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Abstract: Assuming the observations are imprecise and modeling the observations by uncertain
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§1. Introduction

When the samples of response variable and (or) explanatory variables are imprecise,

the uncertain variables can be employed to model the imprecise observations. The use for

the uncertain variables was developed by many authors, such as Yao [1], Wen et al. [2], Wang

et al. [3], Zhao et al. [4], Lio and Liu [5]. Nowadays, uncertain variables have been applied to

many fields including uncertain risk analysis [6], uncertain programming [7] and uncertain

process [8], etc. Uncertain statistics is a method to collect and interpret expert’s data.

Liu [9] proposed the least squares estimation of the unknown parameters in the uncertain-

ty distribution. To estimate the unknown parameters in the uncertain regression models,

the principle of least squares was suggested by Yao and Liu [10]. Lio and Liu [11] provid-

ed the residual analysis of uncertain linear regression models. Lio and Liu [12] proposed
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maximum likelihood estimation of uncertain linear regression models. Song and Fu [13]

propose uncertain multivariable linear regression model which has multiple response vari-

ables. Fang and Hong [14] applied the logarithmic, square root or reciprocal transformation

to alleviate possible nonlinearity problems and estimate the disturbance terms for the un-

certain nonlinear parametric models. Yang and Ni [15] proposed least squares estimation

for uncertain moving average model. Liu and Yang [16] proposed least absolute estimate of

uncertain parametric regression model. Liu and Jia [17] proposed cross-validation for un-

certain Chapman-Richards model. Ding and Zhang [18] proposed B-Splines estimate and

local polynomials estimate of uncertain nonparametric regression model.

In this paper, we study the uncertain semiparametric regression when the nonpara-

metric function satisfies monotonicity. The rest of this paper is organized as follows. In

Section 2, we introduce some basic results about uncertain variables. The statistical infer-

ences for uncertain semiparametric regression model is proposed in Section 3. A numerical

example is given to illustrate the proposed methods in Section 4. Some conclusions are

made in Section 5.

§2. Preliminary

In this section, some basic concepts and formulas in uncertainty theory are introduced

as follows.

Definition 1 [19] Let Γ be a nonempty set, and let L be a σ-algebra over Γ. An

uncertain measure is a function M : L → [0, 1] such that

Axiom 1. (Normality Axiom) M {Γ} = 1 for the universal set Γ.

Axiom 2. (Duality Axiom) M {Λ}+ M {Λc} = 1 for any event Λ.

Axiom 3. (Subadditivity Axiom) For every countable sequence of events {Λi}, i = 1, 2, · · · ,
we have

M
{ ∞∪

i=1
Λi

}
6

∞∑
i=1

M {Λi}.

A set Λ ∈ L is called an event. The uncertain measure M {Λ} indicates the

degree of belief that Λ will occur. The triplet (Γ,L ,M ) is called an uncertainty

space. In order to obtain an uncertain measure of compound event, a product

uncertain measure was defined by the following fourth axiom.

Axiom 4. (Product Axiom) [20] Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, · · · . The
product uncertain measure M is an uncertain measure on the product σ-algebra
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L1 × L2 × · · · satisfying

M
{ ∞∏

k=1

Λk

}
=

∞∧
k=1

Mk{Λk}, (1)

where Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.

Definition 2 [19] An uncertain variable is a measurable function from an uncertainty

space (Γ,L ,M ) to the set of real numbers, i.e., {ξ ∈ B} is an event for any Borel set B.

Uncertain variable is introduced to model the quantity with human uncertainty.

Definition 3 [19] The uncertainty distribution Φ of an uncertain variable ξ is defined

by Φ(x) = M {ξ 6 x}, for any real number x.

An uncertainty distribution Φ is said to be regular if it is a continuous and strictly

increasing function with respect to x at which 0 < Φ(x) < 1, and

lim
x→−∞

Φ(x) = 0, lim
x→∞

Φ(x) = 1.

If ξ is an uncertain variable with regular uncertainty distribution Φ(x), the inverse function

Φ−1(α) is called the inverse uncertainty distribution of ξ [9].

Definition 4 [20] The uncertain variables ξ1, ξ2, · · · , ξm are said to be independent if

M
{ m∩

i=1
{ξi ∈ Bi}

}
=

m∧
i=1

M {ξi ∈ Bi},

for any Borel sets B1, B2, · · · , Bm of real numbers.

Theorem 5 [9] Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regular

uncertainty distributions Φ1,Φ2, · · · ,Φn, respectively. If f is strictly increasing with re-

spect to ξ1, ξ2, · · · , ξm and strictly decreasing with respect to ξm+1, ξm+2, · · · , ξn, then

ξ = f(ξ1, ξ2, · · · , ξn) is an uncertain variable with uncertainty distribution

Φ(x) = sup
f(x1,x2,··· ,xn)<x

{
min

16i6m
Φi(xi) ∧ min

m+16i6n
[1− Φi(xi)]

}
,

and with inverse uncertainty distribution

Ψ−1(α) = f(Φ−1
1 (α), · · · ,Φ−1

m (α),Φ−1
m+1(1− α), · · · ,Φ−1

n (1− α)). (2)

Definition 6 [19] The expected value of an uncertain variable ξ is defined by

E[ξ] =

∫ ∞

0
M {ξ > x}dx−

∫ 0

−∞
M {ξ 6 x}dx,

provided that at least one of the two integrals is finite.
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Assume that the uncertain variable ξ has an uncertainty distribution Φ. If the ex-

pected value E[ξ] exists, then

E[ξ] =

∫ ∞

0
[1− Φ(x)]dx−

∫ 0

−∞
Φ(x)dx.

Example: An uncertain variable ξ is called linear if it has a linear uncertainty distri-

bution

Φ(x) =


0, if x 6 a;

x− a

b− a
, if a 6 x 6 b;

1, if y > b,

(3)

denoted by L (a, b), where a and b are real numbers with a < b. The linear uncertain

variable y ∼ L (a, b) has an expected value E[y] = (a + b)/2. The inverse uncertainty

distribution of linear uncertain variable L (a, b) is Φ−1(α) = (1− α)a+ bα.

Definition 7 [1] Let ξ be an uncertain variable with uncertainty distribution Φ and

finite expected value E[ξ]. Then

V [ξ] = E[(ξ − E[ξ])2] =

∫ +∞

−∞
(y − E[ξ])2dΦ(y).

Let ξ be an uncertain variable with an uncertainty distribution Φ. If its kth moment

E[ξk] exists, then

E[ξk] =

∫ ∞

−∞
xkdΦ(x).

Furthermore, if Φ is regular, then

E[ξ] =

∫ 1

0
Φ−1(α)dα, E[ξ2] =

∫ 1

0
[Φ−1(α)]2dα, (4)

V [ξ] =

∫ 1

0
[Φ−1(α)− E[ξ] ]2dα. (5)

Let ξ be an uncertain variable with uncertainty distribution Φ, and f(x) be a strictly

increasing function, by Theorem 5, we have

E[f(ξ)] =

∫ 1

0
f [Φ−1(a)]da. (6)

§3. Statistical Inferences for Uncertain Semiparametric

Model

In this section, we propose statistical inferences including estimation, residual analysis

and forecast value for uncertain semiparametric model. Let (x1, x2, · · · , xp, z) be a vector
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of explanatory variables, and let y be a response variable. Assume the relationship between

(x1, x2, · · · , xp, z) and y can be expressed by the semiparametric model:

y =
p∑

j=1
βjxj + f(z) + ϵ, (7)

where β = (β1, β2, · · · , βn) is a vector of unknown parameters, f(·) is an unknown non-

parametric function satisfying monotonicity, ϵ is a disturbance term.
p∑

j=1
βjxj is called

parametric part, f(z) is called nonparametric part. Suppose that there are a set of im-

precisely observed data,

(x̃i1, x̃i2, · · · , x̃ip, z̃i, ỹi), i = 1, 2, · · · , n,

where x̃i1, x̃i2, · · · , x̃ip, z̃i, ỹi are uncertain variables with uncertainty distributions Γi1,Γi2,

· · · ,Γip,Φi,Ψi, i = 1, 2, · · · , n, respectively. Based on the imprecisely observed data, we

suggest the least squares estimates of β and f are the solution of the following minimization

problem,

min
β,f∈M

n∑
i=1

E
[(

ỹi −
p∑

j=1
βj x̃ij − f(z̃i)

)2]
, (8)

where M = {f : f is strictly monotone function}.

1) Bernstein Estimation

Since the change of variables specified by t = (z − a)/(b − a) maps z ∈ [a, b] to

t ∈ [0, 1] without changing the max norm of any function, we can restrict our attention to

continuous functions f(z) on z ∈ [0, 1] without loss of generality. Bernstein polynomials

allow a great deal of flexibility in modeling the shape of the relationship between variables.

For a continuous function such as f(z) on [0, 1], the approximating Bernstein polynomial

of order m is given by

f(z) ≈ B(z; f) =
m∑
j=0

f
( j

m

)(m
j

)
zj(1− z)m−j =

m∑
j=0

bjδj(z),

where δj(z) =
(
m
j

)
zj(1 − z)m−j are the Bernstein basis polynomials, bj = f(j/m) are

corresponding coefficients, j = 0, 1, · · · ,m. By the Weierstrass theorem, B(·; f) → f(·)
uniformly over [0, 1] as m → ∞ [21]. Since the first derivative of B(z; f) can be written as

B′(z; f) = m
m−1∑
j=0

(bj+1 − 2bj)

(
m− 1

j

)
zj(1− z)m−1−j ,
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B(z; f) is strictly increasing function if b0 6 b1 6 · · · 6 bm. The increasing monotonicity

is expressed in matrix form as

Ab =


−1 1 0 · · · 0

0 −1 1 0 · · ·
. . .

0 · · · 0 −1 1




b0

b1
...

bm

 >


0

0
...

0

 ,

where A is m × (m + 1) constrainted matrix, b = (b0, b1, · · · , bm). Similarly, B(z; f)

is strictly decreasing function if b0 > b1 > · · · > bm, and expressed in matrix form as

Ab 6 0. For a vector c, we use c 6 0 to denote the fact that the inequality is satisfied

componentwise.

Theorem 8 Suppose that x̃i1, x̃i2, · · · , x̃ip, z̃i, ỹi, i = 1, 2, · · · , n, are a set of im-

precisely observations, where x̃i1, x̃i2, · · · , x̃ip, z̃i, ỹi are independent uncertain variables with

regular uncertainty distributions Γi1,Γi2, · · · ,Γip,Φi,Ψi, respectively. Then the least squares

estimate of β = (β1, β2, · · · , βp) and f(z) in the semiparametric regression model (7) is the

optimal solution of the following problem:

min
β,b

n∑
i=1

∫ 1

0

[
Ψ−1

i (α)−
p∑

j=1
βjΠ

−1
ij (α, βj)−

m∑
j=0

bj · δj(Υ−1
i (α, f))

]2
dα, (9)

with respcet to β, b subject to Ab > 0 (or Ab 6 0), where

Π−1
ij (α, βj) =

Γ−1
ij (1− α), if βj > 0;

Γ−1
ij (α), if βj < 0,

and

Υ−1
i (α, f) =

Φ−1
i (1− α), if f is strictly increasing;

Φ−1
i (α), if f is strictly decreasing,

for i = 1, 2, · · · , n and j = 1, 2, · · · , p.

Proof By (8), the least squares estimate of β and f is the optimal solution of the

minimization problem,

min
β,f∈M

n∑
i=1

E
[(

ỹi −
p∑

j=1
βj x̃ij − f(z̃i)

)2]
.

For each i, it follows from [22] that the inverse uncertainty distribution of ỹi −
p∑

j=1
βj x̃ij −

f(z̃i) is

F−1
i (α) = Ψ−1

i (α)−
p∑

j=1
βjΠ

−1
ij (α, βj)− f(Υ−1

i (α, f)).
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By (4), we can get

E
[(

ỹi −
p∑

j=1
βj x̃ij − f(z̃i)

)2]
=

∫ 1

0

[
Ψ−1

i (α)−
p∑

j=1
βjΠ

−1
ij (α, βj)− f(Υ−1

i (α, f))
]2
dα.

Substituting f(Υ−1
i (α, f)) with

m∑
j=0

bj · δj(Υ−1
i (α, f)), then the minimization problem (8)

is equivalent to the minimization problem (9). The theorem is verified. �

The above optimization problem can be effectively solved by the general quadratic

programming [23]. Quadratic programming has also been used to solve the linear inequality

constraints such as Ab > 0. In this study, we use the available R package quadprog by

Turlach and Weingessel [24] to solve quadratic programming problem. The order m may

be chosen by using the ideas of cross-validation method, see Section 4 for more details.

2) Residual Analysis and Forecast Value

Definition 9 Let (x̃i1, x̃i2, · · · , x̃ip, z̃i, ỹi), i = 1, 2, · · · , n, be a set of imprecisely

observations, and suppose the fitted regression model is

yi =
p∑

j=1
β̂jxij + f̂(zi).

Then for each i, the term

ϵ̂i = ỹi −
p∑

j=1
β̂j x̃ij − f̂(z̃i)

is called the i-th residual, for i = 1, 2, · · · , n.

Now assume that the disturbance term ϵ is an uncertain variable with E[ϵ] = e and

V [ϵ] = σ2. Then we use the average of the expected values of residuals,

ê =
1

n

n∑
i=1

E[ϵ̂i] (10)

to estimate the expected value of the disturbance term ϵ, and

σ̂2 =
1

n

n∑
i=1

E[(ϵ̂i − ê)2] (11)

to estimate the variance, where ϵ̂i are the i-th residuals.

Theorem 10 Let (x̃i1, x̃i2, · · · , x̃ip, ẑi, ỹi), i = 1, 2, · · · , n, be a set of imprecisely

observed data, where x̃i1, x̃i2, · · · , x̃ip, z̃i, ỹi are independent uncertain variables with regular
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uncertainty distributions Γi1,Γi2, · · · ,Γip,Φi,Ψi, respectively, and let the fitted semipara-

metric regression model be

y =
p∑

j=1
β̂jxj + f̂(z). (12)

Then the estimated expected value of the disturbance term ϵ is

ê =
1

n

n∑
i=1

∫ 1

0

[
Ψ−1

i (α)−
p∑

j=1
β̂jΠ

−1
ij (α, β̂j)− f̂(Υ−1

i (α, f̂))
]
dα, (13)

and the estimated variance is

σ̂2 =
1

n

n∑
i=1

∫ 1

0

[
Ψ−1

i (α)−
p∑

j=1
β̂jΠ

−1
ij (α, β̂j)− f̂(Υ−1

i (α, f̂))− ê
]2
dα, (14)

where

Π−1
ij (α, β̂j) =

Γ−1
ij (1− α), if β̂j > 0;

Γ−1
ij (α), if β̂j < 0,

and

Υ−1
i (α, f̂) =

Φ−1
i (1− α), if f̂ is strictly increasing;

Φ−1
i (α), if f̂ is strictly decreasing,

for i = 1, 2, · · · , n and j = 1, 2, · · · , p.

Proof For each i, it follows from [22] that the inverse uncertainty distribution of

ỹi −
p∑

j=1
β̂j x̃j − f̂(z̃i) is

F−1
i (α) = Ψ−1

i (α)−
p∑

j=1
β̂jΠ

−1
ij (α, β̂j)− f̂(Υ−1

i (α, f̂)).

Similarly to the proof of Theorem 8, the theorem follows immediately. �

Suppose (x̃1, x̃2, · · · , x̃p, z̃) is a vector of new explanatory variables, where x̃1, x̃2, · · · ,
x̃p, z̃ are uncertain variables with regular uncertainty distributions Γ1,Γ2, · · · ,Γp,Φ, re-

spectively. Based on the fitted model, we can forecast the response variable for a new

explanatory vector. Now suppose the fitted semiparametric regression model is

y =
p∑

j=1
β̂jxj + f̂(z),

the disturbance term ϵ is independent of x̃1, x̃2, · · · , x̃p, z̃, and its estimated expected value

and variance are ê and σ̂2, respectively. Then the forecast uncertain variable of y with

respect to (x̃1, x̃2, · · · , x̃p, z̃) is

ŷ =
p∑

j=1
β̂j x̃j + f̂(z̃) + ϵ.
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Note that y is an uncertain variable, and we define the expected value of the forecast

uncertain variable ŷ as the forecast value of y,

µ =
p∑

j=1
β̂jE[x̃j ] + E[f(z̃)] + ê. (15)

§4. Numerical Example

Assume the social benefits of a new factory is studied based on experts’ data and

decide whether to establish the new factory. There are some factors that affect social ben-

efits such as quality of the production and carbon emission. We take social benefits (y) as

a response variable, quality of the production (x) and carbon emission (z) as explanatory

variables. Due to the data cannot be precisely observed, we treat x, z, y as uncertain vari-

ables. The relationship between y and x is linear by general knowledge. The relationship

between y and z is complicated and taken as nonlinear effect. In our analysis, we believe

that it is reasonable to assume that the social benefits are decreasing with respect to the

carbon emission, since carbon emission has devastating effect on social benefits because of

environmental pollution. Thus, we employ the uncertain semiparametric regression model

ỹi = x̃iβ + f(z̃i) + ϵi, i = 1, 2, · · · , 26,

where f is monotone decreasing function. Suppose the data (x̃i, z̃i, ỹi), i = 1, 2, · · · , 26,
are acquired by using the questionnaire survey, see Table 1, where L (a, b) denotes linear

uncertain variable. For each i, x̃i, ẑi and ỹi are independent.

We use monotone Bernstein polynomials to approximate the nonparametric function

f . The order m is selected by V -fold cross-validation method. It is one of the most widely

used methods to estimate prediction error. Given V , for each m, the cross-validation term

CV(m) takes the following form:

CV(m) =
1

V

V∑
i=1

∑
i∈I−v

E
[
ỹi − x̃iβ̂m(v) − f̂m(v)(z̃i)

]2
,

where β̂m(v) and f̂m(v) obtained from the v-th training data set consisting of ⌊n(V −1)/V ⌋
observation points and I−v denotes the corresponding validation set consisting of [n/V ]

points. We compute the cross-validation function CV(m) for a series of m values starting

with m = 2 to a relatively large integer (⌊n(V −1)/V −1⌋). The optimal value m̂ is chosen

to minimize CV(m), i.e., m̂ = argmin
m

CV(m). we take V = 1 and optimal value is m̂ = 6.

For more details on cross-validation method in uncertain statistics, the reader can refer to
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Table 1 Imprecisely observed data

i x̃i z̃i ỹi

1 L (5, 6.8) L (1, 2.4) L (1100, 1144)

2 L (5.2, 6) L (3, 4.2) L (700, 802)

3 L (8, 9.4) L (1, 3) L (900, 1118)

4 L (6, 6.8) L (3, 3.2) L (800, 1034)

5 L (6, 6.6) L (3, 4.6) L (900, 1072)

6 L (9, 11.2) L (3, 3.8) L (800, 938)

7 L (8, 11.2) L (2, 2.6) L (806, 1006)

8 L (7, 8.4) L (3, 4.8) L (800, 1062)

9 L (8, 9.6) L (2, 3.8) L (800, 916)

10 L (8, 8.6) L (2, 2.4) L (1000, 1254)

11 L (6, 9.4) L (1.9, 2.5) L (1000, 1448)

12 L (7, 8.2) L (2.9, 3.3) L (700, 754)

13 L (6, 7.2) L (3, 4.2) L (800, 926)

14 L (8, 9.6) L (4, 4.6) L (700, 840)

15 L (8, 9.4) L (2, 3.8) L (900, 1040)

16 L (7, 8.6) L (2.5, 3.3) L (900, 944)

17 L (9, 10) L (3, 5) L (700, 976)

18 L (7, 8) L (4, 5.2) L (900, 964)

19 L (6, 7.6) L (2, 3.4) L (800, 876)

20 L (7, 7.6) L (3, 3.4) L (750, 1048)

21 L (8, 8.6) L (2, 3.8) L (700, 900)

22 L (8, 8.8) L (3, 4.8) L (900, 1024)

23 L (7, 8.2) L (2, 2.8) L (800, 1172)

24 L (8, 9.2) L (2, 2.4) L (900, 1138)

25 L (7, 7.2) L (1, 3) L (850, 1312)

26 L (9, 11) L (2, 3.4) L (700, 890)

[25] and [26]. By solving the minimization problem (9), we get the least squares estimate

of β is

β̂ = 101.7,

and the least squares estimate of b is

b̂ = (1529.7,−34.8, 12.1, 59, 105.9, 153.6, 317.7).

The fitted nonparametric function is f̂(z) = δ(z)b̂, and the fitted curve of f̂(z) is shown

in Figure 1, which shows the social benefits are decreasingly with respect to the carbon
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emission. By using the formulas (13) and (14), we get the expected value and variance of

the disturbance term ϵ are

ê = −0.014, σ̂2 = 19804,

respectively. Now let (x̃, z̃) = (L (10, 12),L (4, 6)) is a new vector of explanatory variables,

by calculating the formula (15), the forecast value of response variable y is µ = 1175.

Figure 1 The estimate of function f

§5. Conclusions

This paper proposes the least squares estimate of the uncertain semiparametric re-

gression model when the nonparametric component is subject to monotonicity constraint

based on the uncertainty theory. By employing Bernstain polynomials, semiparametric

regression model are turned into the linear regression model framework. Quadratic pro-

gramming algorithm is employed to compute the estimate. The cross validation method

is used to select the number of basis functions. A numerical example shows the proposed

methods are effective.
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不确定半参数模型的 Bernstein多项式估计

丁建华1,2 张红玉1 张志强1

(1山西大同大学统计系, 大同, 037009)

(2统计与数据科学前沿理论及应用教育部重点实验室, 上海, 200062)

摘 要: 假设样本观测值是不精确的, 通过将不精确的观测值建模为不确定变量, 这篇论文提出单调半参数

模型的不确定统计推断. 单调 Bernstein多项式近似非参数函数, 利用二次规划算法进行求解. 并通过数值例

子说明所提出的方法.
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