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§1. Introduction

Let Z+, N and R+ be the set of nonnegative integers, positive integers and nonnegative

real numbers, respectively. Let X = {Xt, t ∈ R+} be an irreducible CTMC with transition

function Pij(t) and regular q-matrix Q = (qij) on a countable state space E. For a

nonnegative and nondecreasing function r = r(t), t > 0, the chain X is said to be r-

transient if ∫ ∞

0
r(t)Pii(t)dt < ∞ (1)

for some state i ∈ E. In particular, when r(t) = tℓ, ℓ ∈ N, the chain X is called ℓ-transient;

when r(t) = st, s > 1, the chain X is called exponentially transient. It is worth noting

that (1) holds for some i ∈ E if and only if it holds for any i ∈ E since the chain X is

irreducible.
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Criteria for ℓ-transience and geometric transience for discrete-time Markov chains

(DTMCs) have been presented in the literature. Meyn and Tweedie in Chapter 8 of

[1] investigated the ordinary transience by establishing the appropriate drift condition.

Then the equivalent drift criteria for both algebraic and geometric transience were given

by Mao and Song [2]. Meanwhile, they first introduced the modified moments of the

first return times to investigate algebraic and geometric transience. Later, Liu et al. [3]

presented equivalent conditions for algebraic and geometric transience in terms of the

modified moments of the first return times on finite non-empty sets, which were applied

to investigate matrix-analytical models. In this paper, we will focus on algebraic and

exponential transience for CTMCs, which has not been addressed well.

In the study of CTMCs, we usually hope to establish the relations with DTMCs so as

to extend the results of DTMCs to the continuous time case. If the generator Q is bounded,

we can analyze algebraic and exponential transience for CTMCs by their h-uniformized

chains, see [3]. However, it fails when Q is unbounded. In the unbounded case, Tweedie [4]

established the equivalent relations between CTMCs and their jump chains for ordinary

transience. In Section 2, we will show that the relations are also valid for algebraic and

exponential transience.

In Section 3, we will show that if a CTMC is stochastically monotone, then we can

analyze its transience properties through its dual process. With the help of existing

results about ergodicity [5–9], we are able to get the information about the absorption

times of dual processes, which plays a key role in the analysis of transience for CTMCs. An

important application of this method is to investigate algebraic and exponential transience

for continuous-time birth and death processes.

In Section 4, we apply our results in Sections 2 and 3 to generalized Markov branching

processes and continuous-time birth and death processes and derive explicit criteria for

algebraic and exponential transience.

§2. Relation with Jump Chains

Let us define

Jn =

0, if n = 0;

inf{t > Jn−1 |Xt ̸= Xt−}, if n ∈ N,

and

Yn = XJn , n ∈ Z+.
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Then J1 is the time of the first transition, and more generally, Jn is the time of the nth

transition. As we know, the sequence of states {Yn, n ∈ Z+} visited by {Xt, t ∈ R+} forms

a DTMC, called the jump chain or the embedded Markov chain. This jump chain has

transition matrix given by

P = (pij) =


qij
qi

, if i ̸= j and qi > 0;

0, if i = j and qi > 0;

δij , if qi = 0,

where δij =

1, if i = j;

0, if i ̸= j.

Theorem 1 Let ℓ ∈ N. The CTMC X is exponentially transient or ℓ-transient if and

only if so is its jump chain.

Proof Since the chain X is irreducible, then we have qi > 0 for every i ∈ E.

Otherwise there would be an absorbing state, which contradicts the irreducibility of X.

Now let µ < qi for every i ∈ C. From the proof of Proposition 3.2 in Chapter 5 of [10], we

have for i ∈ E, ∫ ∞

0
eµtPii(t)dt =

1

qi − µ

[ ∞∑
m=0

( qi
qi − µ

)m
P

(m)
ii

]
, (2)

where P
(m)
ii is the element in row i and column i of the m-step transition matrix of the

jump chain.

We first prove the case of exponential transience. For some (then for all) state i ∈ E,

if the jump chain is geometrically transient with

∞∑
m=0

smP
(m)
ii < ∞,

where s > 1, then we can choose µ = qi − qi/s > 0 such that∫ ∞

0
eµtPii(t)dt =

s

qi

∞∑
m=0

smP
(m)
ii < ∞,

which shows the CTMC is exponentially transient. Conversely, suppose that the CTMC

is exponentially transient, namely, for every i ∈ E and some µ > 0,∫ ∞

0
eµtPii(t)dt < ∞.

By page 176 in [10], we know that the decay parameter λE is the convergence radius of

the integral
∫∞
0 eµtPii(t)dt for any i ∈ E, which implies λE > µ > 0. Without loss of
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generality, we can assume λE > µ. Further, by Theorem 1.9 in Chapter 5 of [10] we have

inf
i∈E

qi > λE > µ. Hence, for any fixed i ∈ E we have qi > µ. Define si = qi/(qi − µ) > 1,

then by equation (2) we have

∞∑
m=0

smi P
(m)
ii = (qi − µ)

∫ ∞

0
eµtPii(t)dt < ∞,

from which, we know that the jump chain is geometrically transient.

Then we deal with the case of algebraic transience. It is worth noting that the above

equation (2) also holds for µ 6 0. Now let

A(µ) =
∞∑

m=0

( qi
qi − µ

)m
P

(m)
ii

and its derivatives be given by

A(n)(µ) =
∞∑

m=0
qmi

m · · · (m+ n− 1)

(qi − µ)m+n
P

(m)
ii , n ∈ N.

Repeating taking the derivative of both sides of equation (2) with respect to µ, we can get∫ ∞

0
tℓeµtPii(t)dt =

ℓ!

(qi − µ)ℓ+1
A(µ) +

ℓ!

(qi − µ)ℓ
A(1)(µ) + · · ·+ 1

qi − µ
A(ℓ)(µ).

Let µ = 0, then we have∫ ∞

0
tℓPii(t)dt

=
ℓ!

qℓ+1
i

A(0) +
ℓ!

qℓi
A(1)(0) + · · ·+ 1

qi
A(ℓ)(0)

=
ℓ!

qℓ+1
i

∞∑
m=0

P
(m)
ii +

ℓ!

qℓ+1
i

∞∑
m=0

mP
(m)
ii + · · ·+ 1

qℓ+1
i

∞∑
m=0

[m · · · (m+ ℓ− 1)]P
(m)
ii .

Since qi and ℓ are determined, the above equation can be written as∫ ∞

0
tℓPii(t)dt = a0

∞∑
m=0

P
(m)
ii + a1

∞∑
m=0

mP
(m)
ii + · · ·+ aℓ

∞∑
m=0

mℓP
(m)
ii , (3)

where ai, i = 0, 1, · · · , ℓ are positive constants dependent only on qi and ℓ.

From equation (3), we can obtain the equivalent relation of algebraic transience be-

tween the CTMC and its jump chain immediately. If the jump chain is ℓ-transient, then

for any fixed state i,
∞∑

m=0
mℓP

(m)
ii < ∞,

from which, we know that
∞∑

m=0
mkP

(m)
ii are finite for 0 6 k 6 ℓ − 1. By equation (3), we

have ∫ ∞

0
tℓPii(t)dt < ∞,
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which implies that the CTMC X is ℓ-transient. Conversely, if the CTMC X is ℓ-transient,

that is, for any fixed state i, ∫ ∞

0
tℓPii(t)dt < ∞,

then by equation (3) again, we have

∞∑
m=0

mℓP
(m)
ii < ∞.

Hence, the jump chain is ℓ-transient. The proof is finished. �

The drift criteria for algebraic and geometric transience for DTMCs have been given

respectively by Theorem 2.2 and Theorem 3.2 in [2]. Together with Theorem 1, we can get

the criteria for algebraic and exponential transience for CTMCs in terms of drift functions.

Corollary 2 The following statements are equivalent.

(i) The CTMC X is exponentially transient.

(ii) There exists some set A ⊂ E, constants λ, b ∈ (0, 1), and a function W > IA (with

W (i) < ∞ for some i ∈ E) satisfying the drift condition

∑
j ̸=i

qij
qi

W (j) 6 λW (i)IAc(i) + bIA(i), i ∈ E,

where I(·) is an indicator function.

Corollary 3 The following statements are equivalent.

(i) The CTMC X is ℓ-transient.

(ii) There exists some set A ⊂ E, constants d ∈ (0,∞), b ∈ (0, 1), and nonnegative

functions Wn (with Wn(i) < ∞ for some i ∈ E), n = 0, 1, · · · , ℓ satisfying for n =

0, 1, · · · , ℓ, 

∑
j ̸=i

qij
qi

Wn(j) 6 Wn(i)− (ℓ− n)Wn+1(i), i ∈ Ac,

Wn(i) > 1, i ∈ A,

∑
j ̸=i

qij
qi

W0(j) 6 d, i ∈ A,

∑
j ̸=i

qij
qi

Wℓ(j) 6 b, i ∈ A,

where Wℓ+1 = 0.
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Next, we are going to present equivalent conditions for r-transience for CTMCs in

terms of the modified moments of the first return times. For any non-empty subset A ⊂ E,

we define the first return time on the set A as follows

τA = inf{t > J1 : Xt ∈ A},

where J1 is the first jump time of the CTMC X. Let

FiA = P{τA < ∞|X0 = i}

be the probability of X ever returning to A.

Proposition 4 For a function r(t), where r(t) = tℓ, ℓ ∈ N or r(t) = st, s > 1, the

following statements are equivalent.

(i) For some (then for all) i ∈ E, the CTMC X is r-transient.

(ii) For some (then for all) i ∈ E, Fii < 1 and Ei[r(τi)I{τi<∞}] < ∞.

(iii) For some (then for all) finite non-empty set A ⊂ E,

max
i∈A

∫ ∞

0
r(t)PiA(t)dt < ∞.

(iv) For some (then for all) finite non-empty set A ⊂ E, max
i∈A

Ei[r(τA)I{τA<∞}] < ∞, and

FjA < 1 for some j ∈ A.

Proof See Appendix in Section 5. �

Remark 5 It is worth noting that there is a result similar to Proposition 4 about

DTMCs in [3], and here we extend it to the continuous time case. Proposition 4 provides us

another criteria for algebraic and exponential transience for CTMCs in terms of the modified

moments of the first return times on a single state or a finite non-empty set, whose proof

uses Theorem 1.

§3. Relation with Dual Processes

In this part, we will introduce the concept of stochastic monotonicity and dual pro-

cesses of CTMCs. Then the transience properties for CTMCs are investigated through

the related dual processes.

Consider an irreducible CTMC X(1) = {X(1)
t , t ∈ R+} on a countable state space

E = {0, 1, 2, · · · } with the regular q-matrix Q(1) and the unique transition function P
(1)
ij (t).

Note that since Q(1) is regular, P
(1)
ij (t) is honest, that is,

∑
j∈E

P
(1)
ij (t) = 1 for any i ∈ E.
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Definition 6 P
(1)
ij (t) is called stochastically monotone if Pi{X(1)

t > k} is a nonde-

creasing function of i for every fixed k and t.

Lemma 7 [11] There exists another CTMC X(2) = {X(2)
t , t ∈ R+} with transition

function

P
(2)
ij (t) =

∞∑
k=i

[P
(1)
jk (t)− P

(1)
j−1,k(t)], i, j ∈ E, t > 0, (4)

where P
(1)
−1,k(t) ≡ 0 satisfying

Pi{X(2)
t 6 j} = Pj{X(1)

t > i}, i, j ∈ E, t > 0, (5)

if and only if P
(1)
ij (t) is stochastically monotone.

Then the chain X(2) with transition function P
(2)
ij (t) defined by (4) is called the dual

process of X(1). For dual processes, we have the following property.

Lemma 8 P
(1)
ij (t) is honest if and only if P

(2)
00 (t) ≡ 1, that is, state 0 is the absorbing

state of chain X(2).

Proof From (5), we have

Pi{X(2)
t 6 j} = Pj{X(1)

t > i}, i, j ∈ E, t > 0.

When i = j = 0, it follows that

P
(2)
00 (t) =

∞∑
k=0

P
(1)
0k (t).

Hence P
(2)
00 (t) = 1 if and only if P

(1)
ij (t) is honest. �

Inspired by Gong’s master thesis [12] and the research on dual processes by Zhang and

Chen [13], we investigate the algebraic and exponential transience for CTMCs with the

help of their dual processes and have the following theorem.

Theorem 9 Assume that the irreducible CTMC X(1) is honest and stochastically

monotone. Let T be the absorption time of its dual process X(2), then

(i) X(1) is transient if and only if E1[T ] < ∞;

(ii) X(1) is ℓ-transient if and only if E1[T
ℓ+1] < ∞;

(iii) X(1) is exponentially transient if and only if there exists a positive number α such that

E1[e
αT ] < ∞.
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Proof According to (5), we have

Pj{X(1)
t > i} = Pi{X(2)

t 6 j}, i, j ∈ E, t > 0.

In particular, when i = j = 0, we can obtain

P0{X(1)
t > 0} = P0{X(2)

t 6 0} = P
(2)
00 (t); (6)

when i = 1, j = 0, it follows that

P0{X(1)
t > 1} = P1{X(2)

t 6 0} = P
(2)
10 (t). (7)

By subtracting equation (7) from equation (6), we can get

P
(1)
00 (t) = P

(2)
00 (t)− P

(2)
10 (t) = 1− P

(2)
10 (t) = P1{T > t}, (8)

where the second equality follows from Lemma 8 and the fact that Q(1) is regular. Hence∫ ∞

0
P

(1)
00 (t)dt =

∫ ∞

0
P1{T > t}dt = E1[T ].

Furthermore, let F (t) := P1{T 6 t} be the probability distribution function of T

starting from state 1, then from equation (8) we have

E1[T
ℓ+1] =

∫ ∞

0
tℓ+1dF (t)

=

∫ ∞

0

[ ∫ t

0
(ℓ+ 1)xℓdx

]
dF (t)

=

∫ ∞

0

[ ∫ ∞

x
dF (t)

]
(ℓ+ 1)xℓdx

= (ℓ+ 1)

∫ ∞

0
xℓP1{T > x}dx

= (ℓ+ 1)

∫ ∞

0
xℓP

(1)
00 (x)dx.

Since ℓ + 1 is fixed and positive, then chain X(1) is ℓ-transient for state 0 if and only if

E1[T
ℓ+1] < ∞.

Similar to the above analysis, we can have

E1[e
αT ] =

∫ ∞

0

∞∑
n=0

(αt)n

n!
dF (t)

=
∞∑
n=0

αn

n!

∫ ∞

0

(∫ t

0
nxn−1dx

)
dF (t)

=
∞∑
n=0

αn

n!

∫ ∞

0

[ ∫ ∞

x
dF (t)

]
nxn−1dx
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=
∞∑
n=0

αn

n!

∫ ∞

0
nxn−1P1{T > x}dx

=

∫ ∞

0

∞∑
n=0

αn

n!
nxn−1P1{T > x}dx

= α

∫ ∞

0
eαxP1{T > x}dx

= α

∫ ∞

0
eαxP

(1)
00 (x)dx.

Since α is fixed and positive, then the chain X(1) is exponentially transient for state 0 if

and only if E1[e
αT ] < ∞. Finally, since X(1) is irreducible, then the transience for state 0

is equivalent to the transience for any state in E. So the proof is complete. �

Remark 10 (i) of Theorem 9 is not new, which was first presented in [12]. Here we

extend it to the algebraic and exponential transience. Meanwhile, it is worth noting that (ii)

is actually valid for any ℓ ∈ R+.

Consider a CTMC X(1) on the state space E with the q-matrix Q(1) = (q
(1)
ij ). Define

the matrix Q(2) by

q
(2)
ij =

∞∑
k=i

(q
(1)
jk − q

(1)
j−1,k), i, j ∈ E, (9)

where q
(1)
−1,k ≡ 0. From Proposition 4.2 in Chapter 7 of [10], we know that Q(2) is the

q-matrix of dual process X(2). As shown in Lemma 8, if X(1) is honest, then X(2) is

transient and state 0 is an absorbing state. It is usually not intuitive to get the absorption

information directly from Q(2). However, if the set E′ = E\{0} is communicating, then we

may get the information about the absorption time of X(2) through the known ergodicity

results. The details are explain as follows.

Define

Q(3) = (q
(3)
ij ) =


−1 1 0 · · ·
q
(2)
10 q

(2)
11 q

(2)
12 · · ·

q
(2)
20 q

(2)
21 q

(2)
22 · · ·

...
...

...
. . .

 ,

then the Markov chain with generator Q(3) (denoted by X(3)) is irreducible. If we denote

by Ei[τj ] the expected time until the process enters state j for the first time starting in

i, then E1[τ0] of X
(3) is equal to the mean absorption time of X(2) starting from state 1,

which is what we focus on. Hence, through the ergodicity results of X(3), we can easily

obtain the information about the absorption times of X(2).
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§4. Applications

Now we apply the results in Sections 2 and 3 to investigate the transient properties

of generalized Markov branching processes and birth-death processes.

1) Generalized Markov Branching Processes

Example 11 Consider a generalized Markov branching process X = {Xt, t ∈ R+}
(see [14]) on a countable state space E = Z+ = {0, 1, 2, · · · } with q-matrix Q = (qij) give

by

qij =


bj , i = 0;

riaj−i+1, i > 1, j > i− 1;

0, otherwise,

where 
−b0 =

∞∑
j=1

bj < ∞, bj > 0, j > 1;

−a1 =
∞∑
j ̸=1

aj < ∞, aj > 0, j ̸= 1.

Suppose X is irreducible, equivalently, P is irreducible. Then the jump chain of X

has transition matrix given by

Pij =



bj
−b0

, i = 0, j > 1;

aj−i+1

−a1
, i > 1, j > i− 1, j ̸= i;

0, otherwise.

Obviously, the jump chain is a M/G/1-type Markov chain. From the proof of Theorem 1 in

[3], we know that if a M/G/1-type Markov chain is transient, then it will be geometrically

transient. Hence from Theorem 1 in [3] and our Theorem 1, we can get the following

proposition.

Proposition 12 The generalized Markov branching process X is transient if and only

if
∑
k ̸=1

kak > a1. Moreover, X is exponentially transient if it is transient.

2) Birth and Death Processes

Next, we consider the classical birth and death processes. We will illustrate the

transience properties through their corresponding dual processes.
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Example 13 Consider a continuous-time birth and death process X(1) on the state

space E = Z+ with q-matrix Q(1) = (q
(1)
ij ) given by

q
(1)
ij =



λi, if j = i+ 1, i > 0;

µi, if j = i− 1, i > 1;

−λ0, if j = i = 0;

−(λi + µi), if j = i, i > 1.

(10)

According to the analysis in Section 3, we can determine the dual process X(2) of

X(1) with q-matrix

Q(2) = (q
(2)
ij ) =



0 0 0 0 · · ·
λ0 −λ0 − µ1 µ1 0 · · ·
0 λ1 −λ1 − µ2 µ2 · · ·
0 0 λ2 −λ2 − µ3 · · ·
...

...
...

...
. . .


.

Define the CTMC X(3) with q-matrix

Q(3) = (q
(3)
ij ) =



−1 1 0 0 · · ·
λ0 −λ0 − µ1 µ1 0 · · ·
0 λ1 −λ1 − µ2 µ2 · · ·
0 0 λ2 −λ2 − µ3 · · ·
...

...
...

...
. . .


.

Let µ0 = 1 and β0 = 1, βi = (µ0µ1 · · ·µi−1)/(λ0λ1 · · ·λi−1), i > 1. According to [15] or

[8], we have for the chain X(3) and for k > 1,

Ek[τ0] =
k−1∑
j=0

1

βjµj

∞∑
i=j+1

βi,

Ek[τ
n
0 ] = n

k−1∑
j=0

1

βjµj

∞∑
i=j+1

βiEi[τ
n−1
0 ], n > 1,

where Ei[τ
n
0 ] represents the n-order moment of the time until the chain X(3) enters state 0

for the first time starting in i. Further, from [5] or Theorem 1.1 and Remark 2.2 in [9] we

know that the chain X(3) is exponentially ergodic, namely, there exists a positive number

α such that E1[e
ατ0 ] < ∞, if and only if

sup
k>0

k−1∑
j=0

1

βjµj

∞∑
i=k

βi < ∞.
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Hence, from Theorem 9 and the above analysis we know that the chain X(1) is tran-

sient if and only if

E1[τ0] < ∞, that is,
∞∑
i=1

µ0µ1 · · ·µi−1

λ0λ1 · · ·λi−1
< ∞.

In addition, for algebraic and exponential transience we have the following proposition.

Proposition 14 Let ℓ ∈ N. Suppose that the continuous-time birth and death

process is irreducible. Then

(i) X(1) is ℓ-transient if and only if

∞∑
k=1

βkEk[τ
ℓ
0 ] < ∞,

where

Ek[τ
n
0 ] =


k−1∑
j=0

1

βjµj

∞∑
i=j+1

βi, n = 1;

n
k−1∑
j=0

1

βjµj

∞∑
i=j+1

βiEi[τ
n−1
0 ], n > 1.

(ii) X(1) is exponentially transient if and only if

sup
k>0

k−1∑
j=0

1

βjµj

∞∑
i=k

βi < ∞.

Remark 15 Above we have obtained the criteria for algebraic and exponential tran-

sience for continuous-time birth-death processes. Furthermore, by the method of h-ap-

proximation chain we can also obtain the criteria for algebraic and geometric transience

for discrete-time birth-death processes.

Consider an irreducible DTMC Z = {Zn, n ∈ Z+} with transition matrix

P = (pij) =



a0 b0 0 0 · · ·
a1 r1 b1 0 · · ·
0 a2 r2 b2 · · ·
0 0 a3 r3 · · ·
...

...
...

...
. . .


.

We can define the corresponding CTMCX= {Xt, t ∈ R+} with generatorQ = P−I. Since

Q is bounded, by Liu et al. [3] we know that X is transient, ℓ-transient or exponentially

transient if and only if so is Z. By Proposition 14, we can get the criteria for algebraic

and geometrical transience for discrete-time birth-death process Z directly.
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§5. Appendix: Proof of Proposition 4

Proof Since the chain X is irreducible, it is direct to show that
∫∞
0 r(t)Pii(t)dt

for some i ∈ E if and only if
∫∞
0 r(t)Pjj(t)dt for any j ∈ E. Hence, we only need to

prove the following statements are equivalent for any fixed i ∈ E and any fixed finite set

A containing i:

(i′)

∫ ∞

0
r(t)Pii(t)dt < ∞,

(ii′) Fii < 1, Ei[r(τi)I{τi<∞}] < ∞,

(iii′) max
i∈A

∫ ∞

0
r(t)PiA(t)dt < ∞,

(iv′) max
i∈A

Ei[r(τA)I{τA<∞}] < ∞ and FjA < 1 for some j.

Similar to the proof of Proposition 1 in [3], we will establish the equivalent relationship

by showing that (ii′) ⇒ (i′) ⇒ (iii′) ⇒ (iv′) ⇒ (ii′).

(ii′) ⇒ (i′). For r(t) = tℓ, ℓ ∈ N, we have∫ ∞

0
tℓPii(t)dt =

∫ ∞

0
tℓ
[
e−qit +

∫ t

0
Pii(t− u)dFii(u)

]
dt

=
ℓ!

qℓ+1
i

+

∫ ∞

0

∫ ∞

0
(v + u)ℓPii(v)dvdFii(u)

=
ℓ!

qℓ+1
i

+

∫ ∞

0

∫ ∞

0

(
vℓ + uℓ +

ℓ−1∑
k=1

Ck
ℓ v

kuℓ−k
)
Pii(v)dvdFii(u)

=
ℓ!

qℓ+1
i

+ Fii

∫ ∞

0
vℓPii(v)dv + Ei

[
τ ℓi I{τi<∞}

] ∫ ∞

0
Pii(v)dv

+
ℓ−1∑
k=1

Ck
ℓ

∫ ∞

0
uℓ−kdFii(u)

∫ ∞

0
vkPii(v)dv

6 ℓ!

qℓ+1
i

+ Fii

∫ ∞

0
vℓPii(v)dv + Ei

[
τ ℓi I{τi<∞}

] ∫ ∞

0
Pii(v)dv

+
(
1 + Ei

[
τ ℓi I{τi<∞}

]) ℓ−1∑
k=1

Ck
ℓ

∫ ∞

0
vkPii(v)dv,

where the last inequality holds since∫ ∞

0
uℓ−kdFii(u) =

∫ 1

0
uℓ−kdFii(u) +

∫ ∞

1
uℓ−kdFii(u)

6 1 +

∫ ∞

1
uℓdFii(u) 6 1 +

∫ ∞

0
uℓdFii(u)

= 1 + Ei

[
τ ℓi I{τi<∞}

]
.
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Hence we can obtain∫ ∞

0
tℓPii(t)dt 6

[ ℓ!

qℓ+1
i

+
ℓ−1∑
k=1

Ck
ℓ

∫ ∞

0
vkPii(v)dv

]/
(1− Fii)

+
Ei

[
τ ℓi I{τi<∞}

]
1− Fii

[ ∫ ∞

0
Pii(v)dv +

ℓ−1∑
k=1

Ck
ℓ

∫ ∞

0
vkPii(v)dv

]
.

From the above inequality, we can use an induction argument to yield that
∫∞
0 tℓPii(t)dt

< ∞.

For r(t)=st, s>1, from the assumption that Fii<1 and Ei[s
τiI{τi<∞}] =

∫∞
0 stdFii(t)

< ∞, we have that there exists some ŝ > 1 such that ŝ < eqi and Ei[ŝ
τiI{τi<∞}] < 1. In

fact, we have∫ ∞

0
ŝ tPii(t)dt =

∫ ∞

0
ŝ t
[
e−qit +

∫ t

0
Pii(t− u)dFii(u)

]
dt

=

∫ ∞

0
(ŝ e−qi)tdt+

∫ ∞

0

∫ ∞

0
ŝ (u+v)Pii(v)dvdFii(u)

=
1

qi − ln ŝ
+

∫ ∞

0
ŝudFii(u)

∫ ∞

0
ŝ vPii(v)dv.

That is, ∫ ∞

0
ŝ tPii(t)dt =

{
(qi − ln ŝ)

[
1−

∫ ∞

0
ŝudFii(u)

]}−1
.

Since Ei[ŝ
τiI{τi<∞}] =

∫∞
0 ŝudFii(u) < 1, we can obtain

∫∞
0 ŝ tPii(t)dt < ∞.

Specially, when s = 1, it is easy to show that∫ ∞

0
Pii(t)dt =

1

qi(1− Fii)
< ∞.

(i′) ⇒ (iii′). Since the chain is irreducible, for any state j such that j ̸= i and j ∈ A,

there exists a positive number uj > 0 such that Pji(uj) > 0. Then for r(t) = tℓ, ℓ ∈ N or

r(t) = st, s > 1, we have∫ ∞

0
r(t)Pii(t)dt >

∫ ∞

uj

r(t− uj + uj)Pii(t)dt

>
∫ ∞

uj

r(t− uj)Pii(t)dt

> Pji(uj)

∫ ∞

uj

r(t− uj)Pij(t− uj)dt

= Pji(uj)

∫ ∞

0
r(v)Pij(v)dv. (11)
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It follows that
∫∞
0 r(t)Pij(t)dt < ∞ from the assumption that

∫∞
0 r(t)Pii(t)dt < ∞. Since

A is a finite set, we have for any i ∈ A,∫ ∞

0
r(t)PiA(t)dt =

∫ ∞

0

∑
j∈A

r(t)Pij(t)dt

=

∫ ∞

0
r(t)Pii(t)dt+

∑
j∈A,j ̸=i

∫ ∞

0
r(t)Pij(t)dt < ∞. (12)

(iii′) ⇒ (iv′). Assume that (iii′) holds. Obviously, for any i ∈ A,

Ei

[
r(τA)I{τA<∞}

]
6

∫ ∞

0
r(t)PiA(t)dt < ∞.

Now we prove that FjA < 1 for some j ∈ A. By Theorem 1, we have known that the

transience properties for the chain X are equivalent to those for its jump chain. Denote

the jump chain by Y = {Yn, n ∈ Z+} and let its transition matrix, the first return time

on the set A and the probability ever returning to A respectively be P , τA and F iA.

According to (11) and (12), we can get for any i ∈ A,∫ ∞

0
r(t)PiA(t)dt 6

[
1 +

∑
j∈A,j ̸=i

1

Pji(uj)

] ∫ ∞

0
r(t)Pii(t)dt.

Since A is a finite set, then

1 +
∑

j∈A,j ̸=i

1

Pji(uj)
< ∞.

It follows that for any i ∈ A, ∫ ∞

0
r(t)PiA(t)dt < ∞

from the assumption that max
i∈A

∫∞
0 r(t)Pii(t)dt < ∞. By Theorem 1 and Proposition 1 in

[3], we have
∞∑
n=0

r(n)P
(n)
iA < ∞

and then F jA < 1 for some j ∈ A, which implies that

P{τA = ∞|Y0 = j} > 0.

Since the state transitions in the CTMC X are the same as the state transitions in the

jump chain Y and X is non-explosive, then we have

P{τA = ∞|X0 = j} > 0,

which shows that FjA < 1 for some j ∈ A.
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(iv′) ⇒ (ii′). It is obvious that Fjj 6 FjA < 1 for some j ∈ A, which implies that

Fii < 1 for any i ∈ E according to the irreducibility of X. Since

max
i∈A

Ei

[
r(τA)I{τA<∞}

]
< ∞,

from Lemma 3.3 in [16], there exits a subset A′ ⊂ A such that

max
i∈A

Ei

[
r(τA′)I{τA′<∞}

]
< ∞.

By irreducibility, in a manner similar to Remark (2) on page 210 of [10], we have for any

j ∈ A,

max
i∈A

Ei

[
r(τj)I{τj<∞}

]
< ∞.

Then, from Remark 2.2 in [17], we can obtain that for any i,

Ei

[
r(τi)I{τi<∞}

]
< ∞.

Hence the proof is finished. �
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连续时间马氏链的代数及指数非常返性

林 娜 刘源远

(中南大学数学与统计学院, 长沙, 410083)

摘 要: 本文研究了连续时间马氏链的代数非常返性和指数非常返性, 揭示了连续时间马氏链与其跳跃链和

对偶过程之间的等价关系. 运用所得结果, 我们进一步得到了广义分支过程和生灭过程等连续时间马氏链的非

常返性判别准则.

关键词: 马氏链; 代数非常返; 指数非常返; 跳跃链; 对偶过程
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