Abstract In this article, applying the result of complete convergence for negatively associated (NA) random variables which is obtained by Chen et al.\ucite{14}, the equivalent conditions of complete convergence for weighted sums of arrays of row-wise negatively associated random variables is investigated. As a result, the corresponding results of Liang\ucite{11} is generalized, moreover, the proof procedure is simplified greatly which is different from truncation method of Liang's. Thus, Gut's\ucite{13} result on Ces\`{a}ro summation of i.i.d. random variables is extended.
|