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Abstract: In many real-world problems, observations are usually described by approximate val-

ues due to fuzzy uncertainty, unlike probabilistic uncertainty that has nothing to do with exper-

imentation. The combination of statistical model and fuzzy set theory is helpful to improve the

identification and analysis of complex systems. As an extension of statistical techniques, this s-

tudy is an investigation of the relationship between fuzzy multiple explanatory variables and fuzzy

response with numeric coefficients and the fuzzy random error term. In this work we describe a

parameter estimation procedure carrying out the least-squares method in a complete metric space

of fuzzy numbers to determine the coefficients based on the extension principle. We demonstrate

how the fuzzy least squares estimators present large sample statistical properties, including asymp-

totic normality, strong consistency and confidence region. The estimators are also examined via

asymptotic relative efficiency concerning traditional least squares estimators. Different from the

construction of error term in Kim et al. [21], it is more reasonable in the proposed model since

the problems of inconsistency in referring to fuzzy variable and producing the negative spreads

may be avoided. The experimental study verifies that the proposed fuzzy least squares estimators

achieve the meaning consistent with the theory identification for large sample data set and better

generalization regarding one single variable model.
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§1. Introduction

Conventional regression is considered as a very useful data analysis tool that has been

widely applied in various areas of applied statistics [1]. However, in many expert and intel-

ligence systems applications, the relationship between a set of explanatory variables (also
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called independent variables, inputs or predictors) X1, X2, · · · , Xp and response variable

Y (also called dependent variable or output) can’t be precisely measured due to some

unexpected situations, where necessary assumptions for statistical regression analysis can

not be met because they are fuzzy, not based on random uncertainty. Zadeh [2] described

this fuzzy uncertainty as imprecision, ambiguity or vagueness, and introduced the theory

of fuzzy sets to allow the incorporation of inaccurate or incomplete information and uncer-

tainty on parameters, properties, geometry, initial conditions, etc. For all fuzzy regression

models, explanatory and/or response variables are represented as fuzzy numbers to es-

tablish fuzzy regression models using the extension principle, as opposed to the numeric

values used in statistical regression models.

Fuzzy regression is an extension of conventional regression analysis to fuzzy environ-

ments, which can be employed as an efficient and useful tool for analyzing complex systems

in fuzzy situations, such as business systems, socio-economic systems, and environmental

systems. Fuzzy regression techniques are usually classified into two distinct categories that

are not competitive with each other but complementary. Possibilistic regression model,

suggested by Tanaka et al. [3], focused on inclusion relations between actual and estimat-

ed outputs to explain the relationship and formulated a linear programming problem to

determine the regression coefficients as fuzzy numbers. Diamond [4] developed a fuzzy

least-squares method from one single variable fuzzy linear model using the distance be-

tween the α-level compact sets of triangular fuzzy numbers. Its regression interval derived

from the minimized distance to the given data in a given metric space is narrower than

Tanaka et al.’s approaches. Therefore, from the prediction point of view, the fuzzy least-

squares method is superior. For more on other approaches concerning regression analysis

such as nonparametric methods and some recent works, see [5–9].

Many researchers have revised and modified least-squares approaches. Chang and

Stanley [10] introduced a generalized fuzzy weighted least squares regression, giving weights

to modes and spreads. D’Urso and Gastaldi [11] took into account a possible linear relation-

ship among modes and spreads and constructed a doubly linear adaptive fuzzy regression

model. Hong et al. [12] considered a new class of fuzzy regression model using shape-

preserving operations on LR-fuzzy numbers for least-squares fitting. Kao and Chyu [13]

proposed a fuzzy regression model that contains two-stage approaches: defuzzifying the

fuzzy observations to show the general trend of the data and determining the error term

to give the model the best explanatory power for the data. D’Urso et al. [14] constructed

a robust fuzzy linear regression model based on the least median squares-weighted least

squares estimation procedure. In the work of Hose and Hanss [15], estimating the fuzzy val-
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ued parameters of the model was accomplished utilizing a sensible fuzzification procedure

of the crisp data points and the application of an exact inverse fuzzy arithmetic.

On the other hand, there is a great interest in studying the connections between

fuzzy and probabilistic concepts, and from this convergence arises fuzzy random variable

that uses this kind of information. Körner and Näther [16] discussed three approaches of

linear regression with random fuzzy variables: extended classical estimates, best linear

estimates, and least square estimates. Näther [17] summarized some results on random

fuzzy variables of second-order and applied these notions in developing linear statistical

inference with fuzzy data. Näther [18] presented different approaches to deal with regression

analysis: a purely descriptive approach, statistical regression when the output was modeled

fuzzy random variable and regression between two fuzzy random variables. Couso and

Sánchez [19] demonstrated a higher-order possibility model that contained the imprecise

information provided by fuzzy random variables. González-Rodŕıguez et al. [20] dealt with

a generalized linear regression probabilistic model based on fuzzy-arithmetic, in which

input and output were obtained from fuzzy random variables, considering the possibility

of fuzzy valued random errors.

Kim et al. [21] have dealt with the asymptotic properties of the least-squares estimators

for data sets completely fuzzy, in which the model is restricted into the simple case and the

authors imposed imprecision and randomness condition to the error term. The main aim

of the current paper is to develop the model and analyze the estimators within the more

general context of multivariate regression, specifically, a generalization of the work by Kim

et al. [21] is considered because the inferences for model with a single input restriction are

more complex and less efficient. Furthermore, differing from the construction of error term

introduced by Kim et al. [21], in the proposed model the left and right endpoints of error

term are not taken into consideration but by means of the left and right spreads on the

fuzzy variable. It is shown that the error term is more reasonable since the problems of

inconsistency in referring to fuzzy variables and producing the negative spreads may be

avoided.

The remainder of the article is organized as follows: In Section 2, the basics of s-

tatistics theory and fuzzy numbers needed to understand the following discussion will be

reviewed. Section 3 is devoted to explaining the derivation of the presented result in pa-

rameter identification. Next, Section 4 validates the large sample statistical properties

about the fuzzy least squares estimator and benchmarks it against statistical regression.

A simulation experiment is used to illustrate the efficiency of the fuzzy least squares esti-

mator in Section 5. Section 6 gives our concluding remarks.
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§2. Preliminaries

To facilitate further presentation, in this section, we briefly review basic concepts

and theories associated with fuzzy numbers and probability properties of random vector

sequences.

2.1 Fuzzy Number

In fuzzy sets, each element is mapped to [0, 1] by membership function.

µA : X → [0, 1],

where [0, 1] means real numbers between 0 and 1. Thus fuzzy set A is defined by mem-

bership function µA. Generally, the set can be represented as A = (x, µA(x)) for discrete

elements and A =
∫
µA(x)/x for continuous elements [22]. Let F (X) denote the set of all

fuzzy sets in X.

Definition 1 [23] A fuzzy number A is a fuzzy subset of the real line R1. Its member-

ship function µA(x) satisfies the following criteria:

• α-cut set of µA(x) is a closed interval;

• ∃x such that µA(x) = 1;

• convexity such that µA[λx1 + (1− λ)x2] > min(µA(x1), µA(x2)) for λ ∈ [0, 1],

where α-cut set contains all x elements that have a membership grade µA(x) > α.

Let R̃ denote the set of all fuzzy numbers. In several substantive applications, the

most utilized class of fuzzy number is LR-fuzzy number.

Definition 2 [24] LR-fuzzy number A is defined by

µA(x) =

L((m− x)/l), if x 6 m;

R((x−m)/r), if x > m,

where L,R : R1+ → [0, 1] are fixed left-continuous and non-increasing functions with R(0) =

L(0) = 1 and R(1) = L(1) = 0. L and R are left and right shape functions of A, where m

is called the mode of A and l, r > 0 are left and right spread of A, respectively. We denote

a LR-fuzzy number by A = (m, l, r)LR (see Figure 1). The spreads l and r represent the

fuzziness of fuzzy number and could be symmetric or non-symmetric. If l = r = 0, there is

no fuzziness of the number, and so it is a crisp number m.
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Figure 1 LR-fuzzy number (m, l, r)LR

Let R̃LR denote the set of all LR-fuzzy numbers. We can define different types of

fuzzy data, the more utilized LR-fuzzy numbers are the triangular, normal, parabolic and

square root fuzzy number. Each case takes into account a different level of uncertainty

around the centers of the fuzzy data.

If L(x) = R(x) = max{0, 1 − x}, then A = (m, l, r)LR is called a triangular fuzzy

number with membership function being

µA(x) =


1− (m− x)/l, m− l 6 x 6 m;

1− (x−m)/r, m 6 x 6 m+ r;

0, otherwise.

Let (m, l, r)T denote a triangular fuzzy number and R̃T denote the set of all triangular

fuzzy numbers.

Definition 3 [25] Let (Ω,F ,P) be a probability space. A mapping X : Ω→ R̃LR is a

fuzzy random variable if the s-representation of X, (Xm, X l, Xr)LR : Ω→ R1 ×R1+ ×R1+

is a random vector.

It should be noted that A is not an ill-measured real random variable but a random

element assuming purely fuzzy values.

Algebraic operations of LR-fuzzy numbers that we use in this paper are derived based

on the extension principle of multivariate function as follows.

(m1, l1, r1)LR ⊕ (m2, l2, r2)LR = (m1 +m2, l1 + l2, r1 + r2)LR

and

λ(m, l, r)LR =

(λm, λl, λr)LR, if λ > 0;

(λm,−λr,−λl)RL, if λ < 0.
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The distance between fuzzy numbers used to measure the goodness of fit for models

have an important role in many real applications like data mining, pattern recognition,

multivariate data analysis and so on. Diamond [4] defined a distance between two triangular

fuzzy numbers as follows.

For all X,Y ∈ R̃T ,

d(X,Y )2 = D(suppX, suppY )2 + [m(X)−m(Y )]2,

where suppX denotes the compact interval of support of X, and m(X) its mode value.

As a result, (R̃T , d) is a complete metric space.

The concept of fuzzy random variable is introduced as an extension of both random

variable and fuzzy set.

2.2 Properties of Random Variable Sequence in Probability

This subsection briefly reviews several theorems related to some results in the succes-

sive proof we will need.

Theorem 4 [26] Let Xn be a sequence of i.i.d. r.v.’s with mean µ and a finite variance

σ2. Let cn be a sequence of real vectors cn = (cn1, cn2, · · · , cnn)T. If(
max
16i6n

c2ni

)/( n∑
i=1

c2ni

)
→ 0, as n→ 0,

then

Zn =
[ n∑
i=1

cni(Xi − µ)
]/(

σ2
n∑
i=1

c2ni

)1/2 L→ N(0, 1),

where the notation
L→ stands for convergence in law or in distribution.

Theorem 5 [27] Let Xn and Yn be two sequences of random vectors such that Xn
L→ X and Yn

P→ c, where c is a constant. Let g(x, y) be a continuous function, then

g(Xn, Yn)
L→ g(X, c), where the notation

P→ means converges in probability.

Definition 6 [28] The sequence of random variables Xn is bounded in probability if,

for all ε > 0, there exit a constant Bε > 0 and an integer Nε such that

n > Nε ⇒ P(|Xn| 6 Bε) > 1− ε.

Theorem 7 [28] Let Xn be a sequence of random variables bounded in probability and

let Yn be a sequence of random variables that converges to 0 in probability, then XnYn
P→ 0.
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Theorem 8 [29] Let Sn =
n∑
i=1

Xi, n > 1, be a martingale such that for k > 1, E|Xk|p

<∞ (1 6 p 6 2). Suppose that {bn} is a sequence of positive constants increasing to ∞ as

n → ∞, and
∞∑
i=1

E(X2
i )/b2i < ∞, then Sn/bn

a.s.→ 0, where the notation
a.s.→ means converges

in almost surely.

§3. Parameter Estimation of Fuzzy Linear Regression

Consider a classical multivariate linear regression model. In matrix notion, the model

is

Yc = Xcβ + ε, (1)

where Yc = (y1, y2, · · · , yn)T is a vector of observable response variables, Xc is a (n× (k+

1)) matrix of known constants xij , β = (β0, β1, · · · , βk)T denotes the vector of unknown

parameters, and ε = (ε1, ε2, · · · , εn)T is a n vector of unobservable random error assumed

to satisfy E(ε) = 0 and Var (ε) = σ2ε In.

The usual method of estimation in this case is the least squares method, and the least

squares estimator is given by β̆LS = (XT
cXc)

−1XcYc. The least squares estimator has large

sample proportions of asymptotically normality and consistency.

In this section, we generalize the crisp class model described above to a class of fuzzy

model. The fuzzy multivariate linear regression is given as follows:

Yi = β0 ⊕ β1Xi1 ⊕ β2Xi2 ⊕ · · · ⊕ βkXik ⊕ Φi, i = 1, 2, · · · , n, (2)

where Xij = (xij , ξ
l
ij , ξ

r
ij)T (1 6 j 6 k), Yi = (yi, η

l
i, η

r
i )T , xij , yi represent the modes,

ξlij , ξ
r
ij are the left and right spread of Xij , η

l
i, η

r
i are the left and right spread of Yi,

respectively. Moreover, Φi = (εi, θ
l
i, θ

r
i )T are the fuzzy random errors, in which the modes,

left spreads, right spreads εi, θ
l
i, θ

r
i are crisp random variables.

Model (2) is an extension of the multivariate regression model, where input and output

observations are all given by fuzzy numbers. Let P = {j |βj > 0, j = 1, 2, · · · , k} and

N = {j |βj < 0, j = 1, 2, · · · , k}, hence, model (2) can be translated into the following

form. 

yi = β0 + β1xi1 + · · ·+ βkxik + εi,

ηli =
∑
j∈P

βjξ
l
ij −

∑
j∈N

βjξ
r
ij + θli,

ηri =
∑
j∈P

βjξ
r
ij −

∑
j∈N

βjξ
l
ij + θri .

(3)
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The optimal solution of fuzzy multivariate linear regression model is obtained by minimiz-

ing the residual sum of squares in the least squares senses.

We will use a modified metric dH which is defined in the work of Kim et al. [21]:

Q(β0, β1, · · · , βk) =
n∑
i=1

d2H(Yi, β0 ⊕ β1Xi1 ⊕ β2Xi2 ⊕ · · · ⊕ βkXik)

=
1

9

n∑
i=1

[
(3yi + ηri − ηli)−

(
3β0 + 3

k∑
j=1

βjxij −
k∑
j=1

βjξ
l
ij +

k∑
j=1

βjξ
r
ij

)]2
.

Next, we introduce matrix to solve this problem by letting

Y =


3y1 − ηl1 + ηr1

3y2 − ηl2 + ηr2
...

3yn − ηln + ηrn

, X =


3 3x11 − ξl11 + ξr11 · · · 3x1k − ξl1k + ξr1k

3 3x21 − ξl21 + ξr21 · · · 3x2k − ξl2k + ξr2k
...

...
. . .

...

3 3xn1 − ξln1 + ξrn1 · · · 3xnk − ξlnk + ξrnk

, β =


β0

β1
...

βk

.

So, we rewrite model (3) and the matrix form is

Y = Xβ + ε∗, (4)

where ε∗ = (ε∗1, ε
∗
2, · · · , ε∗n), ε∗i = 3εi − θli + θri , 1 6 i 6 n.

We should minimize the following target with respect to β:

Q(β) =
1

9
(Y −Xβ)T(Y −Xβ).

It is easy to show that its minimum is obtained at the solution to the normal equation:

−XTY +XTXβ = 0.

Obviously, the solution is termed the fuzzy least squares estimators of β. Then

β̂FLS = (XTX)−1XTY. (5)

Special cases:

(i) If ξlij = ξrij = ηli = ηri = θli = θri = 0, 1 6 i 6 n, then all explanatory variables and

response variable are crisp. In this situation, we have a particular case of our fuzzy

linear regression model: the classical multivariate linear regression model, in fact,

β̂FLS becomes β̆LS.

(ii) Notice that as particular case, by applying the equation (5) with k = 1, we obtain

the following fuzzy least squares estimators, thisis confirmed by the work of Kim et
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al. [21].

β̂1 =

n∑
i=1

(3yi + ηri − ηli)[3(xi − xn) + (ξri − ξ
r
n)− (ξli − ξ

l
n)]

n∑
i=1

[3(xi − xn) + (ξri − ξ
r
n)− (ξli − ξ

l
n)]2

,

β̂0 = (yn − β̂1xn) +
1

3
(η rn − β̂1ξ

r
n)− 1

3
(η ln − β̂1ξ

l
n). (6)

§4. Asymptotic Properties

4.1 Asymptotic Normality on the Regression Parameters

Assumption

(A1) εi are i.i.d. random variables with E(εi) = 0, Var (εi) = σ2ε (<∞).

(A2) θli, θ
r
i are i.i.d. random variables with E(θli) = E(θri ) = µi (> 0), Var (θli) = σ2l (<∞),

Var (θri ) = σ2r (<∞).

(A3) εi, θ
l
i and θri are mutually independent.

(A4) lim
n→∞

Qn = Q, where Qn = n(XTX)−1(k+1)×(k+1), and Q is (k + 1) order positive

definite matrix.

(A5)
n∑
i=1

(3xij + ξrij − ξlij)2/i2 <∞ as n→∞, j = 1, 2, · · · , k.

Theorem 9 Suppose that Assumption (A1) – (A4) are fulfilled, then the fuzzy least

squares estimator β̂FLS has an asymptotically normal distribution in the sense that

√
n (β̂FLS − β)

L→ N(0, σ2ε∗Q).

Proof From Assumption (A1) – (A3), we can conclude that ε∗i are i.i.d. random

variables with E(ε∗i ) = 0, Var (ε∗i ) = 9σ2ε + σ2l + σ2r , σ
2
ε∗ .

From Y = Xβ + ε∗ and (5), we obtain

β̂FLS − β = (XTX)−1XTε∗.

Let λ = (λ0, λ1, · · · , λk)T ∈ Rk+1, λ 6= 0, and we have

λT
√
n (β̂FLS − β) = λT

√
n (XTX)−1XTε∗.

Then, let

eTn = λT
√
n (XTX)−1XT = (en1, en2, · · · , enn),
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which implies that

λT
√
n (β̂FLS − β) = eTnε

∗ =
n∑
i=1

(eniε
∗
i ).

Because eTn = (1/
√
n)λTQnX

T,

e2ni =
1

n
λTQn



3

3xi1 − ξli1 + ξri1

3xi2 − ξli2 + ξri2
...

3xik − ξlik + ξrik


×
(

3 3xi1 − ξli1 + ξri1 3xi2 − ξli2 + ξri2 · · · 3xik − ξlik + ξrik
)
Qnλ,

which means that lim
n→∞

max
16i6n

e2ni = 0. In addition,

n∑
i=1

e2ni = eTnen = λTQnλ,

so that

lim
n→∞

[(
max
16i6n

e2ni

)/( n∑
i=1

e2ni

)]
= 0.

It follows from Theorem 4 that( n∑
i=1

eniε
∗
i

)/(
σ2ε∗

n∑
i=1

e2ni

)1/2 L→ N(0, 1),

using (A4) and Theorem 5, we obtain( n∑
i=1

eniε
∗
i

)/(
σε∗
√
λTQλ

) L→ N(0, 1),

so that

λT
√
n (β̂FLS − β)

L→ N(0, λTQλσ2ε∗).

Therefore, the proof is completed. �

It is mentioned that when the proposed model contains one explanatory variable,

matrix Q can be reduced to matrix
∑

given in [21]. For this, it is easy to check that the

proposed theorem is an extension of the corresponding result in [21].

4.2 Consistency on the Regression Parameters

Theorem 10 Suppose that Assumption (A1) – (A4) are fulfilled, then β̂FLS is weakly

consistent for β, that is

β̂FLS
P→ β.



596 Chinese Journal of Applied Probability and Statistics Vol. 36

Proof From Definition 6,
√
n (β̂FLS−β) is random variable sequences and bounded

in probability.

From Theorem 7, as n→∞, β̂FLS − β
P→ 0. �

Theorem 11 Suppose that Assumption (A1) – (A5) are fulfilled, then β̂FLS is strongly

consistent for β, that is

β̂FLS
a.s.→ β.

Proof

β̂FLS − β = Qn
XTε∗

n
= Qn ·



3
n∑
i=1

ε∗i
n

n∑
i=1

(3xi1 − ξli1 + ξri1)ε
∗
i

n
n∑
i=1

(3xi2 − ξli2 + ξri2)ε
∗
i

n
...

n∑
i=1

(3xik − ξlik + ξrik)ε
∗
i

n


, Qn ·B.

From Assumption (A4), we will approve that all the components of vector B converge

to 0 a.s. For the first component, owning to strong law of large numbers, we note that

ε∗n
a.s.→ 0.

Let Tn,j =
n∑
i=1

(3xij − ξlij + ξrij)ε
∗
i , then for n > 1,

T(n+1),j = Tn,j + (3xn+1,j − ξln+1,j + ξrn+1,j)ε
∗
n+1,

so that

E(Tn+1,j | ε∗1, ε∗2, · · · , ε∗n) = Tn,j .

which indicates that {Tn,j} is a martingale.

In addition, for k > 1,

E|(3xkj + ξrkj − ξlkj)ε∗k| = |(3xkj + ξrkj − ξlkj)| · |E(ε∗k)| = 0 <∞,

E|(3xkj + ξrkj − ξlkj)ε∗k|2 = (3xkj + ξrkj − ξlkj) · σ2ε∗ + [E|(3xkj + ξrkj − ξlkj)ε∗k|]2 <∞,

so for 1 6 p 6 2,

E|(3xkj − ξlkj + ξrkj)ε
∗
k|p <∞.

Let ci = i, as n→∞ using Assumption (A5),

n∑
i=1

E|(3xij − ξlij + ξrij)ε
∗
i |2

c2i
= σ2ε∗

n∑
i=1

(3xij + ξrij − ξlij)2

c2i
<∞.
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Thus, Tn,j/cn converge to 0 a.s. by Theorem 8, which accomplishes the proof of the

theorem. �

4.3 Confidence Region and Asymptotic Relative Efficiency

Theorem 12 Under the conditions of Theorem 9,

Gn(β̂FLS) =
n

σ2ε∗
(β̂FLS − β)TQ−1n (β̂FLS − β)

has a asymptotically a chi-squared distribution with (k + 1) degrees of freedom.

Proof Theorem 12 follows immediately from Theorem 9. �

With reference to the limiting distribution of Gn(β̂FLS), we define that

C∗1−α(β) = {β | (β̂FLS − β)TQ−1n (β̂FLS − β) 6 δ∗}, (7)

where δ∗ = (σ2ε∗/n)χ2
1−α(k + 1) and σ2ε∗ = 9σ2ε + σ2l + σ2r as before, χ2

1−α(k + 1) is the

(1 − α)th the quantile of chi-squared distribution. Then, for n large C∗0.95(β) provides a

95% confidence region for β̂FLS when α = 0.05.

Note that under certain regularity conditions, the sequence of crisp least square esti-

mators β̆ has asymptotically a normal distribution in the sense that

√
n (β̆LS − β)

L→ N(0, σ2εV ),

where σ2ε is the variance of errors εi in the model and V is given by

Vn = n(XT
cXc)

−1 → V

as n→∞, where Xc is n× (k + 1) matrix comprised of the mode of input data. Thus, a

100(1−α) percent approximate confidence region based on the crisp least square estimator

is denoted by

C1−α(β) = {β | (β̆LS − β)TV −1n (β̆LS − β) 6 δ},

where δ = (σ2ε /n)χ2
1−α(k+ 1) and σ2ε = Var (εi) as before, χ2

1−α(k+ 1) is the (1−α)th the

quantile of chi-squared distribution. Then, for n large C∗0.95(β) provides a 95% confidence

region for β̆FLS when α = 0.05.

Remark 13 It is worth noting that there may be desirable to make the hypotheses

testing on fuzzy regression parameters. In this regard, the conventional procedures concerning

the definition and analysis associated with linear restriction on regression parameters have

been received in fuzzy environment. It is also easy to develop the test statistics and its
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asymptotic distribution used for rejecting or accepting the null hypothesis at a specific level

of significance in investigating the problem of linearity among the model parameters. More

discussion including the problem of extending the restriction to an imprecision setting such

as fuzzy non-linearity could be considered in the next studies.

In this case, if we choose {ξlij} and {ξri,j} in the designed input data where ξli,j = ξri,j ,

i = 1, 2, · · · , n, j = 1, 2, · · · , k, which means {Xi,j} are the symmetric triangular fuzzy

input data, then we have

Qn =
1

9
XT
cXc =

1

9
Vn,

so that Q = V/9. The asymptotic relative efficiency of the fuzzy least square estimators

β̂FLS with respect to the classical crisp least square estimators β̆LS

e(F,C) =
( |σ2εV |
|σ2ε∗Q|

)1/(k+1)
=
(9k+1σ

2(k+1)
ε |V |

σ
2(k+1)
ε∗ |Q|

)1/(k+1)
=

9σ2ε
σ2ε∗

=
9σ2ε

9σ2ε + σ2l + σ2r
. (8)

Remark 14 This asymptotic relative efficiency in (8), not more than 1, means that

the fuzzy least squares estimators are asymptotically less efficient than the crisp least squares

estimators, different from the conclusion in [21] which makes it at least less reasonable because

fuzzy error term is set inconsistent with other fuzzy variables and the endpoints of fuzzy error

term interval are assumed to be normally distributed. It is conforming to human cognition

that one fuzzy variable’s possibilities are from 0 to 1 and fuzzy least squares estimators possess

fuzziness in nature in our work. As it is observed, the amount of asymptotic relative efficiency

for the fuzzy least squares estimator is close to 1 provided that the error term has little fuzzy

uncertainty.

§5. The Simulation Study

In this section, we investigate the effectiveness of fuzzy multivariate linear regression

model through simulations.

5.1 Performance Evaluation for Fuzzy Least Squares Estimators

The performance of fuzzy least squares estimators is evaluated with fuzzy observations

through Monte-Carlo simulation under a finite sample. The design for data generation is

as follows. To obtain a random sample with n observations, n were selected as the values

of 30 for a small sample, 100 for moderate sample, and 500 for a larger sample. We set

k = 2 in the following simulations, the modes and spreads of input data xi1 were chosen as

random samples from normal and uniform distributions, N(7, 22), U[0, 0.5], respectively,
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and N(3, 12), U[0, 0.4] of the input data xi2. Moreover, the modes of fuzzy error terms were

normally distributed with zero mean and variance 0.12, and the spreads of fuzzy error terms

were extracted from a realization of a uniform random variable on the interval, U[0, 0.05].

Then the values of the fuzzy dependent variable were computed under the model setting

with parameters β = (1.5, 2, 4)T. For a particular sample size n, 1 000 replications of

experiments were conducted, thus obtaining 1 000 estimations. The following simulation

executed with a program written in Python 3.6. The appropriateness of the estimators of

the proposed model is evaluated through the average estimates and average mean squared

error (AMSE) over 1 000 simulations, located in Table 1. As predicted, the results in Table

1 show that the fuzzy least squares estimators perform well because of their smaller AMSE

(the difference between the true values and the estimates) for a larger sample. That is, the

influences of changes in the number of a sample are trivial. This implies that regression

parameters in the fuzzy multivariate regression model can be effectively estimated as in

one single predictor case, provided that the sample obtained is large enough.

Table 1 Estimation results and AMSE under different samples

n = 30 n = 100 n = 500

β̂0 1.5039 1.5001 1.5000

β̂1 1.9999 1.9999 2.0000

β̂2 3.9999 3.9999 3.9999

AMSE 0.236× 10−4 0.612× 10−5 0.116× 10−5

Furthermore, the behavior of the estimators are also examined in Table 2, based on

1 000 replicates through the error distribution of the estimators: the mean, the standard

deviation, the minimum and maximum from the 1 000 estimation errors and the various

percentiles of the 1 000 estimation errors, first quartile, median, third quartile, 95% point.

It is apparent that the larger the sample size, the smaller the error of the estimates. Table 2

shows that the effects of sample size on some factors, such as maximum, mean, percentiles,

are fairly significant. A means to improve the precision of estimators in models is to raise

the sample size. With the sample size increased to 100 or even more, the variability of the

fuzzy least squares estimators diminish remarkably.

The differences between the estimates and true values of regression parameters under

three different sample sizes considered for comparison are shown in Figure 2. If the sample

size keeps substantial, such as n = 100 or even more, the estimates performs better by

providing more accurate but less variance and better fitted models. Moreover, it seems

that the differences between the estimates and true values of regression parameters further
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Table 2 Descriptive statistics corresponding to estimate errors

n Mean Std Minimum First quartile Median Third quartile 95% point Maximum

|β̂0 − β0|
30 0.0568 0.0430 0.0000 0.0216 0.0487 0.0816 0.1351 0.2749

100 0.0291 0.0217 0.0000 0.0118 0.0246 0.0425 0.0692 0.1344

500 0.0129 0.0100 0.0000 0.0048 0.0107 0.0190 0.0331 0.0652

|β̂1 − β1|
30 0.0040 0.0031 0.0000 0.0016 0.0033 0.0056 0.0103 0.0197

100 0.0020 0.0016 0.0000 0.0007 0.0016 0.0030 0.0052 0.0094

500 0.0009 0.0007 0.0000 0.0003 0.0007 0.0013 0.0023 0.0038

|β̂2 − β2|
30 0.0159 0.0122 0.0000 0.0063 0.0135 0.0229 0.0393 0.0743

100 0.0081 0.0061 0.0000 0.0034 0.0071 0.0113 0.0205 0.0392

500 0.0035 0.0027 0.0000 0.0014 0.0029 0.0050 0.0087 0.0137

demonstrate very close to normal distribution for large data set. These findings in Figure

2 results in a confirmation shown in the previous theoretical analysis.
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Figure 2 Distribution diagram of β̂i − βi under three sample sizes
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5.2 Confidence Region of Regression Parameters

In order to display the confidence region of the fuzzy least estimators in a more

visualized way, we decide to use formula (7) to draw picture of it. But, it is difficult

demonstrating a 3-parameters confidence area. So, we express two estimated parameters’

confidence region at once, turning

Gn(β̂FLS) =
n

σ2ε∗
(β̂FLS − β)TQ−1n (β̂FLS − β)

into a two-variable function — keeping the one parameter constant, and draw the function

in a picture. For example, when β0 = 1.5, the confidence region of β0 and β1 expressed in

Figure 3 (a). The confidence region means

C∗1−α((β1, β2)
T) = {(β1, β2)T |Gn(β̂FLS) 6 δ∗},

where β̂FLS = (1.5, β̂1, β̂2)
T. The surface is the function of Gn, so 95% confidence region

is composed by the data below the surface and above δ∗. And its profile line of different

value is in the small picture (d). The confidence region is represented by the small area

bounded by δ∗.
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Figure 3 Confidence region of regression parameters and its profile line (α = 0.05)
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In Figure 3, we show the graphical representation of the confidence region of regression

parameters along with its profile line (α = 0.05). We first investigate the confidence region

for regression parameters in which two parameters changes and only the other remain

unchanged (see Figure 3 (a), 3 (b), and 3 (c)). Since the position of confidence region is

between the curve and horizontal plane at the height δ∗, we convert the direction of the

vertical axis for showing a clear illustration. We next mark the profile line of confidence

region (see Figure 3 (d), 3 (e), and 3 (f)) to observe the cross-section in the confidence

region of regression parameters.

§6. Conclusions

In this paper, we proposed a general framework to obtain a regression model with

fuzzy data (both explanatory variables and response) that considers a parametric estimator

applying least-squares method in terms of the concept of distance between a few α-cuts,

generalizing the discussion of [21] to cope with cases of multivariate explanatory variables.

When all fuzzy observations degenerate to one point in their domains, the proposed fuzzy

least squares estimators become the conventional least-squares estimators in the crisp

environment. Moreover, the proposed fuzzy least-squares estimation procedure is well

defined because if there exists only one explanatory variable then our estimates reduce to

the estimates in the work of [21].

A simulation example is used to illustrate our estimators and visually demonstrate

the confidence region of the regression parameters. Regarding the asymptotic confidence

region for the parameters, it is also observed that the proposed estimator is asymptotically

less efficient to the crisp least squares estimators, different from the conclusion in [21],

which makes it at least more reasonable because the endpoints of fuzzy adjustment term

interval are set consistent with other fuzzy variables and fuzzy least squares estimators

possess fuzziness in nature in our work. Estimators can be compared only taking into

account their properties and importance from the theoretical and practical points of view.
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