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The Smallest g-Supersolution for BSDE with Jumps*
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Abstract

For Backward Stochastic Differential Equation with jumps and an increasing predictable
RCLL process as its penalization term, we have defined g-supersolution for such a BSDE and
obtained the limit theorem. As an application of the limit theorem, the existence and uniqueness
of the smallest supersolution for BSDE with jumps and constraints on (Y, Z, q) is proved.
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§1. Introduction

The idea of g-supersolution was introduced by Pengl?, and the limit theorem of a sequence
of RCLL increasing g-supersolution for a BSDE with Brownian motion was investigated. As its
application, the existence and uniqueness of the smallest g-supersolution with the constraint on
solution (Y, Z) was obtained. By Lin (1999)["] the same problems was discussed for BSDE without
Lipschitz condition both on drift coefficient and constraint.

In the case of BSDE with jumps to consider these problems, such as introducing the conception
of g-supersolution,monotonic limit theorem for g-supersolution, and the smallest g-supersolution
with constraint, is still very interesting, but there are some key difficulties in solving these problems.
We need a comparison theorem for BSDE with jumps, which the drift coefficient is b(s,y, z, q).
The paper is arranged as following: first, we obtain comparison theorem for this BSDE by Doléan-
Dade formula and It6 formula for the case. Second, we obtained the limit theorem with jumps,
constructed a sequence of g-supersolution for BSDE with jumps, proved that the limit of the
sequences is still a g-supersolution. finally, we apply the limit theorem to derive the smallest

g-supersolution for BSDE with jumps and constraint.

§2. Solution for BSDE with Jumps and Comparison Theorem

2.1 The definition of solution for BSDE with jumps
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Let (£2,F,P) be a probability space, (Ft)o<t<T be a subfiltration class of F, which was

generated by a Brownian motion and a poisson process, that is
ft:a[// Np(dl,dz);s <t,U € B(X)| VoW (s);s <t]VN,
[0,s]xU

where A denotes a total of P-null sets and oy V o2 denotes the o field generated by oy and o5,
(X, B(X)) is a measurable space, W(t) is a standard wiener process, and p(-) is a stationary Fi-
poisson process on X with the characteristic measure m(dz). We denote by Np(ds,dx) the counting
measure introduced by p(-) and set N,(ds,dz) = N,(ds,dz) — x(dz)dt, N,((0,t],U), U € B(X),
is a martingale.

We also use the following notation: L2 ([0, 77, R?) the set of R%-valued JF; adapted processes
hi(x,w) such that

T
E/ / Ihe (2, w) 2 (dz)dE < oo,
0 X

L%([0,T), R?) the set of [(t,w) F-adapted R? valued processes such that

T
E/ |l (w)|?dt < 400
0

and L%([0,T], R4*") defined similarly.
Also denoted by Li(.)(R) the set of R-valued functions ¢(z) on X, B(X) measureable, such
that

) 1/2
lall = ( [ la@Pacn) " < +oc.
X
Consider BSDE

T T T
Y, = &+ / 9(5, Y, Za, qs)ds+ Ar— Ay — / Z,dWW, / / 0 (@)N,(ds,dz), T >t>0. (2.1)
t t t X

Definition 2.1 (Y}, Z;, ¢¢) is a solution for BSDE (2.1), if
(1) (Y, Ze,q0) € L5((0,T); R) x L3([0, T]; RY) x Ly ([0, T]; R);
(2) (Yi, Zi,qt) satisfies (2.1) a.e..

2.2 Comparison theorem for BSDE with jumps
Consider the BSDE

T T T
Y;l =¢! +/ gl(S,Ysl, Zsl,q;)ds + A%p — A% — / ZsldWs —/ / q;(:n)Np(ds,da:)
t t t Jx
and
T T T B
Yf =&+ / gQ(s,YSQ, Z?,qf)ds + A%’ — A% — / Z?dT/Vs — / / qf(w)Np(ds,dw).
t t t Jx

Theorem 2.1 suppose that the following assumption on data,
(1) & >¢%
(2) ¢'(t,Y. Z,q) > g°(t,Y,Z,q) VY € R, Z € R?, g € L2\ (R);
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(3) A} — A? is an increasing process;

-1< 9(592,0) = 9(5,9.20°) <C, Vq',¢° € L} (R), if / (¢"(z) — ¢*(z))m(dz) #0
| @@ - @)rtaa) x

then Y, > Y2, t € [0,7T], where n(X) < oo.

Proof Set
1 1 71 1 1 2 o1 1
g(S,Y,Z,Q)_g(S,Y,Z,q) .
as = . * Ys'sl—Yf . 8128 Ysl 7éYs2’
0 others,
Y(s,Y2, 2L, q}) — ¢2(s, Y2, Z2, ¢!
g (57 s S)qsz g2(57 s S)qs) Z; # Zg;
bs = Zs — Zs
0 others,
> 272, q} 2 2 72 2
g 57Ys7Zsaqs —4g S’}/S7Zs7qs
( 1 : 2 : ) (g3 (z) — 3 (z))m(dz) # 0;
Cs = /X(qs () — g5 (x))m(dz) X
0 others.

Let Y, =Y -Y? Z; =Z} = Z%, ¢ = q} — ¢}, Ay = A} — A?, then

T
Y;I_Y? = £I_£2+/ (gl(vaslazslvq;)_gQ(Sva:Zstq.g))ds_‘_(A%"_A%"’)_(A%_A?)
t

T T
—/ (Zi—ZE)dWs—/ / (¢} — ¢?)N(ds,dx).
t t JX

T T
i = £+/(asY+bZ + go(s) ds-{—//csqs da:)ds—/ Z,dW,
t

//qS (ds,dz) +AT—A

where go(s) = g'(s,Y2,Z2,¢%) — ¢°(s,Y2,Z2,4%) > 0. Consider the solution for the following
linear BSDE:

That is

dYs; = —(asYs + bsZs + go(s))ds — / csqsm(dz)ds — dAs + Z,dWs + / qsﬁp(ds,dx), Yr =¢,
X X

t
where £ >0, dA; >0, go(s) >0. Ly =1 +/ L, dX; (%), where
0

T T T _
X :/ asds+/ bsdW, +/ / csNp(ds, dx).
t t t Jx

It is easy to see AX; = ¢; > —1, by Doléans-Dade exponential formulal®!,

1
L; = exp {Xt ~Xo—5 <X > } [T (1+AX,) exp{-AX,}

0<s<t
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is the unique solution for SDE (%). Since AX, > —1, L; > 0 a.s.. Applying Itd to L;Y;[5, We

have:
dV;L; = LdY: +YidL; +d[L,Y]):
= I [( —a Yy — 0 7y — / ct(w)gm(de) — go(t))dt + Z,dWy + / qtﬁp(dt, dz) — dAt]
X X
+Y;5 [Lt_btth + Lt_atdt + / Ct(LU)Lt_ﬁ(dt, dﬂf) + ZtLt_btdt]
X
+/ ct(w)Ly—qem(dx)dt,
X
T T
LY, = E]‘—t |:/ Lsgo(s)ds -|-/ L,dA, +YTLT] >0,
t t

therefore Y > 0, we have Y} > V2. #

Corollary 2.1 Suppose that ¢(s,y, 2, q) satisfies Lipschitz condition with respect to

Y, 2, 0, 6(s,y,2,9) 20, V(y,2) € R, qe L2 (R),

and
¢(87 Yy,z, ql) B ¢(S’ Yy,z, q2)

<(C
/ (¢ - )r(de)
X

0<

if/ (¢" = ¢®)m(dx) #0 (%, %), then Y < Y as. where (Y?, Z%, ¢%) is the solution for BSDE:
X

=£+/ g(s, Y, Z1 qb) ds+z/ 10) S,Y’S’,Z’,qs)ds—/ Zidw, — / »(ds,dz).
t
Proof Since ¢>(5,y,Z,q) > 07 i¢(sayazaq) < (1 + i)(b(sayazaq)a and
g(sayazaql) + i¢(S7yazaq1) B g(sﬂyazaq2) B i¢(S7yazaq2)
[ (@ = (o)
X
g(sayazaql) B g(sﬂyazaq2) + i¢(sﬂyazaq1) B i¢(S7yazaq2)
[ @ = mian) [ @ - miao)
X X

if/ (¢* — ¢*)n(dx) # 0. By (iii) and (x,%)
X

g(S, Y, z, ql) + i(b(S, Y, z, ql) - g(s, Y, z, q2) - i¢(57 Y,z, q2)
[ @ = @mian)
X

where Cy = C + (1, by comparison theorem, the result is obtained. #

-1<

S 027

2.3 g-supersolution decomposition
Thanks to the comparison theorem,we can define g-supersolution for BSDE with jumps, and
since the existence and uniqueness of solution for the BSDE (2.1), we have the following proposition

of uniqueness decomposition for g-supersolution.
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Let BSDE be as the following:

Y;ﬁ = €+/ g(S7Y97 Zsaqs)ds+AT_AtAT_/ stWs_/ / qs(w)ﬁp(dgadm)a 0 S t S T, (22)
tAT tAT tATJ X
where 7 is a given stopping time, ¢ € L?(Q,F,,P), A is a given RCLL predictable increasing
process with 49 = 0 and EA2 < oo.

Definition 2.2 If Y; is a solution BSDE (2.2). then we call Y; a g-supersolution on [0, 7].
If A; =0 Vtel0,7], we call Y; a g-solution on [0, 7].

Proposition 2.1 Given Y; a g-supersolution on [0, 7], there exists a unique Z; € L%([0, 7],
R%), a unique increasing RCLL process A; on [0, 7], with A9 = 0 and EA2 < +00, q € Lf),}-([(),r],
R), such that the fourfold (Y, Z, A, q) satisfy (2.2).

Proof Suppose that there exists two triple A}, Z}, qt; A?, Z2, q? satisfying (2.2). We have

i =¢ +/ g(s, Y1, Z! qh)ds —/ ZYaw, + AL — A}, — / / q;(w)ﬁp(ds,dm)
tAT tAT tATIS X
and

Y}Zf+/ g(s,Yf,Zf,qg)ds—/ Zs2dW5+Af—AfAT—/ / qz(a?)ﬁp(ds,da?).
t AT tAnTJ X

AT t
By It6 formulal®,

t t
E / 12} — Z22ds + / / b — ZPAD) AL+ 3 [AAL — A2)2 = 0,
0 0JX

0<s<t
that is Z' = Z2, ¢! = ¢®> a.e. and from this it follows A} = A?. #

Definition 2.3 Let Y; be a g-supersolution on [0, 7] and let (Y3, Z:, At, ¢:) be the related
unique fourfold in the sense of preposition 2.1, then we call (A, Zt, ;) the unique decomposition
of Y;.

§3. Monotonic Limits Theorem for g-Supersolution with Jumps

Let Y} be an increasing process which converges to Y;, with E sup |Y;|*> < +o0. It is clear,
0<t<T
that

T
e sup [P <C B[ 1 -YiPds —o, (3.1)
0<t<T 0

where the constant C' is independent of i, and A} is a continuous increasing process with

E|AL|? < +o0. (H1)

Lemma 3.1 Under the assumpation of (3.1) and (H1), there exists a constant C, which is

independent of 7, such that:

T T
e [zipsse. e e Ef [ ld@Padnasc
0 0 X
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where Y, A% 7 ¢' satisfy the following BSDE:
T . T - . . T . ~
Y} = £+/ g(s, Y, Z qb)ds — / ZL AW, + Ay — A} — / / qs(z)Np(ds,dx).
t t Jx
Proof
T :YOi—YTi—/ (s,Ys’,Z’,qs)ds+/ ZiAw, —l—/ / ¢t (z)N,(ds,dz),
0
by (3.1), we have

ElAT [

IA

T T
o +02E/ |Zg|2ds+03E/ / ¢t (x)]?w(dz)ds
0 0 JX

T . T .
Cy +C’4(E/ |z;|2ds+E/ laéIPas),
0 0

IN

where Cy = max(C>,C3), on the other hand, by It6 formula, we have:
. T . T . . T . T . .
E|Yy|? + E/ |Z?ds + E/ llgi||?ds < E|Y:|* + 2/ Y'g S,YS,Zl,qs)ds + 2E/ Y/ dAS,
0 0 0 0
S0
/ | Z{| ds+E/ llgt||?ds < Cs + — 20 E|AL?,
from this E|4%.|? < C, finelly
T T
e [ 1Zipas<e, Ef l@lPas<c
0 0

We have proved Lemma 3.1. By the lemma, g* = g(s,Y/?, Z!,¢!), Z%, ¢' are bounded in L% ([0, T,

» s

R), L%([0,T], R%), L2 £([0,T], R), so they have weak limits g%, Z, ¢ in these spaces respectivelyl6],

t
/gst—/ (s,Ys,Z’,qs)ds—/ Ziw, — // ¢ (x ds ,dz),

//qs dsda:—)//qS »(ds, dz)
converges weakly. Since

t
Y;:YFOZ_/ (S,Ys,Zl,qs dS—Al // qs dS dﬂf) /Z;dWs’
0

t
Ai:—Yj+YOi—/ g(s, Y Zt qb) ds-l-// ¢t (x)N,(ds,dz) + /Z;dWs.

SO

We have:
Ai—)Atz—Yg—%Yo—/ ds+//qs »(ds, dx)

weakly in L?(2, F,,P). If Zi ¢! converges strongly in L-([0,T], R), Ly #([0,T],R) (1<p<2)
respectively then ¢° = g(s,Ys, Zs, qs). #
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Lemma 3.2 Let

Yi Y0+Mt+At+//qs (de.fL‘)

If A; and N(dt,dz) are not jump at the same time, then

t
Y2 = Y02+2/stMs+2 YViodAs + 3 (AA4y)?

0<s<t

/dMM //q dwds+2/t+/Y 4s(2) N, (ds, dz),

where M; is a continuous martingale, A; is RCLL predictable increasing process, Np(dt, dz) is the
poisson counting measure defined by p(-) with compensator = (dx)dt, ﬁp(daz, dt) is the martingale
such that

]\pr(dS,dCﬂ) = N,(ds,dz) — w(dz)dt.

By Ito’s formula, we can get the result.
Lemma 3.3 Suppose that A; is RCLL predicable increasing process, p(-) is a poisson process,

there exists a sequence of strictly positive predictable stopping time 7; such that

> A, =3 Anl<r.

0<s<T i

Then 7; # 0j; 4,5 =1,2---, where
o, €D, , 1=12,--- and o1 <0< <o <0
Dy, ={s € Dy,p(s) € Un};

and D, is a countable subset of (0,00), U,, € B(X), U, CUpg1, n=1,---,---, UU, =X
Proof Since 7; is a predictable stopping time, we say that o; is an unpredictable stopping
time. If it is not so, we have ([8] theorem 5.34)

E[Nol. - )\Ui - (Nol., - )\Ui—)] = 0,

but
E[Na'i —Aoi — (Na'i— - Aai_)] = E[l] =1,

so 0; # 7; a.e., that is A and N,(dt,dz) do not jumps at the same time.

Let . . .
Y=Y, — / gsds — Ag + / ZdW + // qs(w)ﬁp(ds,dw),
0 0 0Jx

by It6 formula (Lemma 3.2)

t t ¢ t ¢
V: = Y02—2/ Ys,gsds—Q/ Ys,dAs+2/YSstWs+/ Zs2ds+// ¢2(z)m(dx)dt
0 0 0Jx

+2/ s_/ gs(z)Np(ds,dz) — 3 (AA,)?, (3.2)

0<s<t
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T T T T
EYF + 2E/ Ysgsds + 2E/ YVidAs + Y (AAy)? = EY? +/ Z2ds + E/ / ¢2(z)m(dz)ds
t t t t Jx

t<s<T

set .
:g+/ g(s, Y, Z8 qi)ds + AL — A;’—/ Zidw, — //q »(ds,dx),
t

we have:
. T . T T )
ey, VP4 E [ 12~ ZiPas+E [ [ o) - aile)PAs)ar
t t t

T T
= 2 [ (VR - gl Y Zigds + 26 [ (V. - V(4 - 4]
t t

+ 3 [A(A, — ADP +ElYr — Vi3 (3.3)
t<s<T
T . . T . 1/2
2E / [¥e = Villgl = g(s,Y), ZEab)lds < C(E / ¥, = Vi[Ads) T — 0. (3.4)
t 0

(Since |V} — Y| < |V} =Y}, the result above follows by Lebesques dominant convergence theorem.)

Since

T ' 1/2
E/ ¥y~ VildA, < (E sup |V —V!P)
0

(E(AT)Q)I/QE/ |V, — Vi|d4, — 0. (3.5)
0<s<T

0,7]
Tf
YIA(As — A — 0,

then Z — Z, ¢* — q stongly, but the case is not so. Since AA%L = 0 for all ¢ and i, A is a RCLL

predictable increasing process,

> O[AM AP = X (A4 #
0<s<t 0<s<T
. T .
Proposition 3.1 If Z* converges to Z in measure on [0,7] x Q, and E/ |Z|%ds be bound
0
uniformly, then Z* converges to Z strongly in L5-([0,T], R), p € [1,2)[2.
Proposition 3.2 Z¢ and ¢’ converges to Z, q in measure respectively[?l.
By proposition 3.1 and proposition 3.2, Z¢ — Z, ¢* — ¢ strongly L'-([0,T], R), Ly +([0,77,
R) respectively p € [1,2).

§4.  Smallest g-Supersolution with Constraint on (Y, Z, q)

In this section we consider the smallest g-supersolution with jumps and with constranits on
(Y,Z,q), ie. Y, Z, q stisfying following BSDE:

T
t t
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and Y, Z,q must be in the set of following:
Ki(w)={(Y,Z,q,) € Rx R* x Ry, ¢(t,Y, Z,q,) =0}, (4.2)
where g, ¢ satisfy Lip. condition.
¢: Ry x Rx R x L2 (R) — Ry.

Definition 4.1 A g-supersolution Y; on [0,T] with the decomposition (Y, Z, q) is said to be
the smallest g-supersolution subjet to the constraints (4.2), if it satisfies (4.2) and Y; <Y/, a.e., for
any g-supersolution (Y) on [0, T] with the decomposition (Z', A’,¢") subject to ¢(t,Y/, Z{,q;) = 0.

Standing assumption there exists a g-supersolution Y with its decomposition Z , /T, q
satisfying BSDE (4.1) and gb(-,?, /Z\,Zj) =0, with E sup |ﬁ|2 < +o00.

Theorem 4.1 Suppose that standing assumpot?éiTholds. Then there exists a unique smallest
g-supersolution subject to the constraint (4.1).

Proof Consider BSDE as following:

Y/ =§+/ g(s,YE, ZL qb) dS+’L/ 1) S,YZ,ZZ,qi)dS—/ ZHAW, — / / ¢t (x p(ds,dz). (4.3)
¢

For any fixed i, BSDE (4.3) has a unique solution (Y, Z¢, ¢*). By corollary 2.1, we have Y1 > Y,
i=1,2,---. Since there exists a solution 17, Z, q, A satisfies the following BSDE:

T
=£+/ g(s,Ys,Zs,qs>ds+AT—At—/ Z,dW, — / / 05(2)N, (ds, dz)
t t
subjet to ¢(s,Y, Z,q,) = 0, also by comparison theorem (corollary 2.1). We have Yi < Y Vi,

and Y converges to some Y increasingly with E sup [V;|2 < C. Set Al = z/ o(s, Ys , Z’,qs')
<t<T

equation(4.3) can be written as following:
y;:g+/ (s,Y;,Z’,q;)ds+A’T—A,’;—/ Zidw, - //q (ds, dz),
0
2
i = |- - [ oo Zidpas+ [ 2w~ [ [ i, as, )
0 0
E\/ zi SC%E/ 1Zi[2ds,

E‘//qS dsda? <CT //|qS )P (dx)d

we have

E|AL|? < C’3+C’TE/ \Z{| ds+C’TE/ llg]2ds.

By It6 formula, we can get the following result:

T
E/ |ZH?ds < Cy + (407) " E|AL, / llgsl|*ds < Cs + (4C7) ' E|AL)?,
0
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T T T
so 3C such that: E/ |Zi?ds < C, E|AL]2 < C, E/ llgi||Ids < C ie. E|AL)?, E/ |Zi|?ds,
0 0 0

T
E / ll¢%||*ds are bounded uniformly, by the monotonic g-supersolution limits theorem with respect
0

to jumps, Y? converges to some Y and it is also a g-supersolution. that is, there exists a RCLL
predictable increasing process A, and Z € L%.([0,T],R), p € [1,2), q € L;]_-([O,T], R), such that
(Y, Z, A, q) satisfies BSDE (4.3). By the uniqueness decomposition of g-supersolution, Z, A, q is
determined uniquely by Y. Notice:

S

. T 2
E|AL?2 = E‘z/ #(s,Y:, 21 ¢l)ds| < C
0
It is easy to see Y is the smallest g-supersolution subject to constraint ¢(s,Ys, Zs, ¢s) = 0. #
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