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Abstract: Let u, be the standard Gaussian measure on R™ and X be a random vector on R"
with the law py,. U-conjecture states that if f and g are two polynomials on R™ such that f(X) and
g(X) are independent, then there exist an orthogonal transformation Y = LX on R™ and an integer
k such that foL™! is a function of (y1,%2,--- ,yx) and go L™! is a function of (yx+1,Ykr2, - ,Yn)-
In this case, f and g are said to be unlinked. In this note, we prove that two symmetric, quasi-
convex polynomials f and g are unlinked if f(X) and g(X) are independent.
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§1. Introduction and Main Result

Let p,, be the standard Gaussian measure on R™ (n > 2) and X be a random vector
on R" with the law p,. In 1973, Kagan et al.[l considered the following problem: if f
and g are two polynomials on R™ such that f(X) and g(X) are independent, then is it
possible to find an orthogonal transformation ¥ = LX on R” and an integer k£ such that
fo L7t is a function of (y1,y2, -+ ,yx) and go L™! is a function of (yry1,Ykt2,  * >Yn)?
If the answer is positive, then f and g are said to be unlinked. This problem is called
U-conjecture and is still open.

The U-conjecture is true for the case n = 2, and some special cases have been proved

for larger number of variables (see Sections 11.4-11.6 of [1]). In 1994, Bhandari and
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DasGupta!? proved that the U-conjecture holds for two symmetric convex functions f
and g under an additional condition. The additional condition can be canceled since the
Gaussian correlation conjecture has been proved (see [3] or [4]).

Bhandari and Basu ®! proved that the U-conjecture holds for two nonnegative convex
polynomials f and g with f(0) = 0. Hargé ! proved that if f, g : R* — R are two convex
functions in L?(u,), and f is a real analytic function satisfying f(z) > f(0), V2 € R",
and f and ¢ are independent with respect to u,, then they are unlinked.

Malicet et al.[l proved that the U-conjecture is true when f, ¢ belong to a class of
polynomials, which is defined based on the infinitesimal generator of Ornstein-Uhlenbeck
semigroup.

In Remark 2 of [5], the authors wish that their result could be extended to symmetric,
quasi-convex polynomials. In this note, we will give an affirmative answer based on the

first author’s master thesis [8] and prove the following result.

Theorem 1 Two symmetric, quasi-convex polynomials f and g are unlinked if f and

g are independent with respect to pi,.

8§2. Proof of Theorem 1

Before giving the proof of Theorem 1, we present some preliminaries.

A function f: R™ — R is called quasi-convez if for any « € [0,1] and any =,y € R",

flaz+ (1 = a)y) < max{f(x), f(y)}.

It’s easy to know that a convex function is quasi-convex. About the properties of quasi-
convex functions, and the relations between convex and quasi-convex functions, refer to a
survey paper [9].

Lemma 2 Suppose that ¢ : R — R is a quasi-convex polynomial and there exist

A1, A2 € R such that g(A1) # g(A2). Then one of the following two claims holds.
(a) There exists Ao such that g(u) < g(v) for any Ao < u < v and )\li_)rgo g(A) = o0.
(b) There exists Ag such that g(u) < g(v) for any v < u < A\g and )\li)r_noog()\) = 0.
Proof Since g is a polynomial on R, we can write it as
g(N) = ap A" + an N4 ag ) + ag. (1)
By the assumption, g is not a constant, so n > 1 and a,, # 0. By (1), we obtain

g\ =na N+ (n— Dap N 24 4 ay. (2)
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Without loss of generality, we can assume that Ay < A2. We have the following two
cases:
Case 1: g(A1) < g(A2). Define h(A) := g(A)—g(A1). Then h(A\;) = 0. By the definition
of quasi-convex function, we know that h is quasi-convex, and for any A > Ao, we have
A=A Ay — A
h(\s) = h(A S+ S u) < max{h(\1), h(A)} = max{0, (\)}. (3)
- A1 - A1

Since h(A2) = g(A2) — g(A1) > 0, by (3), we get that for any A > Aa, h(A2) < h(N), ie.

g(A2) < g(N), V> Ao (4)
By (1) and (4), we get that a,, > 0, and thus

Jim g(A) = lim (ap\" + a1 A"V a )+ ag) = 0. (5)

If n =1, then g(\) = a1\ + ag with a; > 0, and thus (a) holds in this case. If n > 2,
then

)\li_)nolo g\ = )\li_)nolo[nan)\"_l +(n—=1Dap A" 2+ 4 a1] = oo. (6)

By (6), there exists Ag such that for any A > X\g, ¢'(A) > 0, which together with (5) implies
that (a) holds in this case.

Case 2: g(A\1) > g(A2). Define h(A) := g(\) — g(\2). Then h()\3) = 0, and as in Case
1, h is a quasi-convex function and for any A < A;, we have

) = h(i; - iAQ + 122__11 \) < max{h(h). A} = maxf0. BV} (7)

Since k(A1) = g(A\1) — g(A2) > 0, by (7), we obtain that for any A < Ay, h(A\1) < h(N), i.e.
g()\l) < g()\), VA< AL (8)
By (8) and (1), we know that one of the following two claims must hold:

(i) n is even and a, > 0;

(ii) n is odd and a, < 0.

If (i) holds, then by the proof of Case 1 above, we know that (a) is true.
If (ii) holds, then

lim g(\) =

li
A——00 A—

m (ap\" + an A" 4 ar )+ ag) = oo (9)
If n =1, then g(\) = a1\ + ap with a; < 0, and thus (b) holds in this case. If n > 3, then

lim ¢'(\) = lim [na, A"+ (n— Dap 1 A" 2+ +a1] = —oo. (10)

A——00 A——00
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By (10), there exists Ao such that for any A < Ao, ¢'(\) < 0, which together with (9)
implies that (b) holds in this case. O

Corollary 3 Let g: R — R be a quasi-convex polynomial. If g has an upper bound,
then g is a constant function.

Corollary 4 Let U : R® — R be a quasi-convex polynomial. Suppose that for two
fixed vectors (1, B2 € R™, U(B1 + AB2) is a constant function of A € R. Then for any fixed
vector b € R"™, U(b+ Af2) is a constant function of \.

Proof For any fixed vector b € R", define g(A) = U(b+ AB2), A € R. Then g(\)
is a polynomial of A\. By the quasi-convexity of U, we know that for any a € [0, 1] and

A1, A2 € R, we have

glad + (1 —a)r2) = U(b+ [aA + (1 — a)A2]B2)
=U(a(b+ A1f2) + (1 — a)(b+ A2f2))
< max{U(b+ A152), U(b+ A2f32)}
= max{g(M),g9(A2)}.

Thus g()\) is a quasi-convex polynomial. By the quasi-convexity of U,
1 1
90N = U(b+ABy) = U(5(2b = B1) + 5(61 + 222))
< max{U(2b— p1),U(B1 + 2AB2)}. (11)

By (11) and the assumption that U(5; + Af2) is a constant function of A, we get that the
quasi-convex polynomial g(\) has an upper bound. Hence by Corollary 3, we know that

U(b+ A\B2) is a constant function of A. O
Corollary 5 Let U :R"™ — R be a quasi-convex polynomial with U(0) = 0. Define

Sy i={a:U(\a) =0,V e R} (12)

Then Sy is a vector subspace of R”.

Proof Let aj,as € Sy. For any c1,c2, A € R, by Corollary 4, we get that
U(Merar + c2a)) = U(Acrag + Aegay) = U(Aejag) = 0.

Hence cia1 + coag € Sy, and thus Sy is a vector subspace of R”. O

Now suppose that U and V are two quasi-convex polynomials from R" into R satis-
fying that U(0) = V(0) = 0. Define Syy by (12). Similarly, define Sy .
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Definition 6 U and V are said to be concordant of order r, if
dim(S) — dim(SE N Sy) = 7. (13)
Note that this definition is symmetric in U and V, i.e. if (13) holds, then (see [2])
dim(Si) — dim(S¢ N Sy) = 7.

Theorem 7 Let X be an n x 1 random vector distributed as N(0, [,,). Let U and
V' be two symmetric (i.e. U(x) = U(—x), V(z) = V(—xz)) quasi-convex polynomials on R"
satisfying Cov (U(X), V(X)) = 0. Furthermore, assume that U(0) = V(0) =0, and U and
V' are concordant of order . Then there exists an orthogonal transformation Y = L X such
that U and V can be expressed as functions of two different sets of components of Y, i.e. U

and V are unlinked.

Proof Based on the lemmas and corollaries established above, the proof of this
theorem is similar to the one of [2]. For the reader’s convenience, we spell out the details
in the following.

Let {a1, 0, ,arie}, {@rg1, rgo, o s apge ), {1, 00, apgpem } and {aq, g, -+ -,
ayn} be orthonormal bases of S - , Sir NSy, Sfj + S‘J;, and R™, respectively. We will show
that if 7 > 0 then Cov(U(X), V(X)) > 0, which contradicts the condition given in the
theorem, and so we get » = 0, and thus U and V are unlinked.

Define Y1,Ys,--- .Y, by X = i Y;ay, i.e. Y; is the i-th component of X. Then Y7, Yo,

, Y, are i.i.d. as N(0,1). By Ccl)jéllary 4,

r4t
Yiai + 3 Ya)

U(X) = U(Zé Yiai) - U(é:l i=r+1

n r+t+m
V(X) :V(ZYM) :V( Yioi + 3 Ya)
i=1 i=1 i=rt+1
Assume that » > 0. Let y* = (y1,92, - ,yr)’ be a nonzero vector in R". Define

0) = E[U( S+ X vias)],

i=r+1

V*(y*) = [ (Z Yi; + THZer Yalﬂ

i=r+t+1
Then by the fact that U and V are two symmetric quasi-convex polynomials and the
condition that Y7,Ys, -+ Y, are ii.d. as N(0, 1), which implies that —Y3, —Ya,--- , =Y,
are i.i.d. as N(0,1), we get that U* and V* are two symmetric quasi-convex polynomials

of y*.
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,
By the choice of the bases, U ()\ Z y,ai) is not a zero function of A\. By Corollary 4
= r—+t
and the condition U(0) = 0, we know that U (X E Yizi + Y yi®;) is not a constant of A.
r+1
In addition, by the symmetry and quasi- convex1ty of U, U(z) > U(0), Vx € R™. Hence

by Lemma 2, we get that when A — oo,

()\ iy + :g: Yl’l) + U( A Zylozz + :g; Y;v@) 0. (14)

Taking the expectation of (14) with respect to Yii1,Yiio, -, Y,y and using Egoroff’s
theorem (see e.g. [10; Theorem 21.3] or [11; Remark 2.3.6(1)]), we obtain

U*(\y*) = o0 as A — 00. (15)
Similarly,
V*(Ay*) = o0 as \ — oo. (16)

Define Y* = (Y1, Y5, -+ ,Y;)". By the independence of components of X = (Y1,Ys, -+,

Y, Y41, ,Y,) and simple calculations, we have
Cov (U(X), V(X))

)
E[U(X)V(X)] = E[U(X)]E[V(X)]
E[U"(Y")V*(Y™)] - E[U™(Y")[E[V*(Y™)]

oo o0
/ / P(Y* € A7, N Bf,) — P(Y* € A )P(Y* € BE,)]dkydky
0 0

/ / Y* S Ak1 N BkQ) — P(Y* € Akl)P(Y* € BkQ)]dkldkig, (17)
0 0

where
A ={y" U (y") <k}, B, ={y" : V(") < ka}.

Since U*(y*) and V*(y*) are symmetric, quasi-convex polynomials of y*, Ay, and By,
are both symmetric convex sets (see [9; Table II]). By the Gaussian correlation inequality

(see [3] or [4]),
P(Y* S A/fl N BkQ) - P(Y* S Akl)P(Y* S Bkg) = 0. (18)
Define a set

M = {(k1,k2) € (0,00) x (0,00) | A, C By,,P(Y" € B,) > 0,P(Y" € A;,) > 0}.
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When Ay, C By,, we have

P(Y* S Akl N Bkz) — P(Y* € Akl)P(Y* € Bk2)
(Y* € Ag))[1 — P(Y™ € By,)]
(Y* € A,)P(Y™ € By,).

P
P
Hence we obtain

M C {(k‘l,k'g) € (0,00)X(0,00) | P(Y* € AklﬁBkQ)—P(Y* € Akl)P(Y* € BkQ) > 0}. (19)

By (15), (16), and Lemma 2, the Lebesgure measure of M is positive. Hence by (17), (18)
and (19), we obtain

Cov(U(X),V(X)) >0,
which contradicts the assumption, and so r = 0. O

Proof of Theorem 1  Let X be an n x 1 random vector distributed as N(0, I,,),
and f, g be two symmetric, quasi-convex polynomials satisfying that f(X) and g(X) are
independent. By the symmetry and quasi-convexity of f and g, we have that f(z) > f(0),
g(x) > g(0) for all z € R™. Define

Then U and V' are two symmetric quasi-convex polynomials on R" satisfying the conditions

in Theorem 7, and thus U and V are unlinked. It follows that f and g are unlinked. O
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KT xR SIS HHEE I
B fu

(R KFHFE R, ML, 210093; 745 7 IEER 24 ARG IR A H], M5L, 211100)
& &
(DU R4 2B, BB, 610065)

O RE p. AR EWBRES IR, X AR LRBEHLAIE, 508 w,. AHEBU UL Z: R f
g AR EMHAZIA, WA f(X) 5 ¢(X) #HEMA, MAFFE RY EWIERZLH Y = LX RBEH k{5
FoL™ J (y1,y2, - ,ux) KIEEEL go L7 N (Yhar, ko, -, yn) BIREL U BR f 5 g AHE. EXE
e, ATES: XFHAAHRML 2 f 5 g, R F(X) 5 g(X) MHEMS, W f 5 g THHZE.

KR ARSI D 2 I AR S

hESS%S: 0211.3; 02115



