more sensitive to the market condition compared to the variance

term. With the market getting extremely bad, ω cannot significantly affect the allocation

policy.

Figure 1(c) shows the reinsurance policies sharing the same trend as the investment

part. In good market condition, bigger weight of CVaR results in higher proportion of

reinsurance, that is, more new business will be acquired by insurers to make more profit.

As the market become worse, the reinsurance policy becomes less and less sensitive to the

weight of CVaR in optimization model.

In Figure 1(d), the dot-dash line represents the target terminal return. Bigger weight

of CVaR term results in higher terminal wealth when the market condition is good. While

X∗(T ) from MVC model with a small weight of CVaR term is the last one to reduce to

below the target line when the market becomes worse. If the market continues becoming

worse, it can be seen that MVC models still dominate to prevent more serious loss. And

the three models come to a same result when the market is extremely bad, which can be

seen in forgoing figures as well.

4.2 Sensitivity Analysis

In this subsection, we analyze how the parameters in insurance market impact on the

optimal reinsurance policy derived from P̃mvc(ω, α). Risk parameter in insurance surplus

σ0 takes values in 0.5, 1 and 1.5. The premium return rate of reinsurer θ changes among

0.51, 0.52 and 0.53. The values of other parameters in models are the same as ones in

Section 4.1. Following Step 1 – Step 3, the results of P̃mvc(ω, α) at t = 0.5 with ω = 0.5

and ω = 2 can be obtained and shown in Figure 2.

Figure 2(a) displays that the insurer will keep less insurance business in any market

conditions when the volatility of the insurer’s surplus becomes larger. And the reinsurance

policy is a little less sensitive to σ0 when the market condition is quiet bad. In addition,
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(a) The reinsurance policy a∗(t) at ω = 0.5 (b) The reinsurance policy a∗(t) at ω = 2

(c) The reinsurance policy a∗(t) at ω = 0.5 (d) The reinsurance policy a∗(t) at ω = 2

Figure 2 The results of P̃mvc(ω, α) with different σ0 and θ at t = 0.5

compared with Figure 2(b), the trend of a∗(t) is similar, while higher ω corresponds to a

more drastic change trend since CVaR term is sensitive to the market condition.

Figure 2(c) and Figure 2(d) reveal that the optimal reinsurance policy a∗(t) changes

regarding to the premium return rate θ of the reinsurer. When the market is relatively

good, optimal reinsurance policy is less sensitive to the change of premium return rate of

the reinsurer. However, it changes greatly, when the market gets worse. If the market

becomes extremely bad, the policy turns to be less sensitive again. Additionally, bigger

premium return rate of the reinsurance results in more retention level of insurance business.

§5. Conclusion

In this paper, we have introduced two risk measures (variance and CVaR) into asset al-

location and reinsurance optimization model for an insurer in continuous-time. The insurer

is allowed to invest in a financial market and purchase proportional reinsurance/acquire

new business. The surplus process of the insurer is assumed to follow a diffusion ap-

proximation model and the financial market consists of one risk-free asset and multiple

risky assets whose price processes are governed by geometric Brownian motions. By using

Rockafellar and Uryasey’s approximation method and following the idea in [25], we have
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derived the closed-form solutions of this dynamic mean-variance-CVaR (MVC) optimiza-

tion problem. Moreover, the optimal strategies obtained in our model have been analyzed

numerically based on different parameter settings and market conditions. When the mar-

ket condition is good, the insurer can get a significantly increasing profit level compared

with MV model through adjusting a relatively high weight of CVaR term (ω). Further-

more, when the market condition turns to bad, the insurer may choose an appropriate ω

to avoid too much loss. That is, through the optimal reinsurance policy and investment

policy derived from our MVC model, insurers may manage risk and profit more flexibly

and comprehensively.

In the future research, we will extend this work to a jump-diffusion surplus process

with a stochastic interest rate. It may be also of interest to relax the assumption that the

risk source of reinsurance market is independent of the risk source of the financial market.
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