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Abstract

The primary objective of this paper is to define the r-truncated annuity distribution, which
is a generalization of the annuity distribution in refs: [5], [6]. Conditions for the existence
of these distributions are given. It is proved that under certain conditions, the r-truncated
annuity distribution is the mixture of an annuity distribution and a special r-truncated annuity
distribution.
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§1. Introduction

In the field of actuarial risk theory, a well known family of discrete distributions is the one

which has probabilities satisfying the recursion
b
pn:pn—l(a+5)7 n:172737"'7 (11)

where po € (0,1) and ioj pn = 1, a and b are real constants. It is proved that (1.1) holds if
and only if the discreten;ﬁldom variable N has one of Poisson (¢ = 0), the binomial (a¢ < 0 and
b = —a(m + 1) for some positive integer m) and the negative binomial (0 < a < 1) distributions
(see Panjer [3, 4]). These distributions have been extensively used in the context of modelling the
claim number process and the aggregate claims process (see Asmussen [1]).

In [5], Ramsay introduces a new real valued three-parameter (a, b, d) family of discrete distri-
butions, called annuity distributions. This family, which contains the family defined by equation
(1.1) as a special case, has the probabilities satisfying the recursion

b
pn:pn—l(a+c_)7 n:172737"'7 (12)

n
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where ¢,, n = 1,2,---, are continuous function of the parameter §,
1— efné
e §#0;
cpn=4 € —1 (1.3)
n, 6=0.

In [6], Ramsay explores the properties of annuity distributions. In particular the conditions
needed to ensure the existence of these distributions are given, the pgf and the cumulant of N* (a
discrete random variable which has an annuity distribution) are discussed. Some good conclusions
are derived.

The motivation of this paper comes from the comments of Ramsay [6], and the problem of
the parameter estimation in annuity distribution has already been solved in Liang [2]. Primary
objective of this paper is to introduce r-truncated annuity distribution. The properties of these
truncated annuity distributions are explored. Conditions for the existence of these distributions
are given. In particular, it is proved that, under certain conditions, the pgf of N (a discrete
random variable which has a r-truncated annuity distribution) satisfies a functional equation (or a
differential equation). Using this functional equation, it is proved that N is unbounded, i.e., p,, > 0,
forn=r,r4+1,r+2,---. Then the distribution of N is a mixture of an annuity distribution and

a specific r-truncated annuity distribution.

§2. The Existence and the Structure of r-Truncated
Annuity Distribution

2.1 Definitions

Definition 2.1 A discrete random variable N* is said to have an annuity distribution, if its
probabilities p(N* = n) = p,, n > 0 satisfy the following conditions:

1) pn=pn_1(a+b/cy), n=1,2,3,---,

i) f;opn _1, (2.1)

1—e M
——— 0F#0;
i) ¢, =¢ € —1 7

n, 0=0,

where a, b and § are real constants.

From the following context we can see: the probabilities {p,,n > 0} of N* are determined by
the parameters a, b, and 6. So we call its distribution AD(a,b,d), and denoted by N* ~ AD(a,b,d).

Definition 2.2 Let r be a positive integer number. A discrete random variable N is said
to have a r-truncated annuity distribution if its probabilities p(N = n) = p,, n > 0 satisfy the
following conditions:

1) pn=pn_1(a+b/ey), n=rr+1,r+2,.--,

D 5ot 22)



F =4 REW M@ rAFEHSTH A LM LENH 135
1—e
i) cp={ e —1" O£ 0;
n, 6=0,
where a, b and § are real constants. When p,, = 0 for n > r, we call it has a degenerate distribution.
From the following context we can see that the probabilities {p,,n > r — 1} are determined
by the parameter a, b, § and the probabilities {p;,0 < i < r — 2}. So we call its distribution
AD(p;,0 <i <r—1;5a,b,0), and denoted by N ~ AD,(a,b,d). It is obvious that AD(a,b,d) =
AD(a,b,0).
Evidently lim_ 1/c, =0, when 6 < 0. However, if § > 0, lim 1/cn =€’ —1.
Definition 2.3 A distribution F' is called the mixture of distributions F, (k =1,2,---,n),
if the following equation holds:

p(z) = g arpi(2), (2.3)

where p(z) is the pgf of the distribution F', py(z) is the pgf of the distribution Fj, and ay is a
n

positive constant for k =1,2,--- ,n, and ) a = 1.
k=1

2.2 The existence and the structure of AD,(a,b,?)
2.2.1 The existence of AD»(a,b,J)
From equation (2.1) and (2.2), the probability p; is given by

1—po
- 2.4
P Rlanbo) 24

where

~ x©  n b

Rab,6) =1+ I (a+—). (2.5)
n=2 k=2 Ck

Theorem 2.1 For 1 > py > 0, a non-degenerate N ~ ADs(a,b,d) exists if the parameters

a, b and § satisfy one of the following conditions:

i

a+ b > 0, (2.6)
C2
and
, b
0< lim (a + Z) <1. (2.7)

ii) a < 0 and there exists a positive integer m > 1 such that
b= —acmy1. (2.8)

Only condition ii) results in a bounded support for N.

Proof Since 1 > pg > 0, from equation (2.4), we can deduce p; > 0. For py = p1(a+b/cs), in
order to avoid degeneracy, equation (2.6) must hold. R(a,b,d) exists if inequality (2.7) holds. The
sequence a + b/e¢, are monotone and bounded, condition i) implies a + b/¢,, > 0 for n = 2,3, ---.

Thus the probabilities are all non-negative.
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The sufficiency of condition ii) can easily be established as follows: once equation (2.8) holds,
it must be the case that p; = 0 for k& > m + 1, making é(a,b, ) the sum of a finite number of
terms. Because ¢, is a monotone increasing function of n, the equation (2.8) jointly implies that
a+b/e, =a(l —cpy1/cn) >0 for 2 < n < m. Since p, = pn—1(a+b/c,) for n = 2,3,---, and
p1 >0, then p, =pp—1(a +b/cy,) >0for 2<n<m. #

Throughout this section it is assumed that the condition i) of Theorem 2.1 holds. This implies

that N is an unbounded random variable.

2.2.2 The pgf of AD>(a,b,?)
Having established the conditions for the existence of the ADs(a,b,d), their pgfs will now be
investigated. Let p(z) be the pgf of ADy(a,b,d), i.e.,

p(z) = 3 paz",  0<z<1,
where p,, is defined in equation (2.2). In addition, define the parameters 6, 3,7 and ¢ as:

6 =a+b(e —1),
B =p1 —pola+be),
v=2(1-e")B,
c=p1 —po(a+b).
It will now be proved that the pgf of AD2(a,b,d) satisfies a functional equation when § # 0.
However, when § = 0, the pgf satisfies a differential equation. This functional equation is used to

establish the properties of ADs(a,b,d).
Theorem 2.2 i) If § # 0, then p(z) satisfies the functional equation:

(1—02)p(z) = (1 — aze ®)p(ze™®) + 7. (2.10)
ii) If § =0, then p(z) satisfies a differential equation:
(1—az)p'(2) = (a +b)p(z) + c. (2.11)
Proof From equation (2.2),
DnCn = Pn—1(acy +b).

If § # 0, multiplying both sides by 2™ and summing yields
1— efné —nd

£on(5) = £ a5 v

The left-hand side (LHS) of this equation reduces to

1

m[p(z) - p(Ze_(S) — p1Z(1 _ 6_6)],
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while its right-hand side (RHS) reduces to

az

S {p(2) —e7’p(ze™)] = po(1 = €7*)} + bzp(z) - bzpo.

Equating the LHS and RHS expressions gives

p(z) = p(ze™®) = prz(1—e™%)
= azp(z) —aze Op(ze?) — azpo(1 — ™) + [bzp(2) — bzpol(e® — 1),

and equation (2.10) results. In a similar manner, equation (2.11) can be derived by noting that

¢, =n when é = 0. #

2.2.3 Solutions to equations (2.10) and (2.11)

I) solution to equation (2.11), i.e., the case of § =0
From inequality (2.7), we know 0 < a < 1 when 6 = 0.
Case A: a=0

Define the parameter ¢ as

c= pP1— bp(). (212)
By using the ordinary method, we can see that the solution to differential equation
P'(z) = bp(2) + ¢,
p(l) =1
is B B
— bz (€ _¢
p(z) = e (b +1) 3 (2.13)
Case B: 0<a<1
In a similar manner, the solution to differential equation
(1 —az)p'(z) = (a +b)p(2) +c,
p(1) =1
is
¢ ¢
=(1+— )@ —_ 2.14
p(2) ( +a+b)e a+b’ (2.14)
where
a+b In(1 — az)
= - In(1 — = ——.
A - n(l —a), v(2) (1 —a)

IT) Solution to equation (2.10), i.e., the case of § #0

Let
V:8_|6|, O<v<l.

Case A': §>0
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From equation (2.10), we know
p(zv?) (1 = B207) = (1 — azv? T Hp(z07 ) 4+ 7.

Since zv! — 0 as j — 0, and p(0) = po, then by successive substitutions the following result is

derived:
p(2) = af pf (2) + aips (2), (2.15)
where -
( © /1 —av’!
+ _
aq _pOJI;[()( 1 — 00d )7
ai =1-af,
x /1 —6v 1— azvit!
+ _
pi(2) = =0 (1 — ale) ( 1—6zvi )’
A(2)
+
pi(z) = ==,
\ 5 (2) )
where ~ 1 o rd s1—qgzokt? pitt
A@) = 1-6z" +j§0 [,};IO ( 1 —6zvk )] 1— fzoit1 "
Case B': § <0

In a similar manner the following result is derived:

p(z) = ay py (2) + a5 p; (2), (2.16)
where Duitl
/ B o] 1 — ’U]
@ =Po -1:[0( 1—avi )’
]_
ay, =1—ay,
_ x© s 1—qvd 1—fzpitt
p(e) = jl;[() (1 - 01)7"“1)( 1—azvi )’
- A(z)
\p2 (Z) = A(]_)’
where ) . -
1 © rJ s1—0zv vl
Az) = 5 =
() 1—az’ ];) [kl;[() ( 1 — azvk )] 1— azoitl
where

2.2.4 The structure of ADs(a,b,?)
Let

n

Ra,b,8) =1+ 3 I (a+£),

n=1j=1

R0,6,00=1+ 3 ] (%)

n=2 k=2

Ra,b,0)=1+ 3 [] (a+%),

n=2 k=2
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and condition A):
a+bed >0, (2.17)

condition B):
1

R(a,b,d)
From the solutions (2.13), (2.14), (2.15) and (2.16), we can see that, under certain conditions,
ADs(a,b,d) is the mixture of the other two distributions.

po < (2.18)

From equations (2.13), (2.14) and Definition 2.3, we have the following results:

Theorem 2.3 When d =0,

i) fa=0and pp > [1+ bR(0, b,0)]7%, then pgf p(z) is the mixture of zero and a Poisson
distribution.

ii) If 0 < a < 1and py > [L+ (a+ b)R(a,b,0)] ", then pgf p(z) is the mixture of zero and a
negative binomial distribution.

Theorem 2.4 When § # 0, if condition A) holds, then p(z) and p; (z) are pgfs of
AD(a,b,0).

Proof See, for example, the equation (13) and Lemma 1 (i) in [6], the proof is obvious. — #

Theorem 2.5 When § # 0, if conditions A) and B) hold, then pj (z) and P; (z) are pgfs of
ADs(a,b,d) with pp =0, we call it AD}(a,b,?).

Proof We only discuss the case of § > 0 (in a similar manner, the case of § < 0 can be
derived).

Clearly, P; (1) = 1. Let

pi(2) = Zp“) "

From Theorem 2.4, we know that {p%l),n = 0,1,---} are the probabilities of AD(a,b,d) which
satisfy the equation (1.2).

From equation (2.15), we know that

(pn — afp)2"

M8

az py (2) = p(2) = ay pf (2) =

i
o

From condition B), we can see 0 < af, a2+ <1,s0

b= 3 (P oy

n=0 a2
Let
Pa— afpy)
P = 1 n=0,1,2,-,
asy

then
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where
)
p(()2)—0,
2 _ 1
p = ,
" R(a,b,9)
1

b
2 2
p%):p;ll(a—l-a), TL:2,3,4,--._

\
From equation (2.6) and inequality (2.7), the probabilities {pg), n=1,2,---} are all positive. ~ #

From Theorem 2.4 and Theorem 2.5, the following result is easily derived:

Theorem 2.6 When 0 # 0, if condition A) and B) hold, then ADs(a,b,d) is the mixture of
AD(a,b,0) and AD}(a,b,?d).

The results of AD2(a,b,d) can easily be extended to AD,(a,b,d).

2.3 The existence and the structure of AD,(a,b,0d)
From equation (2.2), the probability p,_; is given by

1— M,
= 2.19
Pr—1 Rr(a, b, 6)7 ( )
where
r—2
M, = Z Dn,
n=0
and

Ro(a,b,8) =1+ 5 [1 (a+3).

n=r j=r Cj
From the Theorem 2.1, we can easily get the following conditions for the existence of AD,(a,
b,9).
Theorem 2.7 Forp, >0, n =0,1,2,--- ,r —2 and M, < 1, a non-degenerate N ~
AD,(a,b,0) exists if the parameters a, b, r and § satisfy one of the following conditions:
i)
b
a+— >0, (2.20)
Cr
and

0< lim (a+i)<1.

n—00 Cn

ii) @ < 0 and there exists a positive integer m > r such that
b= —acpyy1.

Similarly, only condition ii) results in a bounded support for N. Throughout this section it is

assumed that the condition i) of Theorem 2.7 holds.

2.3.1 The other conclusions



REH B rBFESTHE LM LN

141
Let p(z) is the pgf of AD,(a,b,6), i.e.,
o0
p(z) = X pnz",  0<z2<1,
n=0
where p,, is defined in equation (2.2). In addition, define the parameters 3, v, and @, as:
Bn = pn _pnfl(a'i'b/cn)a Tn = Zn(]- _e—né)ﬂn, Pn = Pn _pnfl(a'i'b/n)a
and condition C):
1
0 -
=7 Riab,0)
n
Pn > po [ (a+b/cy), n=12---,r—2.
j=1
From Theorem 2.2, the following results is obvious:
Theorem 2.8 i) If § # 0, then p(z) satisfies the functional equation:
r—1
(1—02)p(z) = (1 —aze )p(ze O) + 3 7. (2.21)
n=1
ii) If § =0, then p(z) satisfies a differential equation:
r—1
(1—az)p'(z) = (a+b)p(z) + > ¥n- (2.22)
n=1

In the following context, only the case of 6 > 0 is discussed (the case of § < 0 can be derived
by the same method).

From equation (2.15) and theorems 2.5, 2.6, the following results are easily derived:
Theorem 2.9 If § > 0, then p(z) can be given by

p(2) = a1p1(2) + azp2(2),

(2.23)
where 1
( © 1 —av!
ay _pOjl;IO ( 1 — Qi )7
as = 1- a1,
X 1—6ud 1 —azvith
pi(z) = =0 (1 - avj+1)( 1—60zvi )’
_ B(»)
[72() = By
where

B =g St S [ (50 [ &

n+1\k
n=0 Lj=o \ 1—0zvi 1 — Gzpntl > (") k|-

k=1
Theorem 2.10 When § > 0, if conditions A) and C) hold, then py(z) is the pgf of

AD,(a,b,d), and its probabilities {pg), n=0,1,---,r — 2} satisfy the following equations:
5N (2
1) pO — Y

n
i) p” = [pn —po [T (a+b/c)] [z, n=1,2,+,r =2
j=1
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This is a specific AD,(a,b,d), we call it AD!(a,b,0).
Theorem 2.11 When § > 0, if conditions A) and C) hold, then AD,(a,b,d) is the mixture
of AD(a,b,d) and AD! (a,b,?).
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