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§1. Introduction

Based on the approximately independent periodogram ordinates, Monti [1] developed

the frequency empirical likelihood (EL) for the parameters of ARMA models by deriving

the estimating functions from the Whittle likelihood [2]. It is a breakthrough for applying

EL to time series field. Following the way of [1], Yau [3] extended EL to long memory

time series models by proving that there was a little portion of correlation among the

periodogram for ARFIMA models [4, 5]. However, these two works [1, 3] considered the just-

identified cases with the number of the estimating equations equivalent to the number of

the unknown parameters in the moment models. In such case, the estimators of the pa-

rameters are less efficient than the estimators under the over-identified situations, that is,

the number of parameters is larger than the number of equations. Accordingly, Nordman
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and Lahiri [6] constructed the new frequency EL which extended the application of EL to

more general spectral parameters in time series model and developed new statistics for

the over-identified cases.

In spite of its nice properties, the EL suffers from the problem of non-definition. For

time series, its counterpart also inherits such undesirable features. Chen et al. [7] suggested

the adjusted EL (AEL) to eliminate the problem. By adding a pseudo observation, the

AEL ensures that the solution of the estimating equations exists. The processed convex

hull of the sample makes sure the origin lies in it, which means the EL is always well-

defined. For time series, there have been many works to construct confidence regions by

EL and AEL. For example, Gamage et al. [8, 9] introduced the AEL to construct confidence

regions for parameters in short and long memory time series models. But little work has

been done for hypothesis test by EL method. In this paper, we propose EL and AEL for

testing the parameters of stationary ARMA models. First, we deduce the moment esti-

mating equations to construct test statistics from Whittle likelihood. Then, the proposed

EL and AEL test statistics for testing all the unknown parameters are shown to follow

chi-square distributions, which is validate to calculate the power. However, in practice we

may only be interest of the significance of part of the parameters, so it is necessary to build

the test statistic for testing such vector subset of the parameters. And the proposed test

statistic for the subset of parameters is also proved to converge to chi-square distribution.

Finally, we verify the validity of the proposed statistics by simulation studies.

The rest of this paper is organised as follows. In Section 2, we present the test

statistics of EL and AEL for time series. Simulation studies are conducted to verify our

proposed tests in Section 3. The proofs of main results are deferred to the Appendix.

§2. Models and Proposed Test Procedure

In this section, we mainly present the frequency-domain EL and AEL test statistics

for stationary ARMA models. The estimating equations, the foundation of EL and AEL

inferences, are derived from Whittle likelihood, which is same as the way proposed by [1].

We start from introducing the Whittle likelihood for stationary short-memory model.

1) Whittle Likelihood for Stationary ARMA Models

A stationary ARMA model of [10; page 126] is denoted as

Φ(B)Xt = Θ(B)εt, (1)
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where {Xt} is the time series, both Φ(B) = 1 −
p∑
j=1

φjB
j and Θ(B) = 1 +

q∑
j=1

θjB
j are

operator polynomials such that there is no common root for the corresponding equations

and all of the roots lie outside the unit circle, B is the backward operator satisfing BXt =

Xt−1 and φj and θj are constant coefficients, {εt} is the white noise with mean zero and

unknown variance σ2. For such process, the spectral density of {Xt} has the following

closed form,

f(ω) =
σ2

2π

|Θ(e−iω)|2

|Φ(e−iω)|2
, ω ∈ [−π, π].

This kind of model is the most popular short memory models in time series. Let X1, X2,

· · · , XT be a realization of the process (1) and X be their mean. The periodogram

ordinates are defined as

I(ωj) =
1

2πT

{[ T∑
k=1

(Xk −X) sin(ωjk)
]2

+
[ T∑
k=1

(Xk −X) cos(ωjk)
]2}

,

for frequencies ωj = 2πj/T , j = 1, 2, · · · , T − 1. We restrict our attention to the first

n = [(T − 1)/2] periodogram because of I(π + ω) = I(π − ω). For ARMA models, EL

works on the premise that the periodograms are asymptotical independent have proved

by Monti [1].

2) EL and AEL Test Statistics

For the vector of parameters in ARMA models, we denote β as a vector of all unknown

parameters. It is composed of the coefficients of AR, MA and the unknown variance of

white noises, that is, β = (φ1, φ2, · · · , φp, θ1, θ2, · · · , θq, σ2)T. Assume β belongs to a

compact subset of the m-dimensional Euclidean space (m = p+q+1). Our main interests

are to test the null hypothesis

H0 : β = β0, (2)

moreover, we may only concern whether the part of MA or AR exist or not, that is to test

the hypothesis such as

H01 : θ = θ0 or H02 : φ = φ0, (3)

where θ = (θ1, θ2, · · · , θq) and φ = (φ1, φ2, · · · , φp), or other arbitrary subset of the un-

known parameters.

In order to construct the test statistics, we first derive the based score equations from

Whittle likelihood [2]. Taking derivative on Whittle likelihood with respect to β, we obtain

the score equations as follow:

n∑
j=1

[ I(ωj)

f(ωj ;β)
− 1
]∂ ln{f(ωj ;β)}

∂β
≡

n∑
j=1

ψj(I(ωj), β) = 0. (4)
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The EL test statistics for the vector β in ARMA models is defined as minus twice the

empirical log-likelihood ratio (ELR), that is

R(β) = −2 sup
{ n∑
j=1

ln(npj) : pj > 0,
n∑
j=1

pj = 1,
n∑
j=1

pjψj(I(ωj), β) = 0
}
.

By Lagrange’s multiplier method, we can express the adjusted ELR to be

R(β) = 2
n∑
j=1

ln{1 + λTψj(I(ωj), β)}, (5)

where λ := λ(β) satisfies

0 =
1

n

n∑
j=1

ψj(I(ωj), β)

1 + λTψj(I(ωj), β)
. (6)

If the EL estimator β̃ for β can be obtained by minimizing R(β), then the test statistic

is defined by

R1(β0) = R(β0)−R(β̃). (7)

And when the model is the just-identified, the term R(β̃) will tend to be zero. As are

proposed in [1], [8] and [9], the statistics are degenerated to be R(β0) under the just-

identified cases. We will show that R1(β0) follows χ2
m asymptotically for the asymptotical

independent periodogram ordinates of ARMA processes as n tends to infinity.

For simplicity, we use
d−→ to mean convergence in distribution. Then we state our

first result as follow:

Theorem 1 Under the assumptions of [1; Section 3] and the null hypothesis (2),

R1(β0)
d−→ χ2

m, n→∞, where m is the dimension of the vector of the unknown parameter.

This theorem allows us to calculate the power for testing the significance of parameters

in ARMA models. Let χ2
m(1 − α) be the (1 − α) quantile of the chi-square distribution

with m degree of freedom. Then the power of the test can be calculated according to

P{R1(β) > χ2
m(1− α)}.

However, for a given β, the ELR function is well-defined if and only if the convex hull of

Ω̃β = {ψj(I(ωj), β), j = 1, 2, · · · , n} contains the origin. In practice, it often happen that

the origin lies outside the convex hull in the case of the small sample size. In such situation,

the ELR function has no definition and is defined to be infinity conventionally, however this

convention does provide the relative plausibility of different parameter values. To address

this problem, Chen et al. [7] proved AEL to be an easy-going but rather effective method

to completely eliminate this dilemma. The key of AEL is to add a pseudo-observation

such as

ψn+1(I(ωn+1), β) = −a
n

n∑
j=1

ψj(I(ωj), β) := −aψn,
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to the origin observations, which make ELR always well-defined, where the adjustment

level a = o(n). The AEL test statistic of β is defined as

R̃(β; a) = −2 sup
{ n+1∑
j=1

ln(npj) : pj > 0,
n+1∑
j=1

pj = 1,
n+1∑
j=1

pjψj(I(ωj), β) = 0
}

= 2
n+1∑
j=1

ln{1 + λTψj(I(ωj), β)},

where λ := λ(β) is the solution to

n+1∑
j=1

ψj(I(ωj), β)

1 + λTψj(I(ωj), β)
= 0. (8)

Chen et al. [7] showed that the asymptotic property of AEL is similar to one of EL for

independent and identically distributed (iid) observations and any positive constant a of

order n. We construct the AEL test statistic for parameters in time series model as

R̃1(β0; a) = R̃(β0; a)− R̃(β̃; a).

We assert it also asymptotically follows χ2
m under the null hypothesis (2).

Theorem 2 Under the assumptions in Theorem 1 and the null hypothesis (2), then

R̃1(β0)
d−→ χ2

m as n goes to infinity.

The application of Theorem 2 is similar to the Theorem 1. However, in practice,

there are always some nuisance parameters that we don’t care about because they have

no effect on the main characteristics of our study. So we only pay more attention to our

concerned subset of the unknown parameter vector. Similar to the argument of [11], we

state the result for testing hypothesis (3) about ARMA models. For simplicity, we unify

the ETR notations of EL and AEL as R̃(β; a) := R(β).

Corollary 3 Suppose β = (θ1, θ2), the dimensions of θ1 and θ2 are p and q respec-

tively. For H01 : θ1 = θ01, the test statistic is defined as

R2(θ01) = R(θ01, θ̃2)−R(θ̃1, θ̃2).

It follows χ2
p asymptotically as n goes to infinity, where θ̃2 minimizes R(θ01, θ2) with respect

to θ2.

A direct application of this corollary is to test the significance of the term of AR

or MA in the short memory models. In the next section, we use simulation study to

investigate the finite-sample performance of such EL and AEL based powers.
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§3. Monte Carlo Experiment

In this section, we report the Monte Carlo simulation results of the power for testing

the prameter in ARMA(p, q) process by our proposed EL and AEL test procedure.

We consider three stationary ARMA(p, q) processes with p = q = 0, p = 0, q = 1

and p = 1, q = 0. We carry out the simulations under four kinds of innovation, including

N(0, 1), t(5), χ2(5) and exp(1) noises with mean zero. In all cases, 2 000 replications are

generated to calculate the power. Significant level α = 0.05 and the adjustment level

a = max(1, ln(n)/2). Here it is notable that the number of the sample in each replication

is n = [(T − 1)/2] even the size of the original time series {xt} is T . In Table 2, we study

the hypothesis test of the part of AR in ARMA(1, 1) models and set the coefficient of MA

to be 0.3. The powers for testing the significance of parameters are obtained by EL and

AEL method under different series length and different hypothesized values and listed in

Tables 1 – 2. In all figures, the horizontal line represents the significant level, the vertical

line corresponds to the hypothesized values and the powers are calculated with the size

of series T = 1 000. For Figure 3, we set the coefficient of AR to be 0.3 and test the

significance of the part of MA.

Tabel 1 Powers for testing the parameter in AR(1) models

Model method n hypotheses true values

φ0 = 0.2 φ = 0.10 φ = 0.15 φ = 0.20 φ = 0.25 φ = 0.35

EL 200 0.314 0.139 0.072 0.126 0.601

500 0.602 0.218 0.063 0.224 0.923

1 000 0.891 0.360 0.052 0.371 0.999

AEL 200 0.297 0.132 0.066 0.116 0.587

500 0.594 0.213 0.060 0.217 0.920

1 000 0.890 0.355 0.050 0.367 0.999

εt ∼ N(0, 1) φ0 = 0.5 φ = 0.35 φ = 0.45 φ = 0.50 φ = 0.55 φ = 0.60

EL 200 0.695 0.172 0.076 0.134 0.374

500 0.961 0.272 0.063 0.260 0.740

1 000 1.000 0.436 0.058 0.448 0.960

AEL 200 0.678 0.163 0.069 0.126 0.359

500 0.960 0.265 0.061 0.254 0.773

1 000 1.000 0.431 0.056 0.444 0.959

φ0 = 0.2 φ = 0.10 φ = 0.15 φ = 0.20 φ = 0.25 φ = 0.35

EL 200 0.381 0.194 0.097 0.166 0.606

500 0.629 0.245 0.082 0.210 0.946

1 000 0.888 0.372 0.054 0.375 0.999

AEL 200 0.362 0.184 0.091 0.155 0.592

500 0.623 0.238 0.078 0.207 0.943

1 000 0.885 0.367 0.050 0.368 0.999

εt ∼ χ2(5)− 5 φ0 = 0.5 φ = 0.35 φ = 0.45 φ = 0.50 φ = 0.55 φ = 0.60

EL 200 0.741 0.220 0.109 0.165 0.421

500 0.965 0.303 0.076 0.258 0.756

1 000 0.999 0.453 0.068 0.473 0.960

AEL 200 0.729 0.205 0.102 0.154 0.399

500 0.965 0.300 0.073 0.249 0.751

1 000 0.999 0.448 0.065 0.469 0.959
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Tabel 2 Powers for testing the parameter in ARMA(1, 1) models

Model method n hypotheses true values

φ0 = 0.2 φ = 0.10 φ = 0.15 φ = 0.20 φ = 0.25 φ = 0.35

EL 200 0.118 0.086 0.069 0.081 0.282

500 0.147 0.083 0.055 0.092 0.517

1 000 0.239 0.102 0.058 0.132 0.800

AEL 200 0.109 0.076 0.061 0.074 0.260

500 0.143 0.081 0.054 0.088 0.507

1 000 0.236 0.099 0.055 0.130 0.797

εt ∼ N(0, 1) φ0 = 0.5 φ = 0.35 φ = 0.45 φ = 0.50 φ = 0.55 φ = 0.60

EL 200 0.355 0.132 0.080 0.112 0.247

500 0.605 0.171 0.061 0.154 0.517

1 000 0.890 0.243 0.064 0.262 0.806

AEL 200 0.338 0.122 0.070 0.097 0.232

500 0.600 0.166 0.058 0.146 0.505

1 000 0.887 0.240 0.062 0.259 0.802

φ0 = 0.2 φ = 0.10 φ = 0.15 φ = 0.20 φ = 0.25 φ = 0.35

EL 200 0.107 0.080 0.066 0.080 0.251

500 0.150 0.084 0.050 0.096 0.514

1 000 0.257 0.100 0.062 0.149 0.789

AEL 200 0.100 0.074 0.061 0.073 0.238

500 0.146 0.082 0.047 0.093 0.507

1 000 0.255 0.098 0.060 0.146 0.787

εt ∼ χ2(5)− 5 φ0 = 0.5 φ = 0.35 φ = 0.45 φ = 0.50 φ = 0.55 φ = 0.60

EL 200 0.335 0.133 0.071 0.113 0.257

500 0.614 0.167 0.063 0.167 0.502

1 000 0.879 0.230 0.052 0.268 0.798

AEL 200 0.345 0.134 0.066 0.109 0.247

500 0.618 0.163 0.054 0.160 0.493

1 000 0.878 0.228 0.050 0.264 0.793

From Tables 1 – 2 and Figures 1 – 3, we find the test has reasonable asymptotic power

properties. We list the observations as follows. First, for all cases when the parameter

takes the hypothesized value, the powers of test get close to the significance level. Second,

when the value that the parameter take is far away from the hypothesized value, the

power will get large. Third, comparing the powers in Tables 1 – 2 and Figures 2 – 3, we

find that the power of the test is larger when there are less unknown parameters in the

model. Finally, we find the powers obtained from AEL is a bit smaller than those obtained

from EL, which does not against the usefulness of adjustment. That is, the AEL always

achieves the high-order coverage probability by adjustment. In conclusion, these results

demonstrate that our proposed testing procedures are useful.

§4. Appendix

In this section, we give the proof of the Theorem 1, Theorem 2 and the Corollary 3.

For simplicity, we note ψj(I(ωj), β) = ψ(xj , β) and ‖ · ‖ denotes Euclidean norm.

The Proof of Theorem 1 For the true value β0, we just consider the parameter
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Figure 1 The power for AR(1) model (φ = 0.3)
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Figure 2 The power for MA(1) model (θ = 0.6)
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Figure 3 The power for ARMA(1, 1) model (θ = 0.6)

β in the ball Bβ = {β | ‖β − β0‖ 6 n−1/2}.
First we will show λβ = Op(n

−1/2). In fact, max
16j6n

‖ψj(xj , β)‖ = op(n
1/2). This is

obtained directly by dominated convergence theorem, when

E
{ 1

n

n∑
j=1
‖ψj(xj , β)‖2

}
<∞.

Note λ = ρu, where ρ = ‖λ‖, so ‖u‖ = 1, then timing the term uT, the equation (6) gets

the form as

0 = uT 1

n

n∑
j=1

ψj(xj , β0)

1 + λTψj(xj , β0)

= uT 1

n

n∑
j=1

ψj(xj , β0) + ψj(xj , β0)ψ
T
j (xj , β0)λ− ψj(xj , β0)ψT

j (xj , β0)λ

1 + λTψj(xj , β0)

= uT 1

n

n∑
j=1

ψj(xj , β0)−
1

n

n∑
j=1

uTψj(xj , β0)ψ
T
j (xj , β0)u

1 + ρuTψj(xj , β0)
ρ,

because∣∣∣uT 1

n

n∑
j=1

ψj(xj , β0)
∣∣∣ > {[uT 1

n

n∑
j=1

ψj(xj , β0)ψ
T
j (xj , β0)u

]/[
1 + ρ max

16j6n
|uTψj(xj , β0)|

]}
ρ,
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max
16j6n

|uTψj(xj , β)| 6 ‖u‖ max
16j6n

‖ψj(xj , β)‖ = op(n
1/2),∣∣∣uT 1

n

n∑
j=1

ψj(xj , β0)
∣∣∣ = Op(n

−1/2)

and
1

n

n∑
j=1

ψj(xj , β0)ψ
T
j (xj , β0)→ V > 0

in probability proved by Motin [1], where V is a covariance matrix which is elaborated in

[1]. Then we can obtain ρ = Op(n
−1/2) and λ = Op(n

−1/2).

Next we will show R1(β0)
d−→ χ2

m. For Whittle estimator β̃ minimizes R(β), we have

the following equations:

0 =
1

n

n∑
j=1

ψj(xj , β̃)

1 + λ̃Tψj(xj , β̃)
, 0 =

1

n

n∑
j=1

λ̃Tψj1(xj , β̃)

1 + λ̃Tψj(xj , β̃)
, (9)

where ψj1(xj , β) = ∂ψj(xj , β)/∂βT. By Taylor expansion, we expand the above equations

at (β, λ) = (β0, 0). Then we have

0 =
1

n

n∑
j=1

ψj(xj , β0) +
1

n

n∑
j=1

ψj1(xj , β0)(β̃ − β0)−
1

n

n∑
j=1

ψj(xj , β0)ψ
T
j (xj , β0)λ̃+ δnop(1),

0 =
1

n

n∑
j=1

ψT
j1(xj , β0)λ̃+ δnop(1),

where δn = ‖β̃ − β0‖+ ‖λ̃‖ = op(n
−1/2).

Note

A =
1

n

n∑
j=1

ψj(xj , β0),

S11 =
1

n

n∑
j=1

ψj(xj , β0)ψ
T
j (xj , β0), S12 = − 1

n

n∑
j=1

ψj1(xj , β0) = ST
21.

Then we can obtain(
A

0

)
=

(
S11 S12

S21 0

)(
λ̃

β̃ − β0

)
+ op(n

−1/2).

If we note (
S11 S12

S21 0

)−1

=

(
S11 S12

S21 S22

)
,

then (
λ̃

β̃ − β0

)
=

(
S11 S12

S21 S22

)(
A

0

)
+ op(n

−1/2).
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By Taylor expansion, we obtain

R(β̃) = 2
n∑
j=1

ln{1 + λ̃Tψj(xj , β̃)}

= 2n
(
AT 0

)( λ̃

β̃ − β0

)
− n

(
λ̃T (β̃ − β0)T

)( S11 S12

S21 0

)(
λ̃

β̃ − β0

)
+ op(1)

= n
(
AT 0

)( S11 S12

S21 S22

)(
A

0

)
= nATS11A+ op(1).

Another hand, by
1

n

n∑
j=1

ψj(xj , β0)

1 + λT
β0
ψj(xj , β0)

= 0,

we have λβ0 = S−1
11 A+op(1), and R(β0) = nATS−1

11 A+op(1). So the log-empirical likelihood

ratio testing statistic

R1(β0) = nAT(S−1
11 − S

11)A+ op(1) = −nAT(S−1
11 S12S

22S21S
−1
11 )A+ op(1).

By Slutsky theorem we have

1

n

n∑
j=1

∂ψj(xj , β̃)

∂βT
→ S12

in probability which have been proved in [1]. Then

A =
1

n

n∑
j=1

ψj(xj , β0) =
1

n

n∑
j=1

∂ψj(xj , β̃)

∂βT
(β0 − β̃) + op(n

1/2) = −S12(β0 − β̃) + op(n
1/2)

and

−nAT(S−1
11 S12S

22S21S
−1
11 )A = n(β0 − β̃)TS21S

−1
11 S12(β0 − β̃)

= n(β0 − β̃)TV̂ −1(β0 − β̃) + op(1),

where V̂ = S21S
−1
11 S12. S12 and S11 converge to V in probability, see [1]. So V̂ −1 converges

to V −1 in probability and the rank of V is m. In addition, Dzhaparidze [12] pointed out

under regular conditions
√
n(β̃ − β)

d−→ N(0, V ), then R1(β0)
d−→ χ2

m. �

The Proof of Theorem 2 Similar to the proof of Theorem 1, we only show

the framework of the proof. First ψn+1 = aψn = op(n
1/2), then max

16j6n+1
‖ψj(xj , β)‖ =

op(n
1/2). Second, from equation (8), we also can obtain λ = Op(n

−1/2). Third, R̃1(β0; a)

can expand as the following equality:

R̃1(β0; a) = n(β0 − β̃)T(V̂ ∗)−1(β0 − β̃) + op(1),
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where V̂ ∗ = S∗
21(S

∗
11)

−1S∗
12,

S∗
11 =

1

n

n+1∑
j=1

ψj(xj , β0)ψ
T
j (xj , β0) and S∗

12 = − 1

n

n+1∑
j=1

∂ψj(xj , β0)

∂β
.

Because
1

n

n∑
j=1

ψj(xj , β0) = Op(n
−1/2),

then

S∗
11 =

1

n

n∑
j=1

ψj(xj , β0)ψ
T
j (xj , β0) +

1

n
ψn+1(xn+1, β0)ψ

T
n+1(xn+1, β0)

=
1

n

n∑
j=1

ψj(xj , β0)ψ
T
j (xj , β0) + op(1)

and

S∗
12 =

1

n

n∑
j=1

∂ψj(xj , β0)

∂β
+ op(1).

So we can obtain R̃1(β0; a) converges to the χ2
m distribution asymptotically as n goes to

infinity. �

The Proof of Corollary 3 By Taylor expansion we have

R2(θ01) = nAT(−S11)−1/2S
−1/2
11 (D −M)S

−1/2
11 (−S11)−1/2A+ op(1),

where the notations of A and S11 are same as the proof of Theorem 1 and extend to the

proof of Theorem 2.

D =
( 1

n

n∑
j=1

∂ψj(xj , β)

∂β

)[( 1

n

n∑
j=1

∂ψj(xj , θ)

∂β

)T

S−1
11

( 1

n

n∑
j=1

∂ψj(xj , β)

∂β

)]−1

×
( 1

n

n∑
j=1

∂ψj(xj , β)

∂β

)T

,

M =
( 1

n

n∑
j=1

∂ψj(xj , β)

∂θ1

)[( 1

n

n∑
j=1

∂ψj(xj , θ)

∂θ1

)T

S−1
11

( 1

n

n∑
j=1

∂ψj(xj , β)

∂θ1

)]−1

×
( 1

n

n∑
j=1

∂ψj(xj , β)

∂θ1

)T

.

By the result in [13], if D−M is nonnegative defined, then R2(θ01)
d−→ χ2

p, where p is the

dimension of subvector θ1 of the unknown parametes. �
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