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§1. Introduction

Continuous-time Markov decision processes (CTMDPs) have been extensively stud-

ied and widely applied in various application fields such as telecommunication, queueing

systems, population processes, epidemiology, and so on. See, for instance, the monographs

[1,2], the works [3–10] and references therein. As an illustrative example, we consider the

controlled queueing systems. In a single-server queueing system, jobs or customers arrive,

enter the queue, wait for service, receive service, and then leave the system. A decision-

maker can control the system by deciding which jobs to be admitted to the queue, by

increasing or decreasing the arrival rates or service rates in order to maximize the reward

or minimize the cost of this system. There are many researches on CTMDPs under various

optimality criteria. For example, the expected discounted, average and the finite-horizon

optimality criteria have been well studied in [1, 2] and [5, 9, 11] amongst others.
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However, in realistic applications, the cost of raw materials or the price of products

depends on not only the number of jobs or customers but also the prices of raw materials or

products. In this work, we shall extend the classical CTMDPs to make these models more

realistic by including the random effect of the market. A diffusion process on Rd is included

to model the price process whose coefficients may be dependent on the continuous-time

Markov chain. A decision-maker still controls the system by deciding the transition rate of

the Markov chain, but the optimality criterion depends on both the diffusion process and

the Markov chain. The coexistence of Markov chains and diffusion processes makes the

optimality problem more difficult. The well developed methods in the study of CTMDPs

such as in [1] and [3,5] do not work anymore. For instance, to deal with the infinite horizon

expected discounted reward, it is quite crucial to establish the optimality equation based

on the recursion approximation of the Laplace transform for the continuous-time Markov

chain; see [1; Theorem 4.6] and [12; p. 121–122]. Nevertheless, the appearance of the

second order differential operators associated with the diffusion process makes it harder

to first establish the optimality equation and then to show the existence of the optimal

control.

In this work, we develop a compactification method to provide some sufficient condi-

tions on the existence of optimal controls. This kind of compactification method is usually

used to study the optimal control problem for jump-diffusion processes, and has been well

studied by many works including [8, 13–18]. See [16] for a complete list of references

on the subject. In order to deal with CTMDPs in a random environment, we introduce

ψ-relaxed controls as the class of admissible controls. The function ψ is used to charac-

terize the regularity of the optimal controls. The class of ψ-relaxed controls contains all

randomized stationary policies in some sense (see Section 2 for details). The randomized

stationary policies have been extensively investigated in the study of CTMDPs; see for

example the monograph [1]. The basic idea of our method is similar to that of Haussmann

and Suo [16], but there are some essential differences on the measurability of the control

policies. In [16], the controllers are assumed to have no information on the state of the

studied system, so the admissible control policies are all adapted to some given σ-fields.

However, to deal with CTMDPs, the control policy must be adapted to the σ-fields gener-

ated by the Markov chain in order to keep the Markovian property of the studied system.

Therefore, the key difficulty of this work is to show that the jumping process remains to

be a Markov chain under all admissible controls in current situation. Besides, concrete

techniques raised in this work are also different to those in [16]. This can be reflected by

the fact that this work can treat the terminal cost, however, [16] cannot (cf. [16; Remark
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2.2]).

To be more precise, consider a Markov chain (Λt) on a denumerable state space S
associated with the transition rate q-pair (q(θ,A;u), q(θ;u)), where θ ∈ S, A ∈ B(S),

u ∈ U , and the action set U is a compact subset of Rk. Let us consider further a diffusion

process (Xt) satisfying the following stochastic differential equation (SDE):

dXt = b(Xt,Λt)dt+ σ(Xt,Λt)dBt, (1)

where b : Rd×S → Rd, σ : Rd×S → Rd×d, and (Bt) is a standard d-dimensional Brownian

motion. The process (Xt) is used to model the price of raw materials or products, which is

related not only to the randomness of the market characterized by the Brownian motion,

but also to the number of jobs or the customers characterized by the Markov chain (Λt).

Relaxed controls, known also as randomized policies, are considered in this paper. The

following finite-horizon criterion is used:

E
[ ∫ T

0
f(t,Xt,Λt, µt)dt+ g(XT ,ΛT )

]
,

where f : [0, T ]×Rd ×S ×U → R and g : Rd ×S → R stand for the cost functions. Here

and in the remainder of this paper, a measurable function h : U → R is extended into a

function on P(U), the collection of all probability measures on U , through:

h(µ) :=

∫
U
h(u)µ(du), µ ∈P(U),

whenever the integral is well defined.

Our contribution of this paper consists of two aspects: one is to include the random

impact of the environment into the cost/reward function to provide more realistic models

than classical CTMDPs in applications; another is to propose a new method to study

the existence of optimal controls for CTMDPs, which generalizes the method of [15–18]

in the setting of Markov chains. This method can also be generalized to deal with the

history-dependent control problem investigated in [5], where the existence of optimal

history-dependent control was left open.

This work is organized as follows: To focus on the development of compactification

method in [16,18] from the setting of diffusion processes to that of CTMDPs, we consider

in Section 2 only the optimal control problem for classical CTMDPs without any random

impact of the environment. In Section 3 we treat CTMDPs in a random environment, and

show the existence of the optimal control under appropriate conditions.
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§2. Optimal Markov Control for CTMDPs

In this part we aim to develop the compactification method in [16,18] from the setting

of jump-diffusion processes to the setting of CTMDPs. To focus on this development and

simplify the representation, we do not consider the impact of random environment in this

section. We introduce the concept of ψ-relaxed control to ensure the Markovian property

of the studied system, and discuss its connection with the classical randomized control

policies studied, for instance, in [1,5,7]. In short, the class of ψ-relaxed controls is a subset

of general randomized control policies in some sense, but contains all the randomized

stationary policies and deterministic stationary policies. Randomized or deterministic

stationary policies are two important kinds of policies having been extensively studied in

[1–5,7,10] amongst others. In these works, many obtained optimal control policies are all

stationary.

1) Formulation and Assumptions

Let (Ω,F ,P) be a probability space with the filtration {Ft}t>0. {Ft} satisfies the

usual condition, that is, Ft is right-continuous and F0 contains all the P-negligible events

in F . Let S be a countable state space. Let U ⊂ Rk be a compact set, and P(U)

the collection of all probability measures over U . On P(U), define the L1-Wasserstein

distance between two probability measures µ and ν by:

W1(µ, ν) = inf
{∫

U×U
|x− y|π(dx,dy); π ∈ C (µ, ν)

}
, (2)

where C (µ, ν) stands for the collection of all probability measures on U×U with marginal

µ and ν respectively. Since U is compact, and hence is bounded, the weak topology of

P(U) is equivalent to the topology induced by the L1-Wasserstein distance. Also, this

implies that (P(U),W1) is a compact Polish space (cf. [19; Chapter 7]). We focus on the

finite-horizon optimal control problem in this work, so let us fix a time T > 0 throughout

this work.

Let S be a denumerable state space endowed with discrete topology. Given u ∈ U ,

we call (q(θ;u), q(θ,A;u)) (θ ∈ S, A ∈ B(S)) a q-pair, if for each A ∈ B(S), θ 7→ q(θ;u)

and θ 7→ q(θ,A;u) are measurable; and for each θ ∈ S, A 7→ q(θ,A;u) is a measure on

S, q(θ, {θ};u) = 0, q(θ,S;u) 6 q(θ;u). Moreover, it is called conservative if q(θ;u) =

q(θ,S;u) for all θ ∈ S. A function h : S → [0,∞) is called a compact function if for every

α > 0, the set {θ ∈ S;h(θ) 6 α} is compact.

In the following we collect the hypotheses used in this section:
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(H1) U ⊂ Rk is a compact set for some k ∈ N.

(H2) For each u ∈ U , (q(θ;u), q(θ,A;u)) is a conservative q-pair on S. Moreover, M :=

sup
u∈U

sup
θ∈S

q(θ,S;u) <∞.

(H3) For every θ ∈ S and A ∈ B(S), the function u 7→ q(θ,A;u) is continuous on U . For

every A ∈ B(S), u ∈ U , the function θ 7→ q(θ,A;u) is continuous.

(H4) There exist a compact function Φ : S → [1,∞), a compact set B0 ∈ B(S), constants

λ > 0 and κ0 <∞ such that

QuΦ(θ) :=

∫
S
q(θ,dγ;u)Φ(γ)− q(θ;u)Φ(θ) 6 λΦ(θ) + κ01B0(θ), θ ∈ S, u ∈ U.

Remark 1 The boundedness of q(θ,S;u) in (H2) ensures that the jumping process

(Λt) owns almost surely finite number of jumping in every finite time interval. As an initiative

investigation to include the random effect of the environment to the theory of CTMDPs, we

impose simply the bounded condition (H2) of the transition rates. In the study of CTMDPs,

there are some works to deal with unbounded transition rates. For example, in [5], the authors

used a technique of approximations from bounded transition rates to unbounded ones to

establish the existence of optimal Markovian controls. (H4) is called a drift condition, which

is used to guarantee the non-explosion of the process (Λt) and to prove the tightness of the

distributions of the Markov chains.

Let ψ : [0, T ]→ [0,∞) be an increasing function such that

lim
r→0

ψ(r) = 0. (3)

Consider the space D([0, T ]; P(U)) of measurable maps from [0, T ] to the Polish space

(P(U),W1) that are right-continuous with left-limits. Endow D([0, T ]; P(U)) with the

Skorokhod topology, which makes D([0, T ]; P(U)) a Polish space; see [20]. For µ : [0, T ]→
P(U) in D([0, T ]; P(U)), put

wµ([a, b)) = sup{W1(µt, µs); s, t ∈ [a, b)}, a, b ∈ [0, T ], a < b.

To describe compact sets in D([0, T ]; P(U)), let us introduce the function

w′′µ(δ) = sup min{W1(µt, µt1),W1(µt, µt2)}, (4)

where the supremum is taken over t1, t, and t2 satisfying t1 6 t 6 t2, t2 − t1 6 δ.

Definition 2 A ψ-relaxed control is a term α = (Ω,F ,Ft,P,Λt, µt, s, θ) satisfying:

(i) (s, θ) ∈ [0, T ]× S;
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(ii) (Ω,F ,P) is a probability space with the filtration {Ft}t∈[0,T ];

(iii) µt ∈ P(U) is adapted to the σ-field generated by Λt, t 7→ µt is in D([0, T ]; P(U))

almost surely, and for every θ′ ∈ S the curve t 7→ νt( ·, θ′) := µt( · |Λt = θ′) satisfies

wν([t1, t2)) 6 ψ(t2 − t1), 0 6 t1 < t2 6 T ;

(iv) (Λt)t∈[s,T ] is an Ft-adapted, jumping process with Λs = θ and satisfies

P(Λt+δ ∈ A |Λt = θ, µt = µ)− 1A(θ) = [q(θ,A;µ)− q(θ;µ)1A(θ)]δ + o(δ) (5)

provided δ > 0.

The collection of all ψ-relaxed controls with initial value (s, θ) is denoted by Π̃s,θ.

The function ψ is used to characterize the regularity of the optimal controls.

The set Π̃s,θ consists of many interesting and well studied controls. We proceed

to show that all the randomized stationary policies and deterministic stationary policies

studied, for example, in [1, 3, 5, 7] are all associated with ψ-relaxed controls in a natural

way.

Recall the definition of randomized Markov policies from [1]. A randomized Markov

policy is a real-valued function πt(C | θ′) that satisfies the following conditions:

(i) For all θ′ ∈ S and C ∈ B(U), t 7→ πt(C | θ′) is measurable on [0,∞).

(ii) For all θ′ ∈ S and t > 0, C 7→ πt(C | θ′) is a probability measure on B(U), where

πt(C | θ′) denotes the probability that an action in C is taken when the system’s

state is θ′ at time t.

A randomized Markov policy πt(du | θ′) is said to be stationary if πt(du | θ′) is independent

of time t.

For any ψ-relaxed control α = (Ω,F ,Ft,P,Λt, µt, s, θ), we shall show that µt indeed

acts as a randomized Markov policy πt(C | θ). Firstly, since µt is adapted to the σ-field

generated by Λt according to Definition 2, this yields that there exists a measurable map

Ft : S → P(U) such that µt = Ft(Λt). (This is a result derived from the functional

monotone class theorem in measure theory.) Thus, if Λt = θ′ is given, then µt = Ft(θ
′) is

a fixed probability measure in P(U). We may rewrite µt as

µt(du) =
∑
θ′∈S

Ft(θ
′)(du)1{Λt=θ′}. (6)

Condition (iii) of Definition 2 ensures that Ft(θ
′) is right-continuous with left-limits. So

πt(du | θ′) := Ft(θ
′)(du) satisfies the conditions (i) and (ii) of a randomized Markov policy.
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Consequently, the class of ψ-relaxed controls is a subclass of randomized Markov policies

in some sense.

Moreover, for a randomized stationary policy π(du | θ′), let

µ̃t =
∑
θ′∈S

π(du | θ′)1Λt=θ′ , t ∈ [0, T ]. (7)

According to the path property of continuous-time Markov chains, it is clear that (µ̃t)

defined by (7) satisfies the condition (iii) of Definition 2 with νt(du, θ
′) = π(du | θ′) for

all t > 0 and θ′ ∈ S. Hence, wν([t1, t2)) = 0 for every 0 6 t1 < t2. Corresponding to

the randomized stationary Markov policy π(du | θ′), there exists a CTMDPs (Λt) in some

probability space (Ω,F ,Ft,P) with initial value Λs = θ; see [1; Chapter 2]. It follows

immediately that (Ω,F ,Ft,P,Λt, µ̃t, s, θ) is a ψ-relaxed control for any ψ satisfying (3).

By viewing a deterministic stationary policy ξ : S → U as a randomized policy π : S →
P(U) through the transform π(du | θ′) = 1ξ(θ′)(du), we know that every deterministic

stationary policy is corresponding to a ψ-relaxed control.

Conditions (iii) and (iv) of Definition 2 also tell us that the transition rate does not

depend on the past of the process (Λt), so the process (Λt) is indeed a Markov process.

Put

q(t, θ′, A) = E
[∫

U
q(θ′, A;u)µt(du) |Λt = θ′

]
, q(t, θ′) = E

[∫
U
q(θ′;u)µt(du) |Λt = θ′

]
(8)

for A ∈ B(S), then the transition probability of the process (Λt) satisfies

P(Λt+δ ∈ A |Λt = θ′)− 1A(θ′) = [q(t, θ′, A)− q(t, θ′)1A(θ′)]δ + o(δ). (9)

Given two measurable functions f : [0, T ]× S × U → R and g : S → R, the expected

cost under the policy α ∈ Π̃s,θ is defined by

J(s, θ, α) = E
[ ∫ T

s
f(t,Λt, µt)dt+ g(ΛT )

]
, s ∈ [0, T ), θ ∈ S. (10)

Define the value function by

V (s, θ) = inf
α∈Π̃s,θ

J(s, θ, α), s ∈ [0, T ), θ ∈ S. (11)

For s ∈ [0, T ], θ ∈ S, a ψ-relaxed control α∗ ∈ Π̃s,θ is called optimal if

V (s, θ) = J(s, θ, α∗). (12)
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2) Existence of Optimal Control

After the preparation of the previous subsection, we can state our result on the

existence of optimal ψ-relaxed controls. We shall follow Haussmann and Suo’s approach,

and one can refer to [5] for alternative approach in the setting of CTMDPs without the

random impact of the environment.

Theorem 3 Given T > 0, assume (H1) – (H4) hold. Suppose f and g are lower

semi-continuous and bounded from below. Then for every s ∈ [0, T ) and θ ∈ S there exists

an optimal ψ-relaxed control α∗ ∈ Π̃s,θ.

Before proving this theorem, for a relaxed control (Ω,F ,Ft,P,Λt, µt, s, θ) we provide

a representation of the transition probability of the Markov chain (Λt). Define

Pµs,t1A(θ) = Pµ(s, θ, t, A) = P(Λt ∈ A |Λs = θ), θ ∈ S, A ∈ B(S), (13)

and

Qµ(t)h(θ) =

∫
S
q(t, θ, dγ)h(γ)− q(t, θ)h(θ), h ∈ Bb(S), (14)

where q(t, θ, ·) and q(t, θ) are given by (8), B(S) denotes the set of measurable functions

on S, and Bb(S) is the set of bounded measurable functions on S.

Proposition 4 For a relaxed control (Ω,F ,Ft,P,Λt, µt, s, θ), it holds, for h ∈
Bb(S),

Pµs,th(θ) = h(θ) +

∫ t

s
Qµ(t1)h(θ)dt1 +

∫ t

s

∫ t2

s
Qµ(t2)Qµ(t1)h(θ)dt1dt2

+
∞∑
n=3

∫ t

s

∫ tn

s
· · ·
∫ t2

s
Qµ(tn)Qµ(tn−1) · · ·Qµ(t1)h(θ)dt1 · · · dtn−1dtn. (15)

Proof Due to (iv) of Definition 2 and (8), (9), we know that (Λt) is a time-

inhomogeneous Markov process. Therefore,

Pµs,t+δh(θ) = Pµs,tP
µ
t,t+δh(θ), h ∈ Bb(S).

Invoking (9), this yields the equation

d

dt
Pµs,th(θ′) = Pµs,tQ

µ(t)h(θ′), Pµs,sh(θ′) = h(θ′), θ′ ∈ S, h ∈ Bb(S). (16)

See, e.g. [21] for more details on this deduction. Thus, according to [22; Chapter III], for-

mulae (1.12) and (1.15) therein, the unique solution of (16) has an explicit representation

(15) in terms of the Cauchy operator.
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Let us show the series in (15) is well defined. Endowed with the essential supremum

norm ‖ · ‖∞, Bb(S) becomes a Banach space. Viewed as a linear operator over Bb(S),

define the operator norm of Qµ(t) by:

‖Qµ(t)‖ = sup
‖h‖∞61

‖Qµ(t)h‖∞,

which obviously satisfies ‖Qµ(t)‖ 6 sup
θ∈S

sup
u∈U

2q(θ;u) 6 2M <∞, ∀ t ∈ [0, T ]. Hence,

∣∣∣ ∫ t

s

∫ tn

s
· · ·
∫ t2

s
Qµ(tn)Qµ(tn−1) · · ·Qµ(t1)h(θ)dt1 · · · dtn−1dtn

∣∣∣
6 ‖h‖∞

∫ t

s

∫ tn

s
· · ·
∫ t2

s
‖Qµ(tn)‖‖Qµ(tn−1)‖ · · · ‖Qµ(t1)‖dt1 · · · dtn−1dtn

=
‖h‖∞
n!

∫ t

s

∫ t

s
· · ·
∫ t

s
‖Qµ(tn)‖‖Qµ(tn−1)‖ · · · ‖Qµ(t1)‖dt1 · · · dtn−1dtn

=
‖h‖∞
n!

[ ∫ t

s
‖Qµ(r)‖dr

]n
6

[2M(t− s)]n

n!
‖h‖∞, (17)

since the integral is invariant under any perturbation of the variables t1, t2, · · · , tn. There-

fore, the series in (15) is convergent, and further the operator Pµs,t is well defined. �

Just as done in [16], the relaxed controls can be transformed into controls in the

canonical path space to simplify the arguments. Let

U = {ν : [0, T ]→P(U); ν ∈ D([0, T ]; P(U)), w′′ν(δ) 6 ψ(δ), δ ∈ (0, T ]}, (18)

which is viewed as a subspace of D([0, T ]; P(U)). Denote

D([0, T ];S) = {y : [0, T ]→ S is right-continuous with left-limits},

which is a Polish space endowed with Skorokhod topology. Consider the canonical space

Y = D([0, T ];S)× U . Let D̃, Ũ be their Borel σ-fields, and D̃t, Ũt the σ-fields up to time

t. Put Ỹ = D̃ × Ũ , Ỹt = D̃t × Ũt. Then, every ψ-relaxed control (Ω,F ,Ft,P,Λt, µt, s, θ)

can be transformed into a new ψ-relaxed control (Y, Ỹ, Ỹt, R,Λt, µt, s, θ) via the map

Ψ : Ω→ Y defined by

Ψ(ω) = (Λt(ω), µt(ω))t∈[0,T ], Λr := θ, µr := µs, ∀ r ∈ [0, s],

where R = P ◦ Ψ−1 is a probability measure on Y. Similar to the discussion in [16], it

is clear that the ψ-relaxed control α = (Y, Ỹ, Ỹt, R,Λt, µt, s, θ) is completely determined

by the probability measure R, so in the canonical space we use R itself to denote this

ψ-relaxed control α.
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Proof of Theorem 3 If V (s, θ) = ∞, then every ψ-relaxed control α will be

optimal. So, we only need to consider the case V (s, θ) < ∞. We only consider the case

s = 0 to simplify the notation. The proof is separated into three steps.

Step 1: According to the definition of V (0, θ) and previously introduced representation

of ψ-relaxed controls on the canonical space, there exists a sequence of probability measures

Rn, n > 1, on Y such that

lim
n→∞

J(0, θ, Rn) = V (0, θ) <∞. (19)

In this step, we aim to prove that (Rn)n>1 is tight. To this end, let L n
Λ and L n

µ , n > 1,

the marginal distribution of (Λt)t∈[0,T ] and (µt)t∈[0,T ] respectively under Rn.

Since U is a compact set, (P(U),W1) is a compact Polish space. Then, according

to [20; Theorem 14.3] or [23; Theorem 6.3], U is a compact subset in D([0, T ]; P(U)).

Moreover, by the definition of ψ-relaxed control, µ admits a representation (6), and Ft(θ
′)

is in U for every θ′ ∈ S. The compactness of P(U) implies the boundedness of P(U),

i.e. there exists a constant K > 0 such that W1(ν1, ν2) 6 K for any ν1, ν2 ∈P(U). This

yields immediately that for some fixed ν ∈P(U),

Rn

(
ω : sup

06t6T
W1(µt, ν) > K

)
= 0, n > 1.

We go to estimate Rn(ω : w′′µ(ω)(δ) > ε), n > 1. For any ε ∈ (0,K), there exists

a δ > 0 such that ψ(δ) < ε. According to Definition 2, for every θ′ ∈ S, denoting by

νt(·, θ′) := µt(· |Λt = θ′), it holds

wν([t1, t2)) 6 ψ(t2 − t1) 6 ψ(δ) < ε, 0 6 t1 < t2 6 T, t2 − t1 6 δ.

Also, we can rewrite µt(·) = νt(·,Λt). By the triangle inequality,

W1(µt, µt1) 6W1(νt(·,Λt), νt1(·,Λt)) +W1(νt1(·,Λt), νt1(·,Λt1))

6W1(νt(·,Λt), νt1(·,Λt)) +K1Λt 6=Λt1
.

Hence, for any t1, t, t2 ∈ [0, T ] with t1 6 t 6 t2 and t2− t1 6 δ, if there exist no more than

two jumps for the Markov chain (Λt) during the time period [t1, t2], it must hold

min{W1(µt1 , µt),W1(µt2 , µt)}

6 min{W1(νt(·,Λt), νt1(·,Λt)) +K1Λt 6=Λt1
,W1(νt(·,Λt), νt2(·,Λt)) +K1Λt 6=Λt2

} < ε.

Thus,

Rn(ω : min{W1(µt1 , µt),W1(µt2 , µt)} > ε)
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6 Rn(ω : the process (Λr) owns at least two jumps during [t1, t2]) 6 o(δ). (20)

Moreover, the arbitrariness of t1, t, t2 implies that for each positive ε and η, there exists

δ ∈ (0, T ) such that

Rn(ω : w′′µ(δ) > ε) 6 o(δ) 6 η. (21)

For the Markov chain (Λt) with the bounded transition rate matrices, it is clear that for

δ > 0 sufficiently small,

Rn(ω : wµ([0, δ)) > ε) 6 η, Rn(ω : wµ([T − δ, T )) > ε) 6 η, n > 1. (22)

Applying [20; Theorem 15.3], we show that (L n
µ )n>1 is tight.

Next, we go to prove the set of probability measures (L n
Λ )n>1 on D([0, T ];S) is tight.

We shall apply Kurtz’s tightness criterion (cf. [23; Theorem 8.6, p. 137]) to prove it.

On one hand, by (H4) and Itô’s formula, we have

ERnΦ(Λt) = Φ(θ) + ERn

∫ t

0
QµsΦ(Λs)ds 6 Φ(θ) + ERn

∫ t

0
[λΦ(Λs) + κ0]ds,

where ERn stands for taking expectation w.r.t. Rn. Then Gronwall’s inequality leads to

that

ERnΦ(Λt) 6 [Φ(θ) + κ0T ]Eλt, t ∈ [0, T ]. (23)

Then, for any ε > 0, take Nε large enough so that

ERnΦ(Λt)

Nε
6

[Φ(θ) + κ0T ]EλT

Nε
< ε.

Let Kε = {γ ∈ S; Φ(γ) 6 Nε}, which is a compact set because Φ is a compact function.

Then,

sup
n
Rn(Λt ∈ Kc

ε) 6 sup
n

ERnΦ(Λt)

Nε
< ε. (24)

On the other hand, we also need to show that for any δ > 0 there exists a nonnegative

random variable γn(δ) > 0 such that

ERn [1Λt+u 6=Λt |Ft] 6 ERn [γn(δ) |Ft], 0 6 t 6 T, 0 6 u 6 δ,

and lim
δ→0

sup
n

ERn [γn(δ)] = 0. Under (H2), the transition rate (q(θ,A;u), q(θ;u)) of (Λt) is

bounded, and hence

Rn(Λs = Λt, ∀ s ∈ [t, t+ u]) > ERn

[
exp

(
−
∫ t+u

t
sup
θ∈S

q(θ;µs)ds
)]
> exp(−Mu).
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Then, for every 0 6 u 6 δ,

ERn [1{Λt+u 6=Λt}] 6 1−Rn(Λs = Λt, ∀ s ∈ [t, t+ u]) 6 1− e−Mu 6 1− e−Mδ =: γn(δ).

It is clear that lim
δ→0

sup
n

ERnγn(δ) = 0. Combining this with (24), we conclude that (L n
Λ )n>1

is tight.

As a consequence, the fact (L n
Λ )n>1 and (L n

µ )n>1 are both tight leads to that for any

ε > 0, there exist compact sets K1 ⊂ C([0, T ]; P(U)) and K2 ⊂ D([0, T ];S) such that

Rn(D([0, T ];S)×Kc
1) = L n

µ (Kc
1) < ε, Rn(Kc

2 ×P([0, T ]× U)) = L n
Λ (Kc

2) < ε,

where Kc
i , i = 1, 2, stands for the complement of Ki. So,

Rn((K1 ×K2)c) 6 Rn(D([0, T ];S)×Kc
1) +Rn(Kc

2 ×P([0, T ]× U)) < 2ε,

which implies the desired tightness of (Rn)n>1.

Step 2: We go to show the existence of the optimal ψ-relaxed control in this step.

According to the result of Step 1, (Rn)n>1 is tight, and up to taking a subsequence,

Rn converges weakly to some probability measure R0 on Y. According to Skorokhod’s

representation theorem (cf. [23; Chapter 3], Theorem 1.8, p. 102), there exists a probability

space (Ω′,F ′,P′) on which are defined Y-valued random variables Yn = (Λ
(n)
t , µ

(n)
t )t∈[0,T ],

n = 1, 2, · · · , and Y0 = (Λ
(0)
t , µ

(0)
t )t∈[0,T ] with distribution Rn, n = 1, 2, · · · , and R0

respectively such that

lim
n→∞

Yn = Y0, P′-a.s.. (25)

Denote F ′t the natural σ-field generated by (Λ
(n)
s , µ

(n)
s ), n = 0, 1, 2, · · · , up to time

t. We shall prove that α∗ = (Ω′,F ′,F ′t ,P
′,Λ

(0)
t , µ

(0)
t , 0, θ) is an optimal ψ-relaxed control

with respect to the value function V (0, θ). To this end, we need to check that α∗ satisfies

the conditions of Definition 2. Obviously, conditions (i) and (ii) of Definition 2 hold.

To check condition (iv), the transition semigroup of (Λ
(n)
t ), Pµ

(n)

s,t 1A(θ′) := P′(Λ
(n)
t ∈

A |Λ(n)
s = θ′), θ′ ∈ S, A ∈ B(S), is determined by the equation (15) with Qµ(t) being

replaced by Qµ
(n)

(t) defined as follows:

Qµ
(n)

(t)h(θ′) = E
[ ∫

U

∫
S
q(θ′,dγ;u)h(γ)µ

(n)
t (du)

∣∣Λ(n)
t = θ′

]
− E

[ ∫
U
q(θ′;u)µ

(n)
t (du)h(θ′)

∣∣Λ(n)
t = θ′

]
. (26)

Similarly, we can define the operators Pµ
(0)

s,t and Qµ
(0)

(t).
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For 0 6 t1 < t2 < · · · < tk 6 T , define the projection map πt1t2···tk : D([0, T ];S)→ Sk

by πt1t2···tk(Λ·) = (Λt1 ,Λt2 , · · · ,Λtk). Let T0 consist of those t ∈ [0, T ] for which the

projection πt : D([0, T ];S) → S is continuous except at points form a set of R0-measure

0. For t ∈ [0, T ], t ∈ T0 if and only if R0(Jt) = 0, where Jt = {Λ ∈ D([0, T ];S); Λt 6= Λt−}.
Also, 0, T ∈ T0 by convention. As a probability measure on D([0, T ];S), it is known that

the complement of T0 in [0, T ] is at most countable (cf. [20; p. 124]). Analogously, define

the projection map π̃t1t2···tk : U → P(U)k by π̃t1t2···tk(µ·) = (µt1 , µt2 , · · · , µtk), which is

clearly continuous.

Since (Λ
(n)
t , µ

(n)
t )t∈[0,T ] converges almost surely to (Λ

(0)
t , µ

(0)
t )t∈[0,T ] in the product

space D([0, T ];S) × U as n → ∞ and πt × π̃t is continuous for t ∈ T0, we obtain that

(Λ
(n)
t , µ

(n)
t ) converges almost surely to (Λ

(0)
t , µ

(0)
t ) for t ∈ T0. Since T ∈ T0, this implies, in

particular, that

Λ
(n)
T converges almost surely to Λ

(0)
T as n→∞. (27)

Letting n→∞ in (26) for t ∈ T0, we obtain

lim
n→∞

Qµ
(n)

(t)h(θ′) = Qµ
(0)

(t)h(θ′), h ∈ Bb(S), θ′ ∈ S.

For t ∈ T0, it holds

lim
n→∞

P′(Λ
(n)
t ∈ A |Λ(n)

0 = θ) = P′(Λ
(0)
t ∈ A |Λ

(0)
0 = θ), A ∈ B(S), θ ∈ S. (28)

Moreover, according to [23; Theorem 7.8, p. 131], for every t ∈ [0, T ], there exists a

sequence {sn}n>1 decreasing to t and Λ
(n)
sn converges weakly to Λ

(0)
t . For every t ∈ [0, T ],

letting n→∞ in the following equation

Pµ
(n)

0,sn
h(θ′) = h(θ′) +

∫ sn

0
Qµ

(n)
(t1)h(θ′)dt1 +

∫ sn

0

∫ t2

0
Qµ

(n)
(t2)Qµ

(n)
(t1)h(θ′)dt1dt2

+
∞∑
k=3

∫ sn

0

∫ tk

0
· · ·
∫ t2

0
Qµ

(n)
(tk)Q

µ(n)(tk−1) · · ·Qµ(n)(t1)h(θ′)dt1 · · · dtk−1dtk,(29)

we obtain that

Pµ
(0)

0,t h(θ′) = h(θ′) +

∫ t

0
Qµ

(0)
(t1)h(θ′)dt1 +

∫ t

0

∫ t2

0
Qµ

(0)
(t2)Qµ

(0)
(t1)h(θ′)dt1dt2

+
∞∑
k=3

∫ t

0

∫ tk

0
· · ·
∫ t2

0
Qµ

(0)
(tk)Q

µ(0)(tk−1) · · ·Qµ(0)(t1)h(θ′)dt1 · · · dtk−1dtk. (30)

Because the right-hand side of (30) is continuous in t, we have from (30) that t 7→ Pµ
(0)

0,t h(θ′)

is continuous. Whence, (9), and equivalently (5), is satisfied by taking derivative w.r.t.

t in both sides of (30) and taking h(θ′) = 1A(θ′) for A ∈ B(S). This means that (Λ
(0)
t )
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is a continuous-time Markov chain associated with (µ
(0)
t ). As a consequence, there is no

t ∈ (0, T ] such that R0(Jt) > 0, and hence T0 = [0, T ].

Now we go to check condition (iii). Since (µ
(n)
t )t∈[0,T ] converges almost surely to

(µ
(0)
t )t∈[0,T ] in D([0, T ]; P(U)), we have for each t ∈ [0, T ], µ

(n)
t converges almost surely

to µ
(0)
t since T0 associated with (µ

(0)
t )t∈[0,T ] equals to [0, T ]. We adopt the notation in the

study of backward martingale to define the filtration with negative indices. Let FΛ
−n =

σ(Λ
(m)
t ,m > n), the completion of the σ-field generated by Λ

(m)
t , m > n. Then

FΛ
−1 ⊃ FΛ

−2 ⊃ · · · ⊃ FΛ
−n ⊃ FΛ

−n−1 ⊃ · · · .

Put FΛ
−∞ =

⋂
n>1

FΛ
−n. FΛ

−∞ is easily checked to be a σ-field which concerns only the limit

behavior of the sequence Λ
(n)
t , n > 1. Moreover, since there is no point in [0, T ] such that

(Λ
(0)
t ) must jump at that point with positive probability. Therefore, lim

n→∞
Λ

(n)
t = Λ

(0)
t a.s.

for every t ∈ [0, T ], and further FΛ
−∞ = σ(Λ

(0)
t ). Define Fµ

−n = σ(µ
(m)
t ,m > n). Due to

Definition 2 (iii), µ
(n)
t is in FΛ

−n for each n > 1, and hence Fµ
−n ⊂ FΛ

−n. Therefore, it

follows from the fact lim
n→∞

W1(µ
(n)
t , µ

(0)
t ) = 0 a.s. that

σ(µ
(0)
t ) ⊂

⋂
n>1

Fµ
−n ⊂ FΛ

−∞ = σ(Λ
(0)
t ),

which means that µ
(0)
t is adapted to σ(Λ

(0)
t ).

Step 3: Invoking (27), (25), (19), and (10), we obtain by the lower semi-continuity of

f and g that

V (0, θ) = lim
n→∞

EP′

[ ∫ T

0
f(t,Λ

(n)
t , µ

(n)
t )dt+ g(Λ

(n)
T )
]

= lim
n→∞

EP′

[ ∫ T

0

∫
U
f(t,Λ

(n)
t , u)µ

(n)
t (du)dt+ g(Λ

(n)
T )
]

> EP′

[ ∫ T

0

∫
U
f(t,Λ

(0)
t , u)µ

(0)
t (du)dt+ g(Λ

(0)
T )
]
> V (0, θ). (31)

Hence, α∗ is an optimal ψ-relaxed control. The proof of this theorem is completed. �

After the existence of optimal ψ-relaxed control has been established, it is easy to

use the time shift technique to prove the continuous property of the value function V (s, θ)

under suitable condition of the cost functions; Moreover, based on the Dynkin formula, we

can get a lower bound of the value function as follows. Suppose there exists a measurable

function ϕ : [0, T ]× S → R satisfying t 7→ ϕ(t, θ) is differentiable and

ϕ′(t, θ) + f(t, θ, u) +
∑̀
∈S
q(θ, {`};u)ϕ(t, `)− q(θ;u)ϕ(t, θ) > 0, ϕ(T, θ) = g(θ),
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for every t ∈ [0, T ], θ ∈ S, u ∈ U . Then

V (s, θ) > ϕ(s, θ), s ∈ [0, T ], θ ∈ S.

See, for example, [5; Section 3] for more details.

§3. Optimal Markov Control for CTMDPs in a Random

Environment

In this section, we consider the random impact of the environment to CTMDPs. In

such situation, the cost function depends not only on the paths of continuous-time Markov

chains, but also on a stochastic process used to characterize, for instance, the price of raw

materials. Precisely, such a dynamical system consists of two components: a diffusion

process (Xt) and a continuous-time Markov chain (Λt), which is also called a regime-

switching diffusion process; see, [24] and [25] and references therein. The process (Xt) is

determined by the following SDE:

dXt = b(Xt,Λt)dt+ σ(Xt,Λt)dBt, (32)

where (Bt) is a Brownian motion in Rd; (Λt) is a continuous-time Markov process on the

state space S associated with the q-pair (q(θ;u), q(θ,A;u)) satisfying

P(Λt+δ ∈ A |Λt = θ, µt = µ)− 1A(θ) = [q(θ,A;µ)− q(θ;µ)1A(θ)]δ + o(δ) (33)

provided δ > 0. The decision-maker still tries to minimize the cost through controlling

the transition rates of the Markov chain (Λt), but now the cost function may depend on

the diffusion process (Xt). Such kind of control problem is quite different to the usual

studied optimal controls for SDEs (see, e.g. [15, 16]) or optimal controls for SDEs with

regime-switching (see, e.g. [26–28]), where the control policies are placed directly to the

drifts or diffusion coefficients of (Xt). Namely, the controlled system is also given by

dX̃t = b(X̃t, µt)dt+ σ(X̃t, µt)dBt. (34)

Roughly speaking, for (X̃t), if we change the value of the control µt at time t, then

the speed of X̃t is immediately modified. Nevertheless, for (Xt) given by (32), if we change

µt at time t, we only change the switching rate of the process (Λt) and the speed of Xt

maybe remain the same as before because Λt may not jump at t. This observation tells

us that in contrast to the process (X̃t), the process (Xt) characterized by (32) and (33) is

more closely related to the long time behavior of the control (µt).

Let ψ, w′′µ(δ) be defined by (3) and (4) respectively.
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Definition 5 A ψ-relaxed control is a term α = (Ω,F ,Ft,P, Bt, Xt,Λt, µt, s, x, θ)

such that

(i) (s, x, θ) ∈ [0, T ]× Rd × S;

(ii) (Ω,F ,P) is a probability space with the filtration {Ft}t∈[0,T ];

(iii) (Bt) is a d-dimensional standard Brownian motion on (Ω,F ,Ft,P), and (Xt,Λt) is a

stochastic process on Rd × S satisfying (32) and (33) with Xs = x, Λs = θ;

(iv) µt ∈ P(U) is adapted to the σ-field generated by Λt, t 7→ µt is in D([0, T ]; P(U))

almost surely, and for every θ′ ∈ S the curve t 7→ νt( ·, θ′ ) := µt( · |Λt = θ′) satisfies

wν([t1, t2)) 6 ψ(t2 − t1), 0 6 t1 < t2 6 T .

The collection of all ψ-relaxed controls with initial value (s, x, θ) is denoted by Π̃s,x,θ.

Remark 6 In Definition 5 (iv), the control policy µt is assumed to be adapted to the

σ-field generated by Λt in order to ensure the controlled process (Λt) remain to be a Markov

chain. In realistic applications, one may make a decision using the information of Xt. In that

case, we naturally need to assume µt is adapted to the σ-field generated by Λt and Xt. But,

Λt is no longer a Markov process.

Given two functions f : [0, T ] × Rd × S × U → R and g : Rd × S → R, the expected

cost relative to the control α ∈ Π̃s,x,θ is defined by

J(s, x, θ, α) = E
[ ∫ T

s
f(t,Xt,Λt, µt)dt+ g(XT ,ΛT )

]
. (35)

Correspondingly, the value function is defined by

V (s, x, θ) = inf
α∈Π̃s,x,θ

J(s, x, θ, α) (36)

for s ∈ [0, T ], x ∈ Rd, θ ∈ S. A ψ-relaxed control α∗ ∈ Π̃s,x,θ is called optimal, if it holds

V (s, x, θ) = J(s, x, θ, α∗).

We assume that the coefficients of (32) satisfy the following conditions.

(H5) There exists a constant C1 > 0 such that

|b(x, θ)− b(y, θ)|2 + ‖σ(x, θ)− σ(y, θ)‖2 6 C1|x− y|2, x, y ∈ Rd, θ ∈ S,

where |x|2 =
d∑

k=1

x2
k, ‖σ‖2 = tr(σσ′), and σ′ is the transpose of the matrix σ.
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(H6) There exists a constant C2 > 0 such that

|b(x, θ)|2 + ‖σ(x, θ)‖2 6 C2(1 + |x|2), x ∈ Rd, θ ∈ S.

The conditions (H5) and (H6) are classical conditions to ensure the existence and unique-

ness of nonexplosive solution of SDE (1). These conditions can be weakened to include

some non-Lipschitz coefficients (cf. e.g. [29]) or singular coefficients (cf. e.g. [30]).

Our second main result of this work is the following theorem.

Theorem 7 Assume that (H1) – (H6) hold, and f and g are lower semi-continuous

and bounded from below. Then for every s ∈ [0, T ), x ∈ Rd, θ ∈ S, there exists an optimal

ψ-relaxed control α∗ ∈ Π̃s,x,θ.

To simplify the proof, we also transform the relaxed controls into the canonical path

space. Let U be defined by (18), and

Y = C([0, T ];Rd)×D([0, T ];S)× U , (37)

endowed with the product topology. Let Ỹ be the Borel σ-field, Ỹt the σ-fields up to time

t. Now, the relaxed control (Ω,F ,Ft,P, Bt, Xt,Λt, µt, s, x, θ) can be transformed into a

relaxed control in the canonical space Y via the map Ψ : Ω→ Y defined by

Ψ(ω) = (Xt(ω),Λt(ω), µt(ω))t∈[0,T ], Xr := x, Λr := θ, µr := µs, ∀ r ∈ [0, s],

where R = P ◦Ψ−1 is a probability measure on Y. In this canonical space, we still use R

to represent this relaxed control (Y, Ỹ, Ỹt, R,Bt, Xt,Λt, µt, s, x, θ).

Proof of Theorem 7 Without loss of generality, we consider the case V (0, x, θ) <

∞. In the canonical space Y, there exists a sequence of probability measures Rn, n > 1,

such that

lim
n→∞

J(0, x, θ, Rn) = V (0, x, θ) <∞. (38)

Step 1: In this step, we aim to prove the tightness of (Rn)n>1. Denote by L n
X , L n

Λ

and L n
µ , n > 1, the distribution of (Xt)t∈[0,T ], (Λt)t∈[0,T ] and (µt)t∈[0,T ] respectively under

Rn.

In the same way as the proof of Theorem 3, we can prove the tightness of (L n
µ )n>1

and (L n
Λ )n>1. Now, we go to prove the tightness of (L n

X). According to [20; Theorem

12.3], it is sufficient to verify the moment condition. By Itô’s formula, for 0 6 t1 < t2 6 T ,

ERn |Xt2 −Xt1 |4
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6 8ERn

∣∣∣ ∫ t2

t1

b(Xr,Λr)dr
∣∣∣4 + 8ERn

∣∣∣ ∫ t2

t1

σ(Xr,Λr)dBr

∣∣∣4
6 8(t2 − t1)3ERn

∫ t2

t1

|b(Xr,Λr)|4dr + 288(t2 − t1)ERn

∫ t2

t1

‖σ(Xr,Λr)‖4dr

6 C(t2 − t1)

∫ t2

t1

(1 + ERn |Xr|4)dr. (39)

The linear growth condition (H6) implies the existence of a constant C (independent of

n) such that
∫ T

0 ERn |Xr|4dr 6 C (cf. [24; Theorem 3.20]). Furthermore, invoking the fact

X0 = x, we conclude that (L n
X)n>1 is tight due to [20; Theorem 12.3].

Step 2: Because the marginal distributions of Rn, n > 1 are all tight, we get Rn,

n > 1 is tight as well. Up to taking a subsequence, we may assume that Rn weakly con-

verges to some probability measure R0. Since Y is a Polish space, we apply Skorokhod’s

representation theorem (cf. [23; Chapter 3], Theorem 1.8, p. 102) to obtain a probability

space (Ω′,F ′,P′) on which defined a sequence of random variables (X
(n)
t ,Λ

(n)
t , µ

(n)
t )t∈[0,T ],

n > 0, taking values in Y with the distribution Rn, n > 0, respectively, such that

(X
(n)
t ,Λ

(n)
t , µ

(n)
t )t∈[0,T ] converges P′-almost surely to (X

(0)
t ,Λ

(0)
t , µ

(0)
t )t∈[0,T ] as n→∞.

Let T0 be defined in the same way as the argument of Theorem 3. For every t ∈ T0,

we have (X
(n)
t ,Λ

(n)
t , µ

(n)
t ) converges almost surely to (X

(0)
t ,Λ

(0)
t , µ

(0)
t ). Analogous to the

argument of Theorem 3, (Λ
(0)
t ) is a continuous time Markov chain with transition rate

operator induced from (µ
(0)
t ), which also implies that T0 = [0, T ]. The fact that µ

(0)
t is

adapted to σ(Λ
(0)
t ) can be proved in the same way as the proof of Theorem 3.

We need to check that (X
(0)
t ) satisfies SDE (32) under R0 is associated with a ψ-

relaxed control. Since (X
(n)
t )t∈[0,T ] are processes in the path space C([0, T ];Rd), every

projection map πt : C([0, T ];Rd) → Rd, πt(X·) := Xt, is continuous. Then, this yields

that

X
(n)
t converges almost surely to X

(0)
t for each t ∈ [0, T ] as n→∞,

because (X
(n)
t ,Λ

(n)
t , µ

(n)
t )t∈[0,T ] converges almost surely to (X

(0)
t ,Λ

(0)
t , µ

(0)
t )t∈[0,T ]. Further-

more, passing n to ∞ in the following integral equation:

X
(n)
t = x+

∫ t

0
b(X(n)

s ,Λ(n)
s )ds+

∫ t

0
σ(X(n)

s ,Λ(n)
s )dBs, (40)

we get

X
(0)
t = x+

∫ t

0
b(X(0)

s ,Λ(0)
s )ds+

∫ t

0
σ(X(0)

s ,Λ(0)
s )dBs, (41)

which means that (X
(0)
t ) satisfies SDE (32).
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Consequently, R0 is a ψ-relaxed control. By (38) and the lower semi-continuity of f

and g, we have

V (0, x, θ) = lim
n→∞

EP′

[ ∫ T

0
f(t,X

(n)
t ,Λ

(n)
t , µ

(n)
t )dt+ g(X

(n)
T ,Λ

(n)
T )
]

> EP′

[ ∫ T

0
f(t,X

(0)
t ,Λ

(0)
t , µ

(0)
t )dt+ g(X

(0)
T ,Λ

(0)
T )
]
> V (0, x, θ).

Hence, R0 is an optimal ψ-relaxed control. The proof is complete. �
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[1] GUO X P, HERNÁNDEZ-LERMA O. Continuous-Time Markov Decision Processes: Theory and

Applications [M]. Berlin: Springer-Verlag, 2009.
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