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Abstract: Let µn be the standard Gaussian measure on Rn and X be a random vector on Rn

with the law µn. U-conjecture states that if f and g are two polynomials on Rn such that f(X) and

g(X) are independent, then there exist an orthogonal transformation Y = LX on Rn and an integer

k such that f ◦L−1 is a function of (y1, y2, · · · , yk) and g ◦L−1 is a function of (yk+1, yk+2, · · · , yn).

In this case, f and g are said to be unlinked. In this note, we prove that two symmetric, quasi-

convex polynomials f and g are unlinked if f(X) and g(X) are independent.

Keywords: U-conjecture; quasi-convex polynomial; Gaussian correlation conjecture

2020 Mathematics Subject Classification: 60E15; 62H05

Citation: HONG H J, HU Z C. Unlinking theorem for symmetric quasi-convex polynomials [J].

Chinese J Appl Probab Statist, 2022, 38(1): 151–158.

§1. Introduction and Main Result

Let µn be the standard Gaussian measure on Rn (n > 2) and X be a random vector

on Rn with the law µn. In 1973, Kagan et al. [1] considered the following problem: if f

and g are two polynomials on Rn such that f(X) and g(X) are independent, then is it

possible to find an orthogonal transformation Y = LX on Rn and an integer k such that

f ◦ L−1 is a function of (y1, y2, · · · , yk) and g ◦ L−1 is a function of (yk+1, yk+2, · · · , yn)?

If the answer is positive, then f and g are said to be unlinked. This problem is called

U-conjecture and is still open.

The U-conjecture is true for the case n = 2, and some special cases have been proved

for larger number of variables (see Sections 11.4 – 11.6 of [1]). In 1994, Bhandari and
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DasGupta [2] proved that the U-conjecture holds for two symmetric convex functions f

and g under an additional condition. The additional condition can be canceled since the

Gaussian correlation conjecture has been proved (see [3] or [4]).

Bhandari and Basu [5] proved that the U-conjecture holds for two nonnegative convex

polynomials f and g with f(0) = 0. Hargé [6] proved that if f, g : Rn → R are two convex

functions in L2(µn), and f is a real analytic function satisfying f(x) > f(0), ∀x ∈ Rn,

and f and g are independent with respect to µn, then they are unlinked.

Malicet et al. [7] proved that the U-conjecture is true when f, g belong to a class of

polynomials, which is defined based on the infinitesimal generator of Ornstein-Uhlenbeck

semigroup.

In Remark 2 of [5], the authors wish that their result could be extended to symmetric,

quasi-convex polynomials. In this note, we will give an affirmative answer based on the

first author’s master thesis [8] and prove the following result.

Theorem 1 Two symmetric, quasi-convex polynomials f and g are unlinked if f and

g are independent with respect to µn.

§2. Proof of Theorem 1

Before giving the proof of Theorem 1, we present some preliminaries.

A function f : Rn → R is called quasi-convex if for any α ∈ [0, 1] and any x, y ∈ Rn,

f(αx+ (1− α)y) 6 max{f(x), f(y)}.

It’s easy to know that a convex function is quasi-convex. About the properties of quasi-

convex functions, and the relations between convex and quasi-convex functions, refer to a

survey paper [9].

Lemma 2 Suppose that g : R → R is a quasi-convex polynomial and there exist

λ1, λ2 ∈ R such that g(λ1) 6= g(λ2). Then one of the following two claims holds.

(a) There exists λ0 such that g(u) < g(v) for any λ0 6 u < v and lim
λ→∞

g(λ) =∞.

(b) There exists λ0 such that g(u) < g(v) for any v < u 6 λ0 and lim
λ→−∞

g(λ) =∞.

Proof Since g is a polynomial on R, we can write it as

g(λ) = anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0. (1)

By the assumption, g is not a constant, so n > 1 and an 6= 0. By (1), we obtain

g′(λ) = nanλ
n−1 + (n− 1)an−1λ

n−2 + · · ·+ a1. (2)
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Without loss of generality, we can assume that λ1 < λ2. We have the following two

cases:

Case 1: g(λ1) < g(λ2). Define h(λ) := g(λ)−g(λ1). Then h(λ1) = 0. By the definition

of quasi-convex function, we know that h is quasi-convex, and for any λ > λ2, we have

h(λ2) = h
(λ− λ2
λ− λ1

λ1 +
λ2 − λ1
λ− λ1

λ
)
6 max{h(λ1), h(λ)} = max{0, h(λ)}. (3)

Since h(λ2) = g(λ2)− g(λ1) > 0, by (3), we get that for any λ > λ2, h(λ2) 6 h(λ), i.e.

g(λ2) 6 g(λ), ∀λ > λ2. (4)

By (1) and (4), we get that an > 0, and thus

lim
λ→∞

g(λ) = lim
λ→∞

(anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0) =∞. (5)

If n = 1, then g(λ) = a1λ+ a0 with a1 > 0, and thus (a) holds in this case. If n > 2,

then

lim
λ→∞

g′(λ) = lim
λ→∞

[nanλ
n−1 + (n− 1)an−1λ

n−2 + · · ·+ a1] =∞. (6)

By (6), there exists λ0 such that for any λ > λ0, g
′(λ) > 0, which together with (5) implies

that (a) holds in this case.

Case 2: g(λ1) > g(λ2). Define h(λ) := g(λ)− g(λ2). Then h(λ2) = 0, and as in Case

1, h is a quasi-convex function and for any λ < λ1, we have

h(λ1) = h
(λ1 − λ
λ2 − λ

λ2 +
λ2 − λ1
λ2 − λ

λ
)
6 max{h(λ2), h(λ)} = max{0, h(λ)}. (7)

Since h(λ1) = g(λ1)− g(λ2) > 0, by (7), we obtain that for any λ < λ1, h(λ1) 6 h(λ), i.e.

g(λ1) 6 g(λ), ∀λ < λ1. (8)

By (8) and (1), we know that one of the following two claims must hold:

(i) n is even and an > 0;

(ii) n is odd and an < 0.

If (i) holds, then by the proof of Case 1 above, we know that (a) is true.

If (ii) holds, then

lim
λ→−∞

g(λ) = lim
λ→−∞

(anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0) =∞. (9)

If n = 1, then g(λ) = a1λ+ a0 with a1 < 0, and thus (b) holds in this case. If n > 3, then

lim
λ→−∞

g′(λ) = lim
λ→−∞

[nanλ
n−1 + (n− 1)an−1λ

n−2 + · · ·+ a1] = −∞. (10)
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By (10), there exists λ0 such that for any λ < λ0, g
′(λ) < 0, which together with (9)

implies that (b) holds in this case. �

Corollary 3 Let g : R→ R be a quasi-convex polynomial. If g has an upper bound,

then g is a constant function.

Corollary 4 Let U : Rn → R be a quasi-convex polynomial. Suppose that for two

fixed vectors β1, β2 ∈ Rn, U(β1 + λβ2) is a constant function of λ ∈ R. Then for any fixed

vector b ∈ Rn, U(b+ λβ2) is a constant function of λ.

Proof For any fixed vector b ∈ Rn, define g(λ) = U(b + λβ2), λ ∈ R. Then g(λ)

is a polynomial of λ. By the quasi-convexity of U , we know that for any α ∈ [0, 1] and

λ1, λ2 ∈ R, we have

g(αλ1 + (1− α)λ2) = U(b+ [αλ1 + (1− α)λ2]β2)

= U(α(b+ λ1β2) + (1− α)(b+ λ2β2))

6 max{U(b+ λ1β2), U(b+ λ2β2)}

= max{g(λ1), g(λ2)}.

Thus g(λ) is a quasi-convex polynomial. By the quasi-convexity of U ,

g(λ) = U(b+ λβ2) = U
(1

2
(2b− β1) +

1

2
(β1 + 2λβ2)

)
6 max{U(2b− β1), U(β1 + 2λβ2)}. (11)

By (11) and the assumption that U(β1 + λβ2) is a constant function of λ, we get that the

quasi-convex polynomial g(λ) has an upper bound. Hence by Corollary 3, we know that

U(b+ λβ2) is a constant function of λ. �

Corollary 5 Let U : Rn → R be a quasi-convex polynomial with U(0) = 0. Define

SU := {α : U(λα) = 0, ∀λ ∈ R}. (12)

Then SU is a vector subspace of Rn.

Proof Let α1, α2 ∈ SU . For any c1, c2, λ ∈ R, by Corollary 4, we get that

U(λ(c1α1 + c2α2)) = U(λc1α1 + λc2α2) = U(λc1α1) = 0.

Hence c1α1 + c2α2 ∈ SU , and thus SU is a vector subspace of Rn. �

Now suppose that U and V are two quasi-convex polynomials from Rn into R satis-

fying that U(0) = V (0) = 0. Define SU by (12). Similarly, define SV .
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Definition 6 U and V are said to be concordant of order r, if

dim(S⊥U )− dim(S⊥U ∩ SV ) = r. (13)

Note that this definition is symmetric in U and V , i.e. if (13) holds, then (see [2])

dim(S⊥V )− dim(S⊥V ∩ SU ) = r.

Theorem 7 Let X be an n × 1 random vector distributed as N(0, In). Let U and

V be two symmetric (i.e. U(x) = U(−x), V (x) = V (−x)) quasi-convex polynomials on Rn

satisfying Cov (U(X), V (X)) = 0. Furthermore, assume that U(0) = V (0) = 0, and U and

V are concordant of order r. Then there exists an orthogonal transformation Y = LX such

that U and V can be expressed as functions of two different sets of components of Y , i.e. U

and V are unlinked.

Proof Based on the lemmas and corollaries established above, the proof of this

theorem is similar to the one of [2]. For the reader’s convenience, we spell out the details

in the following.

Let {α1, α2, · · · , αr+t}, {αr+1, αr+2, · · · , αr+t}, {α1, α2, · · · , αr+t+m} and {α1, α2, · · · ,
αn} be orthonormal bases of S⊥U , S⊥U ∩ SV , S⊥U + S⊥V , and Rn, respectively. We will show

that if r > 0 then Cov (U(X), V (X)) > 0, which contradicts the condition given in the

theorem, and so we get r = 0, and thus U and V are unlinked.

Define Y1, Y2, · · · , Yn by X =
n∑
i=1

Yiαi, i.e. Yi is the i-th component of X. Then Y1, Y2,

· · · , Yn are i.i.d. as N(0, 1). By Corollary 4,

U(X) = U
( n∑
i=1

Yiαi

)
= U

( r∑
i=1

Yiαi +
r+t∑
i=r+1

Yiαi

)
,

V (X) = V
( n∑
i=1

Yiαi

)
= V

( r∑
i=1

Yiαi +
r+t+m∑
i=r+t+1

Yiαi

)
.

Assume that r > 0. Let y∗ = (y1, y2, · · · , yr)′ be a nonzero vector in Rr. Define

U∗(y∗) := E
[
U
( r∑
i=1

yiαi +
r+t∑
i=r+1

Yiαi

)]
,

V ∗(y∗) := E
[
V
( r∑
i=1

yiαi +
r+t+m∑
i=r+t+1

Yiαi

)]
.

Then by the fact that U and V are two symmetric quasi-convex polynomials and the

condition that Y1, Y2, · · · , Yn are i.i.d. as N(0, 1), which implies that −Y1,−Y2, · · · ,−Yn
are i.i.d. as N(0, 1), we get that U∗ and V ∗ are two symmetric quasi-convex polynomials

of y∗.
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By the choice of the bases, U
(
λ

r∑
i=1

yiαi
)

is not a zero function of λ. By Corollary 4

and the condition U(0) = 0, we know that U
(
λ

r∑
1
yixi +

r+t∑
r+1

yixi
)

is not a constant of λ.

In addition, by the symmetry and quasi-convexity of U , U(x) > U(0), ∀x ∈ Rn. Hence

by Lemma 2, we get that when λ→∞,

U
(
λ

r∑
1
yiαi +

r+t∑
r+1

Yixi

)
+ U

(
− λ

r∑
1
yiαi +

r+t∑
r+1

Yixi

)
→∞. (14)

Taking the expectation of (14) with respect to Yi+1, Yi+2, · · · , Yr+t and using Egoroff’s

theorem (see e.g. [10; Theorem 21.3] or [11; Remark 2.3.6(1)]), we obtain

U∗(λy∗)→∞ as λ→∞. (15)

Similarly,

V ∗(λy∗)→∞ as λ→∞. (16)

Define Y ∗ = (Y1, Y2, · · · , Yr)′. By the independence of components of X = (Y1, Y2, · · · ,
Yr, Yr+1, · · · , Yn)′ and simple calculations, we have

Cov (U(X), V (X))

= E[U(X)V (X)]− E[U(X)]E[V (X)]

= E[U∗(Y ∗)V ∗(Y ∗)]− E[U∗(Y ∗)]E[V ∗(Y ∗)]

=

∫ ∞
0

∫ ∞
0

[P(Y ∗ ∈ Ack1 ∩B
c
k2)− P(Y ∗ ∈ Ack1)P(Y ∗ ∈ Bc

k2)]dk1dk2

=

∫ ∞
0

∫ ∞
0

[P(Y ∗ ∈ Ak1 ∩Bk2)− P(Y ∗ ∈ Ak1)P(Y ∗ ∈ Bk2)]dk1dk2, (17)

where

Ak1 = {y∗ : U∗(y∗) 6 k1}, Bk2 = {y∗ : V ∗(y∗) 6 k2}.

Since U∗(y∗) and V ∗(y∗) are symmetric, quasi-convex polynomials of y∗, Ak1 and Bk2

are both symmetric convex sets (see [9; Table II]). By the Gaussian correlation inequality

(see [3] or [4]),

P(Y ∗ ∈ Ak1 ∩Bk2)− P (Y ∗ ∈ Ak1)P(Y ∗ ∈ Bk2) > 0. (18)

Define a set

M = {(k1, k2) ∈ (0,∞)× (0,∞) |Ak1 ⊂ Bk2 ,P(Y ∗ ∈ Bc
k2) > 0,P(Y ∗ ∈ Ak1) > 0}.
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When Ak1 ⊂ Bk2 , we have

P(Y ∗ ∈ Ak1 ∩Bk2)− P(Y ∗ ∈ Ak1)P(Y ∗ ∈ Bk2)

= P(Y ∗ ∈ Ak1)[1− P(Y ∗ ∈ Bk2)]

= P(Y ∗ ∈ Ak1)P(Y ∗ ∈ Bc
k2).

Hence we obtain

M ⊂ {(k1, k2) ∈ (0,∞)×(0,∞) |P(Y ∗ ∈ Ak1∩Bk2)−P(Y ∗ ∈ Ak1)P(Y ∗ ∈ Bk2) > 0}. (19)

By (15), (16), and Lemma 2, the Lebesgure measure of M is positive. Hence by (17), (18)

and (19), we obtain

Cov (U(X), V (X)) > 0,

which contradicts the assumption, and so r = 0. �

Proof of Theorem 1 Let X be an n × 1 random vector distributed as N(0, In),

and f , g be two symmetric, quasi-convex polynomials satisfying that f(X) and g(X) are

independent. By the symmetry and quasi-convexity of f and g, we have that f(x) > f(0),

g(x) > g(0) for all x ∈ Rn. Define

U(x) := f(x)− f(0), V (x) := g(x)− g(0).

Then U and V are two symmetric quasi-convex polynomials on Rn satisfying the conditions

in Theorem 7, and thus U and V are unlinked. It follows that f and g are unlinked. �
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