Unlinking Theorem for Symmetric Quasi－Convex Polynomials＊

HONG Hejing
（Department of Mathematics，Nanjing University，Nanjing，210093，China； Clinchoice Inc．of Nanjing，Nanjing，211100，China）
HU Zechun＊
（College of Mathematics，Sichuan University，Chengdu，610065，China）

Abstract

Let μ_{n} be the standard Gaussian measure on \mathbb{R}^{n} and X be a random vector on \mathbb{R}^{n} with the law μ_{n} ．U－conjecture states that if f and g are two polynomials on \mathbb{R}^{n} such that $f(X)$ and $g(X)$ are independent，then there exist an orthogonal transformation $Y=L X$ on \mathbb{R}^{n} and an integer k such that $f \circ L^{-1}$ is a function of $\left(y_{1}, y_{2}, \cdots, y_{k}\right)$ and $g \circ L^{-1}$ is a function of $\left(y_{k+1}, y_{k+2}, \cdots, y_{n}\right)$ ． In this case，f and g are said to be unlinked．In this note，we prove that two symmetric，quasi－ convex polynomials f and g are unlinked if $f(X)$ and $g(X)$ are independent．

Keywords：U－conjecture；quasi－convex polynomial；Gaussian correlation conjecture
2020 Mathematics Subject Classification：60E15；62H05
Citation：HONG H J，HU Z C．Unlinking theorem for symmetric quasi－convex polynomials［J］． Chinese J Appl Probab Statist，2022，38（1）：151－158．

§1．Introduction and Main Result

Let μ_{n} be the standard Gaussian measure on $\mathbb{R}^{n}(n \geqslant 2)$ and X be a random vector on \mathbb{R}^{n} with the law μ_{n} ．In 1973，Kagan et al．${ }^{[1]}$ considered the following problem：if f and g are two polynomials on \mathbb{R}^{n} such that $f(X)$ and $g(X)$ are independent，then is it possible to find an orthogonal transformation $Y=L X$ on \mathbb{R}^{n} and an integer k such that $f \circ L^{-1}$ is a function of $\left(y_{1}, y_{2}, \cdots, y_{k}\right)$ and $g \circ L^{-1}$ is a function of $\left(y_{k+1}, y_{k+2}, \cdots, y_{n}\right)$ ？ If the answer is positive，then f and g are said to be unlinked．This problem is called U－conjecture and is still open．

The U－conjecture is true for the case $n=2$ ，and some special cases have been proved for larger number of variables（see Sections 11．4－11．6 of［1］）．In 1994，Bhandari and

[^0]DasGupta ${ }^{[2]}$ proved that the U-conjecture holds for two symmetric convex functions f and g under an additional condition. The additional condition can be canceled since the Gaussian correlation conjecture has been proved (see [3] or [4]).

Bhandari and Basu ${ }^{[5]}$ proved that the U-conjecture holds for two nonnegative convex polynomials f and g with $f(0)=0$. Hargé ${ }^{[6]}$ proved that if $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are two convex functions in $L^{2}\left(\mu_{n}\right)$, and f is a real analytic function satisfying $f(x) \geqslant f(0), \forall x \in \mathbb{R}^{n}$, and f and g are independent with respect to μ_{n}, then they are unlinked.

Malicet et al. ${ }^{[7]}$ proved that the U-conjecture is true when f, g belong to a class of polynomials, which is defined based on the infinitesimal generator of Ornstein-Uhlenbeck semigroup.

In Remark 2 of [5], the authors wish that their result could be extended to symmetric, quasi-convex polynomials. In this note, we will give an affirmative answer based on the first author's master thesis [8] and prove the following result.

Theorem 1 Two symmetric, quasi-convex polynomials f and g are unlinked if f and g are independent with respect to μ_{n}.

§2. Proof of Theorem 1

Before giving the proof of Theorem 1, we present some preliminaries.
A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called quasi-convex if for any $\alpha \in[0,1]$ and any $x, y \in \mathbb{R}^{n}$,

$$
f(\alpha x+(1-\alpha) y) \leqslant \max \{f(x), f(y)\} .
$$

It's easy to know that a convex function is quasi-convex. About the properties of quasiconvex functions, and the relations between convex and quasi-convex functions, refer to a survey paper [9].

Lemma 2 Suppose that $g: \mathbb{R} \rightarrow \mathbb{R}$ is a quasi-convex polynomial and there exist $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ such that $g\left(\lambda_{1}\right) \neq g\left(\lambda_{2}\right)$. Then one of the following two claims holds.
(a) There exists λ_{0} such that $g(u)<g(v)$ for any $\lambda_{0} \leqslant u<v$ and $\lim _{\lambda \rightarrow \infty} g(\lambda)=\infty$.
(b) There exists λ_{0} such that $g(u)<g(v)$ for any $v<u \leqslant \lambda_{0}$ and $\lim _{\lambda \rightarrow-\infty} g(\lambda)=\infty$.

Proof Since g is a polynomial on \mathbb{R}, we can write it as

$$
\begin{equation*}
g(\lambda)=a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0} . \tag{1}
\end{equation*}
$$

By the assumption, g is not a constant, so $n \geqslant 1$ and $a_{n} \neq 0$. By (1), we obtain

$$
\begin{equation*}
g^{\prime}(\lambda)=n a_{n} \lambda^{n-1}+(n-1) a_{n-1} \lambda^{n-2}+\cdots+a_{1} . \tag{2}
\end{equation*}
$$

Without loss of generality, we can assume that $\lambda_{1}<\lambda_{2}$. We have the following two cases:

Case 1: $g\left(\lambda_{1}\right)<g\left(\lambda_{2}\right)$. Define $h(\lambda):=g(\lambda)-g\left(\lambda_{1}\right)$. Then $h\left(\lambda_{1}\right)=0$. By the definition of quasi-convex function, we know that h is quasi-convex, and for any $\lambda>\lambda_{2}$, we have

$$
\begin{equation*}
h\left(\lambda_{2}\right)=h\left(\frac{\lambda-\lambda_{2}}{\lambda-\lambda_{1}} \lambda_{1}+\frac{\lambda_{2}-\lambda_{1}}{\lambda-\lambda_{1}} \lambda\right) \leqslant \max \left\{h\left(\lambda_{1}\right), h(\lambda)\right\}=\max \{0, h(\lambda)\} . \tag{3}
\end{equation*}
$$

Since $h\left(\lambda_{2}\right)=g\left(\lambda_{2}\right)-g\left(\lambda_{1}\right)>0$, by (3), we get that for any $\lambda>\lambda_{2}, h\left(\lambda_{2}\right) \leqslant h(\lambda)$, i.e.

$$
\begin{equation*}
g\left(\lambda_{2}\right) \leqslant g(\lambda), \quad \forall \lambda>\lambda_{2} \tag{4}
\end{equation*}
$$

By (1) and (4), we get that $a_{n}>0$, and thus

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} g(\lambda)=\lim _{\lambda \rightarrow \infty}\left(a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}\right)=\infty . \tag{5}
\end{equation*}
$$

If $n=1$, then $g(\lambda)=a_{1} \lambda+a_{0}$ with $a_{1}>0$, and thus (a) holds in this case. If $n \geqslant 2$, then

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} g^{\prime}(\lambda)=\lim _{\lambda \rightarrow \infty}\left[n a_{n} \lambda^{n-1}+(n-1) a_{n-1} \lambda^{n-2}+\cdots+a_{1}\right]=\infty . \tag{6}
\end{equation*}
$$

By (6), there exists λ_{0} such that for any $\lambda>\lambda_{0}, g^{\prime}(\lambda)>0$, which together with (5) implies that (a) holds in this case.

Case 2: $g\left(\lambda_{1}\right)>g\left(\lambda_{2}\right)$. Define $\bar{h}(\lambda):=g(\lambda)-g\left(\lambda_{2}\right)$. Then $\bar{h}\left(\lambda_{2}\right)=0$, and as in Case $1, \bar{h}$ is a quasi-convex function and for any $\lambda<\lambda_{1}$, we have

$$
\begin{equation*}
\bar{h}\left(\lambda_{1}\right)=\bar{h}\left(\frac{\lambda_{1}-\lambda}{\lambda_{2}-\lambda} \lambda_{2}+\frac{\lambda_{2}-\lambda_{1}}{\lambda_{2}-\lambda} \lambda\right) \leqslant \max \left\{\bar{h}\left(\lambda_{2}\right), \bar{h}(\lambda)\right\}=\max \{0, \bar{h}(\lambda)\} . \tag{7}
\end{equation*}
$$

Since $\bar{h}\left(\lambda_{1}\right)=g\left(\lambda_{1}\right)-g\left(\lambda_{2}\right)>0$, by (7), we obtain that for any $\lambda<\lambda_{1}, \bar{h}\left(\lambda_{1}\right) \leqslant \bar{h}(\lambda)$, i.e.

$$
\begin{equation*}
g\left(\lambda_{1}\right) \leqslant g(\lambda), \quad \forall \lambda<\lambda_{1} . \tag{8}
\end{equation*}
$$

By (8) and (1), we know that one of the following two claims must hold:
(i) n is even and $a_{n}>0$;
(ii) n is odd and $a_{n}<0$.

If (i) holds, then by the proof of Case 1 above, we know that (a) is true.
If (ii) holds, then

$$
\begin{equation*}
\lim _{\lambda \rightarrow-\infty} g(\lambda)=\lim _{\lambda \rightarrow-\infty}\left(a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}\right)=\infty . \tag{9}
\end{equation*}
$$

If $n=1$, then $g(\lambda)=a_{1} \lambda+a_{0}$ with $a_{1}<0$, and thus (b) holds in this case. If $n \geqslant 3$, then

$$
\begin{equation*}
\lim _{\lambda \rightarrow-\infty} g^{\prime}(\lambda)=\lim _{\lambda \rightarrow-\infty}\left[n a_{n} \lambda^{n-1}+(n-1) a_{n-1} \lambda^{n-2}+\cdots+a_{1}\right]=-\infty \tag{10}
\end{equation*}
$$

By (10), there exists λ_{0} such that for any $\lambda<\lambda_{0}, g^{\prime}(\lambda)<0$, which together with (9) implies that (b) holds in this case.

Corollary 3 Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a quasi-convex polynomial. If g has an upper bound, then g is a constant function.

Corollary 4 Let $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a quasi-convex polynomial. Suppose that for two fixed vectors $\beta_{1}, \beta_{2} \in \mathbb{R}^{n}, U\left(\beta_{1}+\lambda \beta_{2}\right)$ is a constant function of $\lambda \in \mathbb{R}$. Then for any fixed vector $b \in \mathbb{R}^{n}, U\left(b+\lambda \beta_{2}\right)$ is a constant function of λ.

Proof For any fixed vector $b \in \mathbb{R}^{n}$, define $g(\lambda)=U\left(b+\lambda \beta_{2}\right), \lambda \in \mathbb{R}$. Then $g(\lambda)$ is a polynomial of λ. By the quasi-convexity of U, we know that for any $\alpha \in[0,1]$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, we have

$$
\begin{aligned}
g\left(\alpha \lambda_{1}+(1-\alpha) \lambda_{2}\right) & =U\left(b+\left[\alpha \lambda_{1}+(1-\alpha) \lambda_{2}\right] \beta_{2}\right) \\
& =U\left(\alpha\left(b+\lambda_{1} \beta_{2}\right)+(1-\alpha)\left(b+\lambda_{2} \beta_{2}\right)\right) \\
& \leqslant \max \left\{U\left(b+\lambda_{1} \beta_{2}\right), U\left(b+\lambda_{2} \beta_{2}\right)\right\} \\
& =\max \left\{g\left(\lambda_{1}\right), g\left(\lambda_{2}\right)\right\} .
\end{aligned}
$$

Thus $g(\lambda)$ is a quasi-convex polynomial. By the quasi-convexity of U,

$$
\begin{align*}
g(\lambda)=U\left(b+\lambda \beta_{2}\right) & =U\left(\frac{1}{2}\left(2 b-\beta_{1}\right)+\frac{1}{2}\left(\beta_{1}+2 \lambda \beta_{2}\right)\right) \\
& \leqslant \max \left\{U\left(2 b-\beta_{1}\right), U\left(\beta_{1}+2 \lambda \beta_{2}\right)\right\} . \tag{11}
\end{align*}
$$

By (11) and the assumption that $U\left(\beta_{1}+\lambda \beta_{2}\right)$ is a constant function of λ, we get that the quasi-convex polynomial $g(\lambda)$ has an upper bound. Hence by Corollary 3, we know that $U\left(b+\lambda \beta_{2}\right)$ is a constant function of λ.

Corollary 5 Let $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a quasi-convex polynomial with $U(0)=0$. Define

$$
\begin{equation*}
S_{U}:=\{\alpha: U(\lambda \alpha)=0, \forall \lambda \in \mathbb{R}\} . \tag{12}
\end{equation*}
$$

Then S_{U} is a vector subspace of \mathbb{R}^{n}.
Proof Let $\alpha_{1}, \alpha_{2} \in S_{U}$. For any $c_{1}, c_{2}, \lambda \in \mathbb{R}$, by Corollary 4, we get that

$$
U\left(\lambda\left(c_{1} \alpha_{1}+c_{2} \alpha_{2}\right)\right)=U\left(\lambda c_{1} \alpha_{1}+\lambda c_{2} \alpha_{2}\right)=U\left(\lambda c_{1} \alpha_{1}\right)=0 .
$$

Hence $c_{1} \alpha_{1}+c_{2} \alpha_{2} \in S_{U}$, and thus S_{U} is a vector subspace of \mathbb{R}^{n}.
Now suppose that U and V are two quasi-convex polynomials from \mathbb{R}^{n} into \mathbb{R} satisfying that $U(0)=V(0)=0$. Define S_{U} by (12). Similarly, define S_{V}.

Definition $6 \quad U$ and V are said to be concordant of order r, if

$$
\begin{equation*}
\operatorname{dim}\left(S_{U}^{\perp}\right)-\operatorname{dim}\left(S_{U}^{\perp} \cap S_{V}\right)=r \tag{13}
\end{equation*}
$$

Note that this definition is symmetric in U and V, i.e. if (13) holds, then (see [2])

$$
\operatorname{dim}\left(S_{V}^{\perp}\right)-\operatorname{dim}\left(S_{V}^{\perp} \cap S_{U}\right)=r
$$

Theorem 7 Let X be an $n \times 1$ random vector distributed as $\mathrm{N}\left(0, I_{n}\right)$. Let U and V be two symmetric (i.e. $U(x)=U(-x), V(x)=V(-x)$) quasi-convex polynomials on \mathbb{R}^{n} satisfying $\operatorname{Cov}(U(X), V(X))=0$. Furthermore, assume that $U(0)=V(0)=0$, and U and V are concordant of order r. Then there exists an orthogonal transformation $Y=L X$ such that U and V can be expressed as functions of two different sets of components of Y, i.e. U and V are unlinked.

Proof Based on the lemmas and corollaries established above, the proof of this theorem is similar to the one of [2]. For the reader's convenience, we spell out the details in the following.

Let $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r+t}\right\},\left\{\alpha_{r+1}, \alpha_{r+2}, \cdots, \alpha_{r+t}\right\},\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r+t+m}\right\}$ and $\left\{\alpha_{1}, \alpha_{2}, \cdots\right.$, $\left.\alpha_{n}\right\}$ be orthonormal bases of $S_{U}^{\perp}, S_{U}^{\perp} \cap S_{V}, S_{U}^{\perp}+S_{V}^{\perp}$, and \mathbb{R}^{n}, respectively. We will show that if $r>0$ then $\operatorname{Cov}(U(X), V(X))>0$, which contradicts the condition given in the theorem, and so we get $r=0$, and thus U and V are unlinked.

Define $Y_{1}, Y_{2}, \cdots, Y_{n}$ by $X=\sum_{i=1}^{n} Y_{i} \alpha_{i}$, i.e. Y_{i} is the i-th component of X. Then Y_{1}, Y_{2}, \cdots, Y_{n} are i.i.d. as $\mathrm{N}(0,1)$. By Corollary 4,

$$
\begin{aligned}
& U(X)=U\left(\sum_{i=1}^{n} Y_{i} \alpha_{i}\right)=U\left(\sum_{i=1}^{r} Y_{i} \alpha_{i}+\sum_{i=r+1}^{r+t} Y_{i} \alpha_{i}\right), \\
& V(X)=V\left(\sum_{i=1}^{n} Y_{i} \alpha_{i}\right)=V\left(\sum_{i=1}^{r} Y_{i} \alpha_{i}+\sum_{i=r+t+1}^{r+t+m} Y_{i} \alpha_{i}\right) .
\end{aligned}
$$

Assume that $r>0$. Let $y^{*}=\left(y_{1}, y_{2}, \cdots, y_{r}\right)^{\prime}$ be a nonzero vector in \mathbb{R}^{r}. Define

$$
\begin{aligned}
U^{*}\left(y^{*}\right) & :=\mathrm{E}\left[U\left(\sum_{i=1}^{r} y_{i} \alpha_{i}+\sum_{i=r+1}^{r+t} Y_{i} \alpha_{i}\right)\right] \\
V^{*}\left(y^{*}\right) & :=\mathrm{E}\left[V\left(\sum_{i=1}^{r} y_{i} \alpha_{i}+\sum_{i=r+t+1}^{r+t+m} Y_{i} \alpha_{i}\right)\right]
\end{aligned}
$$

Then by the fact that U and V are two symmetric quasi-convex polynomials and the condition that $Y_{1}, Y_{2}, \cdots, Y_{n}$ are i.i.d. as $\mathrm{N}(0,1)$, which implies that $-Y_{1},-Y_{2}, \cdots,-Y_{n}$ are i.i.d. as $\mathrm{N}(0,1)$, we get that U^{*} and V^{*} are two symmetric quasi-convex polynomials of y^{*}.

By the choice of the bases, $U\left(\lambda \sum_{i=1}^{r} y_{i} \alpha_{i}\right)$ is not a zero function of λ. By Corollary 4 and the condition $U(0)=0$, we know that $U\left(\lambda \sum_{1}^{r} y_{i} x_{i}+\sum_{r+1}^{r+t} y_{i} x_{i}\right)$ is not a constant of λ. In addition, by the symmetry and quasi-convexity of $U, U(x) \geqslant U(0), \forall x \in \mathbb{R}^{n}$. Hence by Lemma 2 , we get that when $\lambda \rightarrow \infty$,

$$
\begin{equation*}
U\left(\lambda \sum_{1}^{r} y_{i} \alpha_{i}+\sum_{r+1}^{r+t} Y_{i} x_{i}\right)+U\left(-\lambda \sum_{1}^{r} y_{i} \alpha_{i}+\sum_{r+1}^{r+t} Y_{i} x_{i}\right) \rightarrow \infty \tag{14}
\end{equation*}
$$

Taking the expectation of (14) with respect to $Y_{i+1}, Y_{i+2}, \cdots, Y_{r+t}$ and using Egoroff's theorem (see e.g. [10; Theorem 21.3] or [11; Remark 2.3.6(1)]), we obtain

$$
\begin{equation*}
U^{*}\left(\lambda y^{*}\right) \rightarrow \infty \quad \text { as } \lambda \rightarrow \infty \tag{15}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
V^{*}\left(\lambda y^{*}\right) \rightarrow \infty \quad \text { as } \lambda \rightarrow \infty \tag{16}
\end{equation*}
$$

Define $Y^{*}=\left(Y_{1}, Y_{2}, \cdots, Y_{r}\right)^{\prime}$. By the independence of components of $X=\left(Y_{1}, Y_{2}, \cdots\right.$, $\left.Y_{r}, Y_{r+1}, \cdots, Y_{n}\right)^{\prime}$ and simple calculations, we have

$$
\begin{align*}
& \operatorname{Cov}(U(X), V(X)) \\
= & \mathrm{E}[U(X) V(X)]-\mathrm{E}[U(X)] \mathrm{E}[V(X)] \\
= & \mathrm{E}\left[U^{*}\left(Y^{*}\right) V^{*}\left(Y^{*}\right)\right]-\mathrm{E}\left[U^{*}\left(Y^{*}\right)\right] \mathrm{E}\left[V^{*}\left(Y^{*}\right)\right] \\
= & \int_{0}^{\infty} \int_{0}^{\infty}\left[\mathrm{P}\left(Y^{*} \in A_{k_{1}}^{c} \cap B_{k_{2}}^{c}\right)-\mathrm{P}\left(Y^{*} \in A_{k_{1}}^{c}\right) \mathrm{P}\left(Y^{*} \in B_{k_{2}}^{c}\right)\right] \mathrm{d} k_{1} \mathrm{~d} k_{2} \\
= & \int_{0}^{\infty} \int_{0}^{\infty}\left[\mathrm{P}\left(Y^{*} \in A_{k_{1}} \cap B_{k_{2}}\right)-\mathrm{P}\left(Y^{*} \in A_{k_{1}}\right) \mathrm{P}\left(Y^{*} \in B_{k_{2}}\right)\right] \mathrm{d} k_{1} \mathrm{~d} k_{2} \tag{17}
\end{align*}
$$

where

$$
A_{k_{1}}=\left\{y^{*}: U^{*}\left(y^{*}\right) \leqslant k_{1}\right\}, \quad B_{k_{2}}=\left\{y^{*}: V^{*}\left(y^{*}\right) \leqslant k_{2}\right\}
$$

Since $U^{*}\left(y^{*}\right)$ and $V^{*}\left(y^{*}\right)$ are symmetric, quasi-convex polynomials of $y^{*}, A_{k_{1}}$ and $B_{k_{2}}$ are both symmetric convex sets (see [9; Table II]). By the Gaussian correlation inequality (see [3] or [4]),

$$
\begin{equation*}
\mathrm{P}\left(Y^{*} \in A_{k_{1}} \cap B_{k_{2}}\right)-P\left(Y^{*} \in A_{k_{1}}\right) \mathrm{P}\left(Y^{*} \in B_{k_{2}}\right) \geqslant 0 \tag{18}
\end{equation*}
$$

Define a set

$$
M=\left\{\left(k_{1}, k_{2}\right) \in(0, \infty) \times(0, \infty) \mid A_{k_{1}} \subset B_{k_{2}}, \mathrm{P}\left(Y^{*} \in B_{k_{2}}^{c}\right)>0, \mathrm{P}\left(Y^{*} \in A_{k_{1}}\right)>0\right\}
$$

When $A_{k_{1}} \subset B_{k_{2}}$, we have

$$
\begin{aligned}
& \mathrm{P}\left(Y^{*} \in A_{k_{1}} \cap B_{k_{2}}\right)-\mathrm{P}\left(Y^{*} \in A_{k_{1}}\right) \mathrm{P}\left(Y^{*} \in B_{k_{2}}\right) \\
= & \mathrm{P}\left(Y^{*} \in A_{k_{1}}\right)\left[1-\mathrm{P}\left(Y^{*} \in B_{k_{2}}\right)\right] \\
= & \mathrm{P}\left(Y^{*} \in A_{k_{1}}\right) \mathrm{P}\left(Y^{*} \in B_{k_{2}}^{c}\right) .
\end{aligned}
$$

Hence we obtain

$$
\begin{equation*}
M \subset\left\{\left(k_{1}, k_{2}\right) \in(0, \infty) \times(0, \infty) \mid \mathrm{P}\left(Y^{*} \in A_{k_{1}} \cap B_{k_{2}}\right)-\mathrm{P}\left(Y^{*} \in A_{k_{1}}\right) \mathrm{P}\left(Y^{*} \in B_{k_{2}}\right)>0\right\} \tag{19}
\end{equation*}
$$

By (15), (16), and Lemma 2, the Lebesgure measure of M is positive. Hence by (17), (18) and (19), we obtain

$$
\operatorname{Cov}(U(X), V(X))>0,
$$

which contradicts the assumption, and so $r=0$.
Proof of Theorem 1 Let X be an $n \times 1$ random vector distributed as $\mathrm{N}\left(0, I_{n}\right)$, and f, g be two symmetric, quasi-convex polynomials satisfying that $f(X)$ and $g(X)$ are independent. By the symmetry and quasi-convexity of f and g, we have that $f(x) \geqslant f(0)$, $g(x) \geqslant g(0)$ for all $x \in \mathbb{R}^{n}$. Define

$$
U(x):=f(x)-f(0), \quad V(x):=g(x)-g(0) .
$$

Then U and V are two symmetric quasi-convex polynomials on \mathbb{R}^{n} satisfying the conditions in Theorem 7, and thus U and V are unlinked. It follows that f and g are unlinked.

Acknowledgments We thank the reviewer for the suggestions which helped improve the presentation of the paper.

References

[1] KAGAN A M, LINNIK Y V, RAO C R. Characterization Problems in Mathematical Statistics [M]. New York: Wiley, 1973.
[2] BHANDARI S K, DASGUPTA S. Unlinking theorem for symmetric convex functions [C] // ANDERSON T W, FANG K T, OLKIN I. (eds.) Multivariate Analysis and Its Applications: IMS Lecture Notes - Monograph Series, Vol. 24. Hayward, CA: Institute of Mathematical Statistics, 1994: 137141.
[3] ROYEN T. A simple proof of the Gaussian correlation conjecture extended to some multivariate gamma distributions [J]. Far East J Theor Stat, 2014, 48(2): 139-145.
［4］LATAŁA R，MATLAK D．Royen＇s proof of the Gaussian correlation inequality［C］／／KLARTAG B，MILMAN E．（eds．）Geometric Aspects of Functional Analysis：Lecture Notes in Mathematics， Vol．2169．Cham：Springer，2017：265－275．
［5］BHANDARI S K，BASU A．On the unlinking conjecture of independent polynomial functions［J］．J Multivariate Anal，2006，97（6）：1355－1360．
［6］HARGÉ G．Characterization of equality in the correlation inequality for convex functions，the U－ conjecture［J］．Ann Inst H Poincaré Probab Statist，2005，41（4）：753－765．
［7］MALICET D，NOURDIN I，PECCATI G，et al．Squared chaotic random variables：new moment inequalities with applications［J］．J Funct Anal，2016，270（2）：649－670．
［8］HONG H J．The Gaussian correlation conjecure and its application［D］．Nanjing：Nanjing University， 2009．（in Chinese）
［9］GREENBERG H J，PIERSKALLA W P．A review of quasi－convex functions［J］．Oper Res，1971， 19（7）：1553－1569．
［10］MUNROE M E．Introduction to Measure and Integration［M］．Cambridge，MA：Addison－Wesley， 1952.
［11］YAN J A．Lectures on Measure Theory［M］．2nd ed．Beijing：Science Preess，2004．（in Chinese）

关于对称拟凸多项式的不相连定理

洪和静
（南京大学数学系，南京，210093；南京方腾医药技术有限公司，南京，211100）
胡泽春
（四川大学数学学院，成都，610065）

[^1]
[^0]: ${ }^{*}$ The project was supported by the National Natural Science Foundation of China（Grant Nos．12171335； 1187 1184）．
 ＊Corresponding author，E－mail：zchu＠scu．edu．cn．
 Received December 24，2020．Revised January 21， 2021.

[^1]: 摘 要：假定 μ_{n} 为 \mathbb{R}^{n} 上的标准高斯测度，X 为 \mathbb{R}^{n} 上的随机向量，分布为 μ_{n} 。不相连猜测说的是：如果 f与 g 为 \mathbb{R}^{n} 上的两个多项式，而且 $f(X)$ 与 $g(X)$ 相互独立，则存在 \mathbb{R}^{n} 上的正交变换 $Y=L X$ 及整数 k 使得 $f \circ L^{-1}$ 为 $\left(y_{1}, y_{2}, \cdots, y_{k}\right)$ 的函数，$g \circ L^{-1}$ 为 $\left(y_{k+1}, y_{k+2}, \cdots, y_{n}\right)$ 的函数。此时，称 f 与 g 不相连。在这篇注记中，我们证明：对于两个对称拟凸多项式 f 与 g ，如果 $f(X)$ 与 $g(X)$ 相互独立，则 f 与 g 不相连．
 关键词：不相连猜测；拟凸多项式；高斯相关猜测
 中图分类号：O211．3；O211．5

