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Abstract

We consider a class of semi-parametric transformation models, under which an unknown
transformation of the survival time is linear related to the covariates with various error distri-
butions, which are parametrically specified with unknown parameters. Estimators of the coeffi-
cients of covariates are obtained from linear least squares procedures and the Class-K method
with censored observations. We show that the estimators are consistent and asymptotically nor-
mal. This transformation model, coupled with proposed inference procedures, provides many
alternatives to the Cox models and survival analysis.
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§1. Introduction
Consider the following semiparametric transformation model introduced by Cox (1972)
h(T)=—-2"8+s¢, (1.1)

where h(-) is assumed to be a smooth, invertible and strictly monotonically increasing function on
R', 2 is a g x 1 covariate vector, B is a g x 1 coefficient vector, and € has distribution W with
density w > 0 on R'. The response T is continuous, z and 3 are bounded. Generally, we assume
that the distribution of € does not vary with z. The data are generated by n i.i.d. samples of
(2i,€i) with T; = h=Y(—z] B +¢&;), for i = 1,2,--- ,n. Our focus is the estimation of 8 by using
the resulting n copies of (T, z).

Many methods proposed to estimate S vary with the different treatment of h(-) and a distinct
distribution of W. With h specified up to a finite-dimensional parameter vector, model (1.1) has
been discussed extensively by Box and Cox (1964). For a completely unspecified h, rank method
for analysis failure time data in model (1.1) has been proposed, for example, by Cuzick (1988), an
alternative method based on estimating equations for 8 in model (1.1) was proposed by Cheng et
al. (1995, 1997), Cheung and Fine (2001), among others.

On the other hand, if W, a distribution function for ¢, is the extreme value distribution W (s) =

1 — exp{—exp(s)}, model (1.1) is the proportional hazards model. Rank likelihood estimation has
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been proposed to estimate regression coefficients by Doksum (1987). If W is the standard logistic
distribution, model (1.1) is the proportional odds model. Approaches, such as, modified likelihood
approach by Pettitt (1984), likelihood sampler method by Dabrowska and Doksum (1988), profile
likelihood by Murphy et al. (1997), and recently, sieve likelihood proposed by Shen (1998), are
used to investigate proportional odds model. If W is the standard normal distribution, model (1.1)
is the probit model (Fine and Bosch, 2000).

Although semiparameteric transformation models have been extensively applied to analyze
survival data, the inferences are essentially based on the likelihood function, and the inference for
the monotone transformation h(-) (hence the baseline hazards rate) is after the estimation for 3.
In this paper, we propose a different approach: an estimator of the monotone transformation h(-)
is given firstly, then based on a transformation of the observed data, such as Class-K method, an
estimator of coefficients for covariates is derived from the ordinary linear least squares procedure
and the large sample properties are also obtained. This new “two-step” estimation procedure
provides a simple and effective methodology to analyze survival data with covariates.

We next describe briefly the structure of the article. In section 2 we give a specification of
semiparametric transformation models for analysis survival data. And in section 3, an estimation
of h(-) will be given. And the linear least squares estimators and their large sample properties
are obtained in sections 4-5. A small simulation preformed in section 6 is given to illustrate our

inference.

§2. Model Specification

Following the usual formulation in survival analysis, we postulate a “true” survival time T}
for each individual i, which is only observed if it does not exceed individual i’s censoring time
¢;; otherwise, we observe ¢;. We also know whether an individual ¢ is censored or not. This is
recorded in a censoring indicator §;, with ¢; = 1 if T; is an actual failure time (uncensored) and

0; = 0 if T; is censored. The observable survival time Y;, possibly censored, is then given by

Y; =T; A¢; =min(T;,¢;), 1 = 1,--- ,n. The censoring indicators can be written as
1 if T; <¢.
si=<" e i=1,---,n.
0, otherwise,

In general, both T; and ¢; are random variables, so are Y; and §;. We further assume that T; is
independent of ¢; for each i, and (T}, ¢;), i = 1,--- ,n, are mutual independent pairs. In addition,
¢; are assumed to have the same cumulative distribution function G, which is referred to as an
independent and identically distribution (i.i.d.) censoring model. The distribution of 7;, on the
other hand, are not necessarily identical, and may depend on such covariates as age, gender,

treatment method, etc.
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Let T' denote a nonnegative random variable representing the survival time of an individual,
and F(t) be the cumulative distribution function (cdf) of 7. Let z be a ¢ x 1 vector of covariates
associated with the survival time 7" of an individual under study. The Cox Proportional Hazards

(PH) model specifies the survival function of T' with covariate vector z by
S(t,2) = (1= Fo(t) ™7, (2.1)

where Fy(t) is a baseline survival function independent of covariates, 8 = (B1,---,3,) " is an
unknown vector of regression parameters (coefficients of covariates) to be estimated.
Suppose that T; is a survival time with distribution F;(t) = 1 — (1 — Fo(t))exp(z"T A=
1,2,--- ,n, then
log{—1log[1 — F;(t)]} = 2/ 8 + log{—log[1 — Fy(1)]}. (2.2)

Let h(t) = log{—log[1 — Fo(t)]}. Then for a random variable 7; with distribution function F;(t),
by (2.2) we can write

h(TZ) = —Z;rﬂ + €;, (23)

where {g;} are i.i.d. with the distribution function W(z) = 1 — exp{—exp(z)}, z € (—00, 00).
From (2.3), we say, the independent random variables T1,T5,--- , T, follow a linear trans-
formation model. In this paper, we investigate a semiparametric transformation models with a
unknown h(t) and the distribution functions of ¢; is known. From the definition of h(t) in model
(2.3) we know that h(t) is an increasing monotone function.
Following Doksum (1987), we can and will reparameterize to have i 25 =0,7=1,2,--- ,q.

=1
Here, to unify model (2.3), is a summary of assumptions and notation:

hTi):_z;rﬂ+Eia i=12,---,n,
> zij =0, z = (2ij)nxq has rank g, (2.4)

where h(t) is increasing on the real line and W (z), a distribution function of ¢, is absolutely

continuous and with a density function w(z) that satisfies w(z) > 0, = € R.

§3. Estimation of the Transformation

In order to develop linear least squares regression analysis, we shall first give a consistent

estimator of h(t). Following Doksum (1987) we write

q
h(t;) = —p; + €4, wi = Y 2iiBj,

Jj=1

and let F; denote the distribution of T; and W the distribution of ;. Note that F;(t) = P(T; <
t) = P(W(T;) < h(t)) = W(h(t) + p;). Then, we can write h(t) = W {F;(t)} — pi- In our
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n
parameterization Y u; = 0; thus
i=1

h(t) =

SI'—‘

WD), (31)

We assume that the p’s are not all zero.

Doksum (1987) gives two consistent estimators of h(t) with some uncensored data, this paper,
we extend the results of Doksum (1987) from uncensored survival data to possibly censored survival
data.

In order to avoid a lengthy technical discussion about the tail behavior, we make the following
assumptions (see also, Murphy et al., 1997): For 79, a finite time point, assume that P{c > 10} =
P{c = 7o} > 0. That is, the study ends at time 7y, and any remaining live individuals are considered
censored at time 7p. Also assume that on average, some individuals are at risk at time 79, that
is, P{T > 10} > 0. Finally, for any possible covariate pattern, the chance of observing a survival
time should be positive, that is, P{T < ¢|z} > 0 almost surely. For convenience, denote those

assumptions by
P{c> 7} =P{c=m}>0, P{T > 7} >0, P{T < |z} > 0. (3.2)

3.1 Fixed parameters
We consider the nonlocal case (see Doksum, 1987) with 3; and p; fixed as sample size increases.
From (3.1) we see that if we can estimate the F;, then we can estimate h(t). This can be done in

analysis of variance models with several observations per cell. These models can be written as
h(tjk)=0J+EJk7 k:1727"'7nj7j=1727"'7q7

where 6; and n; are the mean and sample size in cell j, respectively. Now define Aj, = n;/n, let
F} denote the distribution of ¢;; and let I?’J be the Kaplan-Meier estimator of F} in cell j. Assume
that the following arguments hold

lim Aj, = ), 0<X<1,j=12,---,q

n—oo

q
Now we can write h(t) = Y X, W1 (F;(t)) and our estimator of h(t) is defined by

Jj=1

q

h(t) = 3 X W (F5 (1))

j=1

Throughout the rest of this paper, we will assume that ﬁ’( t) = lim n! Z F;(t) exists for all

n—oe i=1

€ [0,7r,], where 7, = sup{t : Fo(t) < 1} is the right extreme point of Fy. Let Y = 1rgax Y; and
i<n
denote h(- AY) by hg(-). Define S;(t) = 1 — Fj(t),

PR dF;(u) (u)
cy(t)—/o [-F@Pl-Gwl /[1— W= Fw]
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where G is the censoring distribution function. We establish weak convergence of hf, (t) in what
follows.
Theorem 1 Suppose that W has a corTltinuous derivative w bounded away from 0 and
oo on R'. Assume that 75, < 7¢ and sqp/ " [1 — G(u=)]"'dF;(u) < oo. Then the process
i Jo

\/ﬁ[h; (t) — hy(t)] converges weakly on (0, 7] to the Gaussian process

zq: VAiS;(t)B;(C;(t))
S wW(E®)

where By (-),-- -, By(-) are independent standard Brownian Motion processes.
Proof Write uj, = ﬁj (t), u= F;(t) and
PPN _ W) — W (u
Djo = VAW (By(e) ~ W By = T m V)

Ujn — U

Note that Dy, (t) converges weakly to B;(F;(t))/\/Ajw(W~=(F;(t))). Then for any t € (0, 7],
this together with Theorem 3.1 of Gill (1983) implies that Dy (t A Y) converges weakly to S;(¢)
-B;(C; (1)) /Ajw(W~1(F;(t))). As a result,

Valhg(6) = hg (0] = 3 Dynlt AT) 4 32 ASOBOO)

j (W=H(F;(1)))
Note that W~(F;(t)) = h(t) — p;j, hence by Theorem 1, h(t) is approximately normally
a
distributed with mean h(t) and variance > A;S;(t)2C;(t) /w?(h(t) — ;).
j=1

3.2 Local functions space
The method in section 3.1 requires multiple observations per cell. If that is not available for
a given data set, we may adopt an alternative approach described below. Following the notations

q
of Doksum (1987), if E(e;) exists, without loss of generality we can view u; = ) #;;3 as the mean
et

J

n
of h(y). Moreover, by (2.4), z =n""' Y pu; = 0. We will assume that 3 belongs to the set
i=1

Q= {B: 3 1 < C2, max |ui| -0}, (3.3)

where C2 is a constant independent of n, while 8 and u; may depend on n although this is
suppressed in the notations.

Define L(-) = 1 — L(-) for any distribution function L(-). Define F("(y) = n 1#[Y; > y]
to estimate each H;(y), and let 6(3/) be the Kaplan-Meier estimator for the censoring survival

function G. Because for each y,

W(h(y) — ps) = Fi(y) = Hi(y)/G(y),

where H;(y) = P(Y; > y), h(y) can be estimated naturally by

hiy) =W (F™ () [Gy))-
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Theorem 2 Suppose that W has a continuous derivative w bounded away from 0 and oo
TG .
on R!, and that G is continuous on [0, 7¢]. Assume 7, < 7g and / [1 - F(u=)]"'dG(u) < .
0

Then the process \/ﬁ[h; (y) — hy(y)] converges weakly on (0,79) to a Gaussian process.

Proof Note that, for any ¢ € (0,79), \/ﬁ(af, — Gy) converges weakly to a Gaussian process
[1 - G(t)]B(U(t)) (Shorach and Wellner, 1986, p. 329), where B is a standard Brownian process.
Let v, = F™ (y)/G(y), v = W (h(y)), and

Daly) = Vilh(y) — b)) = L= g,
Then
VUp — UV = w - W(h(y))
G(y)
= p! f: I:I[Sz > (gh(y) - ,uz)] —W(h(y) _ MZ):I
=1 G(y)
+n7! ;[W(h(y) — i) = W (h(y))]-

By the results in Appendix B of Cheng et al. (1997, p. 234), the first term converges uniformly
to a zero mean Gaussian process. Let a; = |[W(h(y) — ;) — W (h(y)|- By the Taylor expansion,
a; = w(h(yo))p; with |h(y)—h(yo)| < |p;| (see Doksum, 1987, p. 341). This implies that the second

term converges uniformly to zero. Finally, note that [W~1(v,) — W=1(v)]/(vn, — v) converges to

1/wW = (F(y)) as in the proof of Theorem 1. The proof is thus complete. #
Remark 1 In any sample, A(y) = —oo for y < Yq) and = oo for y > Y{,), where
Y1), ,Y(n) are the order statistics of Y1,---,Y,. To ensure that the estimator is finite out-

side the range of the data with small n, Cheung and Fin (2001) proposed a modified estimator of
h()a say B()a Le.,

h(y) = {(Y$),y < Yy ), Yy <y < Yimys (Y ()50 > Yimy }- (34)
Since with probability 1 (0,7) contains (Y{1), ¥(rn)) as n — co. Hence Theorems 1-2, but now with
h(-) replaced by h(-), also hold for y € (0, 7).

§4. Estimators in Semiparametric Regression

There are many literatures to discuss regression in non-censored case, but for censored data,
this techniques are not directly applicable because some of the response and/or covariates may
not be observed — they may be censored. A pioneering effort in regression analysis of censored
data was made by Miller (1976) and Buckley and James (1979), however these two procedures

may fail to converge. Koul, Susarla and Van Ryzin (1981) proposed another approach and gave
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their consistent and asymptotically normal estimators, they supposed that censoring variables c;
are i.i.d. and suggested replacing T; by T;* = 6;Y;/(1 — G(Y;)). Zheng (1987) extend the results
of Koul et al. (1981) and proposed a class transformation of data, which depends only on the
censoring distribution (assumed to be independent of the covariates). Once such a transformation
is carried through, one can apply a variety of statistical techniques to analyze the transformed
data as if they were uncensored. This paper, we follow Zheng (1987) and use his transformation
of data to investigate our semiparametric transformation model.

Let us recall semiparametric regression model (2.4) in section 2. First we consider the model
(2.4) with known h and known censoring distribution G, this is a ordinary regression model with
censored data. Note that h(T;) is censored if and only if T; is censored, a naive idea is that if h(T;)
is censored we add something to it to make up for the censored part and if h(T;) is uncensored we
also modify it appropriately to ensure unbiasedness in the sense that the modification h*(T;) has
the same expectation as h(7T;). In view of this consideration, we suggest using h*(T;) of the form
(for known h and G)

h*(T;) = 6ip1 (Vi) + (1 = 6i)p2(Y3), (4.1)

where 1, 2 are continuous such that

t
-Gl (D) + / 2(5)dG(5) = h(t), (4.2)

and 1,2 are independent of F; (but may depend on G). The class of all pairs (¢1,¢2) of such
functions will be denoted by K (for details, see Zheng (1987)). Various choice (¢1,¢2) € K can
be found in Zheng (1987). In this paper, to circumvent the difficulty in estimating the derivative
of h(-), we follow Koul et al. (1981) to obtain the transformed data (this means ¢2(-) = 0)

n(x) = L2000

=T Gw (4.3)

In the sequel, for simplicity we consider the case of 1-dimensional regression parameter. Now
we return to the linear regression model (2.4). We assume that G and h are known and consider

the least squares estimators

BG,h) =L : (4.4)

based on the transformed data (z;, h*(13)), (1 =1,2,---,n), where h*(T};) is given by (4.3).

If monotone function h is unknown (G(-) is known), it is natural to substitute it by a consistent
estimator of h, say h (cf. Remark 2 below), then an estimator of h* is given by substituting 1 for
h into (4.3), we have

P (T) = — S+ (4.5)
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Clearly h*(-) is a consistent estimator of A*(-) from Theorems 1-2 in section 2, but now with G

replaced by G. Then the least squares estimators based on the consistent estimator h*(-) and (4.4)

is given by
o Y-k
B(G,h*) = = : (4.6)
> (2 —%)°
=1

Also when censoring distribution G is unknown (h(-) is known), an estimator of G is used by
Koul et al. (1981), Zheng (1987), among others, i.e., an estimator of G, asymptotically like the
product-limit estimator, is given in Koul et al. (1981), and a modified Kaplan-Meier estimator is
given in Zheng (1987).

Substituting G for @ into (4.3), we have

W) = ——, (4.7)
then the estimator of 3 is given by

B@G,h) == : (4.8)

If censoring distribution G and monotone transformation h are all unknown, the modified
Kaplan-Meier estimator of G and the estimator of h defined in Theorems 1-2 are used to replace

G and h in (4.3), respectively, then the estimator of h* and the least squares estimator of 3 are

given by
T* oy 8:h(Y;)
(M—T7%? (4.9)
Y@ -an @)
BG, 1) = =1 , (4.10)
3 (5 = 2

§5. Asymptotic Properties of Estimators

Now we return to discuss the asymptotic properties of estimators. We first investigate the
case where h(t) and G(t) are all known. For estimator (4.4), note that E{h*(T;)} = E{h(T};)} and
z =0, then

n

A > (5-7)
B(G,h*) - B = 5——I[I"(Ti) — ER*(TV)), (5.1)
> (2 —2)?
i=1
since [h*(T;) — ER*(T3)] (i = 1,2,--- ,n) are independent random variables with zero mean, the

strong consistent and asymptotic normality of E (G, h*) follow from known results on least squares
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estimators in regression model with independent errors. The following Theorem 3 is direct derived
from Zheng (1987) for known h and known G.
Theorem 3 Suppose that

sup Var {h*(T;)} < o0, S2 =3 (z;—2)*—> 00 (A)
i i=1
Then B(G, h*) — B 2% 0. Furthermore if
0 < inf Var {h*(T3)} < sup Var {h*(T})} < oo, (B)
sup |z;| < oo, (€)
and for > 0,
;(Zi = 2)’E[R*(Th) — E{B (TN I e (1) —E{hs (T} -z —2120ve) = 0(Vid)- (D)
Then
> (2 —2)?
i= > X d
! I/Q{B(Gah )_IB}_)N(Oﬂ]‘)7
3 (21 — 2)Var {h*(Ti)}]

i=1

where V,, = [ > (z; — z)*Var {h* (TZ)}] 1/2.

i=1
If one or all of h and G are unknown, then the least squares estimators of 8 are given by (4.6),

(4.8), (4.10), respectively. To establish the asymptotic properties of B (+,+), we need the following
lemmas.

Lemma 1 Under the conditions listed in Theorem 1 and (3.2), then iAz(Y) —hY) 20,
where R(t) is defined in (3.4) through Theorem 1 and Y is a radom variable of Y;,-- - ,Y,.

Proof Recall an estimator A(t) defined in Theorem 1, i.e., h(t) = qul /\jnW’l(ﬁj (1)), where
ﬁ’j (t) is the Kaplan-Meier estimator of Fj(t) from a ii.d. sample {in, -, Y, } in cell j (see
Theorem 1). Note that under the i.i.d. censoring model, (5.2) is due to Peterson (1977) and Wang
(1987)

sup |ﬁ](t) - F;(t)] =5 o, as n — 0o. (5.2)
tE[O,To]
Thus
|F;(Y) - Fj(Y)| 250, as n— oo. (5.3)
Note that

S EFY) - £ B >¢) € UIBE) - BEO)| > </

i=1

(

and W ~1(-) is continuous, thus E(Y) — h(Y) 5 0. This follows from Theorem 1, the assumption
(3.2), the modified estimator }z\() in (3.4) and (5.3). #
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Lemma 2 Under the conditions listed in Theorem 2 and (3.2), then E(Y) —h(y) 20,
where /ﬁ(t) is defined in (3.4) through Theorem 2 and Y is a random variable of Y3,---,Y,,.
Proof Under the assumptions (3.2) and the modified estimator iAz(y) in (3.4), Following the

notation from Theorem 2, we need to show v, (Y) — v(Y') == 0. Note from Theorem 2 that

0 o) = &3 (P2l g ))
AU G
1o g > () =)
= x| o - W(h(Y)A - )]}
18 (Il > (hY) = )] [BO) = GOY)
b ST (R(Y) = ) = W (H(Y)
= L+, +1I;. (5.4)

Mimicking the proof of Proposition 6.2 in Doksum (1987, p. 341), we can show I3 %50, then we
need only to show I; 250 and I 25 0.

For Iy, let & = I[g; > (W(Y) — u3)]/G(Y) = W(h(Y) — p;), i = 1,--- ,n, we should mention
that &,--- ,&, are dependent, but conditionally independent with E{¢;} = 0, thus

n n
Var {I;} = n*QE{ > Var{§i|Y}} =n"2 Y E{Var{&|V}}. (5.5)
i=1 i=1
On the other hand, since random variables €1, - - , &, are mutually conditional independence,

the conditionally standard deviation of &; can be described by

Var {¢;Y'}

Var{I[&'i > (éz((;/)) — ;)] ‘Y}

_ aztn Var {Ie; > (h(Y) - u)]|V'}
1

= WW(h(Y) — )l = W (h(Y) — )]

1 1

—2 < —2

2G (Y) 2G (7o)

from (5.5)-(5.6), we have

1

Var {Il} S ——

2nG (10)
Thus I; -2 0 holds from (5.7).
For I, since F(t) = n~* znj F;(t) exists for t > 0, 1 — H;(t) = [1 = F;(t)][1 — G(¢)]. It is well
known that (see also Zheng (1558), p. 311)

sup [Gt)—G@)| 250,  to <suprm,, (5.8)
t€[0,to] i
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then by the assumptions (3.2)
GY)-GE) 250, as n— . (5.9)

Next by the assumptions (3.2), (5.8) and G(Y) > G(79), then we have

-l 3o {I[ez' > (W(Y) —ui)]} < 1!

— = (5.10)
GY)GY

~—

From (5.9)-(5.10), we obtain that Ir —2 0 as n — co. This implies that v, (V) —v(Y) - 0.
Note that Wﬁl(-) is continuous function, Then we obtain that ?L(Y) — h(Y") converges to zero
in probability. #
Remark 2 If G is known and h is unknown, an estimator of h can be defined h(y) =
W {n"'#[Y; > y]}/G(y), it is similar to Theorem 2 together with lemma 2 we can find the
asymptotic properties of i(y), hence IAz(Y)
Now we turn to show Theorem 4.
Theorem 4 Under conditions (A) and (C) listed in Theorem 3, and
liminfn ! i (zi —2)° > 0. (E)
n—reo i=1
(a) If h is unknown but G is known, we estimate h by h defined in Remark 2 above. Then
B(G,h*) s 5.
(b) If G is unknown but h is known, we replace G with its Kaplan-Meier estimator. Then
B(@G,h*) L5 B.
(¢) If G and h are all unknown, we replace G with its Kaplan-Meier estimator and replace h
with its estimator defined in Theorems 1-2 and (3.4). Then B(@,E*) =5

proof Note that the least squares estimator, such as, B (@,ﬁ*) can be decomposed into
BG, 1) - B =[B(@,h") - B +[B(G.R") - B(G,h")]. (5.11)
Since the convergence properties of (E (G, h*)— ) have been established (cf. Theorem 3), it remains
to show the difference (B(G,h") — B(G, h*)). Letting an = 3 (2; — 2)2, we write

i=1

B - BG,) = 7 { £ -3) [f_"hg(@,) - )
Note that
| hY)  hY)
1-G(;) 1-G(Y3)
- | h(YD)  h(Y) +| h(Y))  h(Y)
1-G(yv;) 1-G1)l 11-G;) 1-G(Y))

Iy + Is. (5.12)
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For I, note that 1 — G(Y;) > 1 — G(70) and ?L(Y;) 25 h(Y;) from Lemmas 1-2, thus together
with (5.10), we have

Y| 5 P
L <—————|G(Y;) —GY;)| — 0. 5.13
e e VAR (D] (513)
For I, from lemmas 1-2,
1 ~ P
< ——|n(Y;) - h(Y3)| 0. _
Iy < T gy PO ~ B 50 (5.14)

Also note that (|6,71(YD —6;h(Y;)| >¢€) C (|7L(Y,) — h(Y;)| > €) for any € > 0. This completes the
proof of (5.11) from (5.12)-(5.14).
It’s similar to show (a) and (b). This completes the proof. #

Remark 3 Based on the assumptions in (3.2) and the modified estimator ﬁ() in (3.4), the
tail of 5 can be deal with easily. Then condition 7r, < 7¢ in Zheng (1987) is redundant.

The limiting normal distribution of \/E(B (@G, 71*0) —f3) is similar to Theorem 4 in Zheng (1987).

Theorem 5 Under conditions (B)-(D) in Theorem 3 and condition (E) in Theorem 4, and
conditions of Theorems 1-2 hold. Moreover assume

1 n
R(t1,t2) = lim — > Fi(t1)F;(t2) exists for all ¢;,t2 > 0,

n—00 N j—1

Ry(t) = lim —; S (2 —Z)P(6; = 1,Y; < t),
n—o00 Z (Zi _ 2)2 =
i=1
Ry(t) = lim —; 1 S (2 —Z)P(6; =0,Y; < ¢t),
n—o00 Z (Zz _ 2)2 =
i=1

exist for all ¢ > 0 and F,(7p,) = 1 — 0(n=1/2),

o dG(s)
| S <
Then \/E(E(G,ﬁ*) — f) in case (a) of Theorem 4, \/ﬁ(ﬁ(@,ﬁ*) — f) in case (b) of Theorem 4, or
\/H(B\ (G,1") — B) in case (c) of Theorem 4, has a limiting normal distribution with zero mean and
a finite variance matrix.

The proof of the limiting normal distribution in Theorem 5 are tedious. We omit the details
here, because the method is standard, such as: develop the convergence of \/ﬁ(ﬁ —h) to a Gaussian
process W (cf. Theorems 1-2), express, such as, \/H(B(G,/}\L*) - B(G, h*)) as a function of W and

a remainder, and show the remainder tends to zero, thus completing the proof.

§6. Simulation Results

In the small simulation study, we compare the performance of the estimators of the parameters

with the true values. The general calculations can be seen more clearly in special cases. We consider
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the two sample problem with exponential distribution lifetimes. The two samples are of sizes, say,
ny and ne, respectively, n; + ny = n, with sample membership being indicated by the dummy
variable

-1, if individual ¢ is in sample 1

Zi = 1=1,2,--- n.
1, if individual ¢ is in sample 2,
Data are generated from the survival functions S1(t) = (1 — Fo (t))eXp(_B ) (

and Sa(t) = (1 — Fo(t))*P® (with respect to sample 2). Let Fy(t) be an exponential distribution

with respect to sample 1)

with parameter ¢ = 0.058. The coefficient of covariates is § = 0.3581. Censoring times ¢ are
generated from a uniform distribution between 0 to 100. For this simulation,  is given by Theorem
2 and a sample of size ny = ns = 100 and n; = ny = 400 were replicated 10000 times.

Let ,39), él), ?El), Bil) denote the linear least squares estimators based on (4.4), (4.6), (4.8),
(4.10) with the sample size n; = na = 100, respectively. And ﬂp), 52), §2), Bf) denote the linear
least squares estimators based on (4.4), (4.6), (4.8), (4.10) with the sample size nq = na = 400,
respectively. The means and the standard deviations of the simulated estimates with the sample
size n = 100 and n = 400 are displayed in Tables 1 below.

From Table 1, we see that the estimates are reasonably close to the true values of the parame-

ters and the accuracy improves as the sample sizes increase from n; = ny = 100 to ny = ny = 400.

Table 1 Summary of the simulation studies on the estimators of
(1) (1) ﬂ(l) (1) (2) (2) (2) (2)
1 2 3 4 1 2 3 4

Mean | 0.3265 | 0.3106 | 0.3238 | 0.3085 | 0.3553 | 0.3570 | 0.3527 | 0.3547
STD 0.0845 | 0.0759 | 0.0843 | 0.0759 | 0.0468 | 0.0443 | 0.0457 | 0.0452
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