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Abstract: We study the moderate deviation probability of the position of the rightmost particle

in a branching Brownian motion and obtain its moderate deviation function. Firstly, Chauvin and

Rouault studied the large deviation probability for the rightmost position in a branching Brownian

motion. Recently, Derrida and Shi considered lower deviation for the same model. By contrast,

Our main result is more extensive.

Keywords: branching Brownian motion; moderate deviation probability

2010 Mathematics Subject Classification: 60J80; 60F10

Citation: SHI W L. Moderate deviation for the rightmost position in a branching Brownian

motion [J]. Chinese J Appl Probab Statist, 2021, 37(1): 37–46.

§1. Introduction

Branching Brownian motion (BBM, for short) unites two classical continuous-time

Markov processes: the random branching and the Brownian motion, or the Winer pro-

cess. The branching Brownian motion was extensively studied in the past [1–3], and it

continues to attach much attention among physicists. Here we consider the branching

Brownian motion in one dimension. Suppose that a particle starts at the origin and per-

forms standard Brownian motion with variance σ2 at time 1, and branches at rate 1 into

two independent Brownian motion which themselves branch at rate 1 independently, and

so on (see Figure 1). We assume that the exponential random variables and the Brownian

motions are independent. One of the issues that matters most is how to determine the

distribution of the position R(t) of the rightmost particle of a branching Brownian motion

at time t.
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Figure 1 BBM model

The link between BBM and partial differential equations is provided by the following

observation due to McKean [3]: if one denotes by

u(x, t) = P(R(t) 6 x),

the law of the rightmost position, a renewal argument shows that u(x, t) solves the

Kolmogorov-Petrovsky-Piscounov or Fisher (F-KPP) equation,

∂u

∂t
=
σ2

2

∂2u

∂x2
+ u2 − u (1)

with the initial condition u(x, 0) = 1{x>0}. The main result of Kolmogorov, Petrovsky and

Piscounov has it that this solution settles down to a “traveling wave” with velocity
√

2σ

for large t; thus,

lim
t→∞

u(x+mtσ, t) = ω(x), ∀x ∈ R, (2)

where
σ2

2
ω′′ +

√
2σ2ω′ + ω2 − ω = 0

and

σmt = medR(t) ∼
√

2σt, (3)

where med(X) = sup{x : P(X 6 x) 6 1/2} is the median of the random variable X. In

(3) and everywhere below, the symbol ∼ means that lim
t→∞

mt/(
√

2t) = 1. By exploiting the

connection between the branching Brownian motion and the KPP equation, Bramson [1]

showed that the centering term mt satisfies mt =
√

2t− (3/2
√

2) ln t+O(1), and by using

somewhat different techniques based on the Feynman-Kac formula, Bramson [2] improved

this by showing that

mt =
√

2t− 3

2
√

2
ln t+ constant + o(1).
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Moreover, Bramson [1, 2] imply that

lim
t→∞

R(t)

t
=
√

2σ2, a.s..

For an account of general properties of BBM, see [4].

For the rightmost position of branching Brownian motion, Chauvin and Rouault [5, 6]

first studied the large deviation probability. Recently, Derrida and Shi [7, 8] considered both

the large deviation and lower deviation. Here we are interested in its moderate deviation

probability, in other words, the convergence rate of

P(R(t) 6 σmt − `t), (4)

for any positive function t 7→ `t on [0,∞) such that lim
t→∞

`t/t = `∗ ∈ [0,∞).

Let us introduce some notations. Let N (t) denote the set of all particles alive at

time t and let N(t) := #N (t). For any v ∈ N (t) let Xv(t) be the position of v at time

t; and for any s < t, let Xv(s) be the position of the unique ancestor of v that was alive

at time s. We define

R(t) := max
u∈N (t)

Xu(t),

which stands for the rightmost position of branching Brownian motion. For any s > 0 and

each particle u ∈ N (s), the shifted subtree generated by u is

N u(t) := {v ∈ N (t+ s), u � v}, ∀ t > 0,

where u � v indicates that v is a descendant of u or is u itself. Further, for any v ∈ N u(t),

let

Xu
v (t) := Xv(t+ s)−Xu(s),

be its shifted position. Similarly, we set Ru(t) := maxv∈N u(t).

For notational simplification, we write mt :=
√

2t − (3/2
√

2) ln t in the rest of this

article. Below is our result, which indicates that the moderate deviation probability of the

position of the rightmost particle in a branching Brownian motion.

Theorem 1 Let R(t) denote the rightmost position of the BBM at time t. Then for

any positive function t 7→ `t on [0,∞) such that `t ↑ ∞ and that `∗ := lim
t→∞

`t/t exists with

`∗ ∈ [0,∞), we have

lim
t→∞

1

`t
lnP(R(t) 6 σmt − `t) = −ϕ(`∗),

where

ϕ(`∗) :=


1

σ
(2−

√
2), 0 6 `∗ 6 2σ;

2

`∗
+

`∗

2σ2
−
√

2

σ
, `∗ > 2σ.

(5)
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Remark 2 Specifically, we take `t = (1−α)
√

2σ2t in Theorem 1, then we can obtain

Theorem 1 in [8].

Remark 3 From (5), we know that `∗ 7→ ϕ(`∗) is a continuous function on [0,∞).

Set σ = 1. The following is the functional graph of ϕ (see Figure 2).

Figure 2 The moderate deviation function of the position of the

rightmost particle of a branching Brownian motion

The rest of the article is organized as follows. In Section 2 and Section 3, we prove

the lower bound and the upper bound of Theorem 1, respectively. Let c denote positive

constant which might change from line to line. As usual, we write f(t) = o(1)g(t) if

f(t)/g(t) converges to 0 as t tends to∞. f(t) = O(g(t)) means that f(t) 6 Cg(t) for some

C.

§2. Lower Bound

For the lower bound, our arguments are largely inspired by [8].

We prove the lower bound in the deviation probability, by considering a special event

described as follows: The initial particle does not produce any offspring during time

interval [0, τ ] and is positioned at

y ∈
(
−∞, σmt − `t −

√
2σ2(t− τ) +

3

2
√

2
σ ln(t− τ)− 1

]
at time τ ; then, at time t, the maximal position lies in (−∞, σmt−`t). Let τ := a`t ∈ (0, t],

so a ∈ (0, 1/`∗) for sufficiently large t. Therefore, we have

P(R(t) 6 σmt − `t) > e−a`t
∫ At

−∞

dy√
2πσ2a`t

e−y
2/(2σ2a`t)

× P(R(t− a`t) 6 σmt − `t − y), (6)
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where

At := σmt − `t −
√

2σ2(t− a`t) +
3

2
√

2
σ ln(t− a`t)− 1 6 0.

It remains to bound the above probability. Note that for

y ∈
(
−∞, σmt − `t −

√
2σ2(t− a`t) +

3

2
√

2
σ ln(t− a`t)− 1

]
,

we obtain

σmt − `t − y >
√

2σ2(t− a`t)−
3

2
√

2
σ ln(t− a`t) + 1.

Hence,

P(R(t− a`t) 6 σmt − `t − y) > P
(
R(t− a`t) 6

√
2σ2(t− a`t)−

3

2
√

2
σ ln(t− a`t) + 1

)
.

Recall that mt :=
√

2t − (3/2
√

2) ln t. Using (2), for any z ∈ R, P(R(s) 6 msσ + z)

converges, as s → ∞, to a positive limit. This yields that there exists a constant c > 0

such that

P
(
R(t− a`t) 6

√
2σ2(t− a`t)−

3σ

2
√

2
ln(t− a`t) + 1

)
> c. (7)

Combining (6) with (7), we get that for all τ ∈ (0, t],

P(R(t) 6 σmt − `t) > ce−a`t
∫ At

−∞

dy√
2πσ2a`t

e−y
2/(2σ2a`t). (8)

Let ε > 0 be small constant such that At > (
√

2σ2a− 1− ε)`t. As a consequence,

P(R(t) 6 σmt − `t) > ce−a`t
∫ (
√
2σ2a−1−ε)`t

−∞

dy√
2πσ2a`t

e−y
2/(2σ2a`t)

> c
[
e−a`t

−(
√

2σ2a− 1− ε)`t
1 + (

√
2σ2a− 1− ε)2`2t

1√
2πσ2a`t

e−(
√
2σ2a−1−ε)2`t/(2σ2a)

]
= c
[ −(

√
2σ2a− 1− ε)`t

1 + (
√

2σ2a− 1− ε)2`2t

1√
2πσ2a`t

e−(
√
2σ2a−1−ε)2`t/(2σ2a)−a`t

]
,

(9)

where the second inequality follows from the standard Gaussian tail estimate∫ ∞
u

e−x
2/2 > u(1 + u2)−1e−u

2/2.

Taking the logarithm and the lower limit of both sides in (9), one has

lim inf
t→∞

1

`t
lnP(R(t) 6 σm(t)− `t) > −a−

(
√

2σ2a− 1− ε)2

2σ2a
.
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Together with the fact that r.h.s. is independent of a, we obtain

lim inf
t→∞

1

`t
lnP(R(t) 6 σm(t)− `t) > sup

a∈(0,1/(`∗∨
√
2σ)]

{
− a− (

√
2σ2a− 1− ε)2

2σ2a

}
. (10)

To calculate the above supremum, we just need to consider the minimum of the function

g(a; ε) := a + (
√

2σ2a − 1 − ε)2/(2σ2a), with a ∈ (0, 1/(`∗ ∨
√

2σ)]. By elementary

calculation, we obtain the minimum of the function g as follows:

gmin(`∗; ε) :=


(2−

√
2)(1− ε)
σ

, 0 6 `∗ 6
2σ

ε+ 1
;

2

`∗
+

(1 + ε)`∗

2σ2
−
√

2(1− ε)
σ

, `∗ >
2σ

ε+ 1
.

(11)

Substituting this into (10) yields that

lim inf
t→∞

1

`t
lnP(R(t) 6 σm(t)− `t) > −gmin(`∗; ε). (12)

Letting ε ↓ 0 gives that

lim inf
t→∞

1

`t
lnP(R(t) 6 σm(t)− `t) > −ϕ(`∗), (13)

where

ϕ(`∗) :=


1

σ
(2−

√
2), 0 6 `∗ 6 2σ;

2

`∗
+

`∗

2σ2
−
√

2

σ
, `∗ > 2σ.

(14)

§3. Upper Bound

For the upper bound, the proof strategy is motivated by [9].

Let

Tt = inf{a > 0 : N(a`t) > `2t }

and for δ > 0 and ε > 0 small enough set

F (δ) =
{
δ, 2δ, · · · ,

⌈ 1

δ(
√

2σ ∨ `∗)(1 + 2ε)

⌉
δ
}
.

According to the definition of Tt, we split the probability P(R(t) 6 σmt − `t) into two

parts as

P(R(t) 6 σmt − `t) 6 P
(
R(t) 6 σmt − `t;N

( `t

(
√

2σ ∨ `∗)(1 + 2ε)

)
6 `2t

)
+ P

(
R(t) 6 σmt − `t;N

( `t

(
√

2σ ∨ `∗)(1 + 2ε)

)
> `2t

)
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6 P
(
N
( `t

(
√

2σ ∨ `∗)(1 + 2ε)

)
6 `2t

)
+ P

(
R(t) 6 σmt − `t;N

( `t

(
√

2σ ∨ `∗)(1 + 2ε)

)
> `2t

)
6 P

(
N
( `t

(
√

2σ ∨ `∗)(1 + 2ε)

)
6 `2t

)
+

∑
a∈F (δ)

P(R(t) 6 σmt − `t;Tt ∈ (a− δ, a]). (15)

In view of [3], we know that N(t) follows the geometric distribution with parameter e−t.

That is to say, P(N(t) = k) = e−t(1− e−t)k−1, k = 1, 2, · · · . Consequently,

P
(
N
( `t

(
√

2σ ∨ `∗)(1 + 2ε)

)
6 `2t

)
=
b`2t c∑
k=1

P
(
N
( `t

(
√

2σ ∨ `∗)(1 + 2ε)

)
= k

)
=
b`2t c∑
k=1

e−`t/[(
√
2σ∨`∗)(1+2ε)]

(
1− e−`t/[(

√
2σ∨`∗)(1+2ε)]

)k−1
∼ 1−

(
1− e−`t/[(

√
2σ∨`∗)(1+2ε)]

)`2t . (16)

By means of (16), we have

lim
t→∞

1

`t
lnP

(
N
( `t

(
√

2σ ∨ `∗)(1 + 2ε)

)
6 `2t

)
= lim

t→∞

1

`t
ln
(
1−

(
1− e−`t/[(

√
2σ∨`∗)(1+2ε)]

)`2t )
= − 1

(
√

2σ ∨ `∗)(1 + 2ε)
(17)

and

lim sup
t→∞

1

`t
lnP(Tt ∈ (a− δ, a]) 6 lim sup

t→∞

1

`t
lnP(N((a− δ)`t) 6 `2t ) = −(a− δ). (18)

Meanwhile,

P(R(t) 6 σmt − `t |Tt ∈ (a− δ, a])

= P
(

max
u∈N (a`t)

Xu(a`t) +Ru(t− a`t) 6 σmt − `t
∣∣∣Tt ∈ (a− δ, a]

)
6 P

(
max

u∈N (a`t)
Ba`t +Ru(t− a`t) 6 σmt − `t

∣∣∣Tt ∈ (a− δ, a]
)

6 P(Ba`t 6 σmt − (1− ε)`t −mt−a`t)

+ P
(

max
u∈N (a`t)

Ru(t− a`t) 6 mt−a`t − ε`t
∣∣∣Tt ∈ (a− δ, a]

)
=: I1 + I2, (19)

where in the first inequality we use the fact that Xu(·) and Ru(·) are independent and Bt

is one-dimensional standard Brownian motion. Firstly, We estimate I1. For any a ∈ F (δ),
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one can check that
√

2σa− 1 + ε < 0 and

σmt − (1− ε)`t −mt−a`t =
3

2
√

2
σ ln

t− a`t
t

+ (
√

2σa− 1 + ε)`t 6 (
√

2σa− 1 + ε)`t. (20)

Thus

I1 6 P(Ba`t 6 (
√

2σa− 1 + ε)`t). (21)

Applying the standard Gaussian tail estimate∫ ∞
u

e−x
2/2 6 u−1e−u

2/2,

the inequality (21) is bounded from above by

1

−
√

2σa+ 1− ε
1√

2πaσ2`t
exp

{
− (
√

2σa− 1 + ε)2`t
2aσ2

}
. (22)

By (21) and (22), we have

lim sup
t→∞

1

`t
P(Ba`t 6 σmt − (1− ε)`t − σmt−a`t) 6 −

(
√

2σa− 1 + ε)2

2σ2a
.

Next, we need to control I2.

I2 = E
(
P(R(t− a`t) 6 σmt−a`t − ε`t)N(a`t)

∣∣Tt ∈ (a− δ, a]
)

6 P(R(t− a`t) 6 σmt−a`t − ε`t)`
3/2
t + P

(
N(a`t) 6 `

3/2
t

∣∣Tt ∈ (a− δ, a]
)
.

By the definition of Tt and the property of branching Brownian motion, we obtain that

P
(
N(a`t) 6 `

3/2
t

∣∣Tt ∈ (a− δ, a]
)

= 0.

According to Bramson [1, 2], there exists c ∈ (0,∞] such that

lim
t→∞

P(R(t− a`t) 6 σmt−a`t − ε`t) = e−c < 1.

Therefore, I2 6 e−c1`
3/2
t .

Putting I1 into I2, we have

lim sup
t→∞

1

`t
lnP(R(t) 6 σmt − `t |Tt ∈ (a− δ, a]) 6 −(

√
2σa− 1 + ε)2

2σ2a
. (23)

Going back to (15), together with (17) and (18), one has

lim sup
t→∞

1

`t
lnP(R(t) 6 σmt − `t)
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6 − 1

(
√

2σ ∨ `∗)(1 + 2ε)
∨ sup
a∈F (δ)

{
− (a− δ)− (

√
2σa− 1 + ε)2

2σ2a

}
.

Similar to the argument of the lower bound in (10), we have

lim sup
t→∞

1

`t
lnP(R(t) 6 σmt − `t) 6 sup

a∈(0,1/(`∗∨
√
2σ))

{
− a− (

√
2σa− 1)2

2σ2a

}
:= −ψ(`∗),

ψ(`∗) :=


1

σ
(2−

√
2), 0 6 `∗ 6 2σ;

2

`∗
+

`∗

2σ2
−
√

2

σ
, `∗ > 2σ,

(24)

which yields the upper bound for the probability in the Theorem 1 because ψ(`∗) coincides

with ϕ(`∗) given in (5). This completes the proof of the upper bound in Theorem 1.

§4. Remark

All the discussion of Section 2 and Section 3 can be easily generalized to a branching

Brownian motion where, at each branching event, the particle branches into m particles

instead of 2. For convenience, we take σ2 = 2 in the following theorem.

Theorem 4 Let R(t) denote the rightmost position of the BBM at time t. Then for

any positive function t 7→ `t on [0,∞) such that `t ↑ ∞ and that `∗ := lim
t→∞

`t/t exists with

`∗ ∈ [0,∞), we have

lim
t→∞

1

`t
lnP(R(t) 6

√
2mt − `t) = −ϕ(`∗),

where

ϕ(`∗) :=


√
m−

√
m− 1, 0 6 `∗ 6 2m;

m

`∗
+
`∗

4
−
√
m− 1, `∗ > 2m.

(25)
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