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Abstract

This paper provides an approach for constructing 2;?17(7”7“ designs containing the maximum

number of clear two-factor interactions. The designs obtained contain more clear two-factor interac-
tions than those obtained Tang et al. (2002) for some m and k. Moreover, the designs constructed
are shown to have concise grid representations.
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§1. Introduction

m—k)

In this paper, a 27 ( design stands for a two-level fractional factorial design

with m factors and 2¥ runs. In the defining relation of a 2~ (m—k)

design, the numbers
1,2,--- ,m attached to the factors are called letters, a product of any subset of the letters
is called a word, and the number of letters in a word is called its wordlength. Associated

with every 2m—(m—Fk)

design is a set of m — k words Wy, Wa, - -+, W,,,_i called generators.
The set of distinct words formed by all possible products involving the m — k generators
gives the defining relation. Let d be a 2"~ (M=) design and A;(d) be the number of
words of length 7 in its defining relation. A(d) = (As(d), A4(d), -, Apn(d)) is called the
wordlength pattern of d. With this notation, the resolution of d is the smallest ¢ with
positive 4;(d) in A(d), and a 2{]; (m—=F) design represents a 2~ ("=k) design of resolution
I11.

Fractional factorial designs with factors at two-levels are widely used in experimental

investigations. Particularly, regular 27~ (m=%) designs with resolution III or IV are very

important in many scientific experiments. Maximum resolution (Box and Hunter, 1961)
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and minimum aberration (Fries and Hunter, 1980) are commonly used criteria for select-

(m—k) designs. Under the hierarchical assumption of experimental designs,

ing such 2™~
appropriate designs are those of minimum aberration (Fries and Hunter, 1980). Wu and
Chen (1992) classified two-factor interactions (or 2FIs for short) into three categories —
ineligible, eligible and clear. A 2FT is called clear if it is not aliased with any main effect
and any other 2FIs. Clear 2FIs are estimable under the assumption that three-factor
and higher-order interactions are negligible. Chen, Sun and Wu (1993) showed that both
maximum resolution and minimum aberration do not completely characterize the number
of clear 2FIs in a 2 (m—=k) design. It is useful to know the maximum number of clear

2FIs in a 2;?1_(7”_]6) design. Since it is still open what is the precise maximum number

(

of clear 2FIs in a 2;?; m=k) design, the designs containing the maximum number of clear
2F1Is stand for those having as many clear 2FIs as possible in the following.

Tang et al. (2002) pointed out that a 2;’111—(m_k) design containing the maximum num-
ber of clear 2FIs can estimate as many 2FIs as possible without making the assumption
that the remaining 2FIs are negligible, if we can assume that the magnitude of the main
effects is much larger than that of the 2FIs, which is not unreasonable in many applica-
tions. The presence of other 2FIs does not affect the estimation of the clear 2FIs, although
they can bias the estimates of the main effects. Since the magnitude of the main effects
is much larger, this bias will not be substantial. It is valuable to construct a 2?;1_ (m=k)
design containing the maximum number of clear 2FTs.

In a 27~ (k) design with resolution at least V, all 2FIs are clear. For given Fk,
let My be the maximum value of m for a 2™~ (m=k) design to have resolution at least
V. For k = 4,5,6,7,8,9,10,11 and 12, the value of M}, is 5,6,8,11,17,23, 32,41 and 65,
respectively (Draper and Lin, 1990). Chen and Hedayat (1998) proved that there exist

m—(
2III

consider m that My < m < 2F1.

m—k) designs containing clear 2F1 if and only if m < 2¥~!. Thus, we only need to

(

Tang et al. (2002) provided an approach to construct 2;7111_ m—k) designs. The number

ay(k,m) of clear 2FIs in these designs is

(29 —1)(m -2 +1) if mj =m>mjq, for j=1,---,J,
ai(k,m) =
[m/2](m — [m/2]) if m < min(my,myi1),

where m; = 27 + 257 —2 m; 1 =2(27 — 1)+ 1 and J = [k/2], [x] stands for the largest

integer not exceeding x. «y(k, m) is not the optimal except when m = m;. This paper will
(

provide another approach to construct 2?;1_ m=k) designs containing the maximum number
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of clear 2FIs, and show that the designs constructed have more clear 2FIs than those

constructed by Tang et al. (2002) for 1 < j < [k/2] and m; < m < (mj—1 +2m; —1)/3.

§2. Main Results

For a 2/ design, still let m; = 26=9 + 2 — 2 for j = 1,--- ,J (= [k/2]). We
have my > mg > -+ > my. Also let Hor—j = (70, ,Vor—i_1) and Hoyj = (co, -+ ,Coi_1)
be 2F=7 x 28=J and 27 x 2/ normalized Hadamard matrices respectively, where vg = lox—;

and ¢y = 19;. Again let

E,=v,®c for Iy =1,--- 287 1,

F,=v%®c¢, for lp=1,---,2/ —1, (2.1)
where 7; ® ¢; represents the Kronecker product of 4; and ¢;. The 2F1 grid for a QELI] ~(mj=h)
design, denoted by dy = {E1 — Egr—; 1, F1 — Fy; 1}, is given by

1 Fy Fy e Foi 4
1 Fl F2 ce F2j_1
Eq Eq EqFy EqFy e ErFy (2.2)
Es Es EsFy EyFy e EsFy 4 '
E2k7j_1 EQk—j_l E2k7j_1F1 E2k—j_1F2 et EQkfj_lFQj_l

Each position in the 2FI grid represents an alias set, and the column of an alias set is
the Hadamard product of its horizontal and vertical co-ordinates labelled outside the grid.
Note that the Hadamard product of two columns is the entry-wise product of the two
columns. In the 2FI grid (2.2), if a main effect and 2FIs are aliased with each other,
they are in the same alias set. For simplicity, we omit the 2FIs, if they are aliased with
some main effect. From the definition of clear effects, 2FI is clear if it is in the alias
set without other main effects or 2FIs in the 2FI grid (2.2). Thus, all 2FIs Ej, F}, for
1<l <2 _1and1<1y, <2 —1 are clear. E, Ep, for 1 <ly,lp < 2k=3 _ 1 are in
an alias set containing one of Ey, -+, Egx—j_q, Fj, F}, for 1 <ly,13 <27 — 1 in an alias set
containing of Fi,--- , Fy; ¢, and they are not clear. Thus the number of clear 2FIs in d;
is C(dy) = (2879 —1)(20 — 1) = ay(k, m;).

Lemma 2.1 If j =3,k > 6o0r j # 3, k> max(j + 2,25 — 1), the maximum
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number N (k,m; + 1) of clear 2FIs in a ngﬂf(mjﬂfk) design is

N(k,m;+1) = (29 —2)(2"7 —2). (2.3)

Proof We take Hok—; = (70, "+ ,Yok—i_q) and Hoj = (co, -+ ,Cqi_1) as 2877 x 2k=J
and 2/ x 27 normalized Hadamard matrices respectively, where g = lor—; and ¢y = 1.
Let G = E1F1, Ej, and F}, for ; = 1 up to 2= — 1 and I, = 1 through 27 — 1 be
defined in (2.1). The 2FT grid for a QEf(mfk) design for m = m; + 1, denoted by dy =
{E1 — Exx—j_1, F1 — Fy_1,G}, is given by

1 F Fy Fyi 4
1 F1 F2 s F2j71
E1 E1 G * s *
, (2.4)
Ey Ey * EyFy EoFyi 4
E2k—j71 EQk—jil * EQk—jilFQ o EQk—j71F2j71

where alias sets with ‘x’ contain two or more 2FIs. Thus, the total number of clear 2FIs
in dy is (27 — 2)(2¥=7 — 2). This number can be taken as the maximum number of clear
2FTs in a 27, ") design.

For m = mj 4+ 1 and 1 < j < [k/2], the QEI_(m_k) design obtained by Tang et al.
(2002) contains a;(k,m) = (277! — 1)(m — 27~! 4 1) clear 2FIs. Thus,

N(kom) = a(kom) = (2= 2)(@ = 2) = @7 = m -2 1)
= @ -nE -2 ),

When j =3,k > 6orj#3, k>max(j+2,2j — 1), we have N(k,m;+1) > oy(k,m;+1).
This lemma is valid. ([

(m—Fk) designs with

This lemma and its proof provide an approach for constructing 2?;{
the maximum number of clear 2FIs. The resulting designs have more clear 2FIs than those
obtained by Tang et al. (2002), when the conditions of Lemma 2.1 are satisfied.

—(11-5)

Example 1 The maximum number of clear 2FIs in a 211111 design is 12.

We take Hs = (y0,--,77) and Hy = (co, - ,c3) as 8 x 8 and 4 x 4 normalized
Hadamard matrices respectively, where v9 = 1g and ¢y = 14. Let G = E1F1, Ej, and Fj,

be defined in (2.1) for I; = 1 up to 7 and I = 1 through 3. The 2FT grid for a 21 '™
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design, denoted by d3 = {Ey — E7, F} — F3,G}, is given as in

1 F F F3
1 Fy Fy F3
E1 E1 G * *
(2.5)
by Ey * EyFy EyFs
E7 E7 * E7F2 E7F3

Thus, the total number of clear 2FIs in d3 is 12. The clear 2FIs are EsF5,--- , EyF7,
EsFy, .-+, E3F;. ds is one of the best 211111_(11_5)
of clear 2FIs in a 211111_(11_5) design is 12 from Chen, Sun and Wu (1993). However, Tang
et al. (2002) provided the number «;(5,11) = (2 —1)(11 — 2+ 1) = 10 of clear 2FIs in a

2%111_(11_5) design constructed.

designs, as the precise maximum number

Theorem 2.1 For 1 < j < [k/2] and mj < m < (m;—1+2m;—1)/3, the maximum
(

number N (k,m) of clear 2FIs in a 277, m—k) design is

N(k,m) = (27 —2)(2" 7+ 427 — 3 —m). (2.6)

Proof Let Hy—j = (Yo, ,Yor—i_1) and Hy = (co,--- ,cq5_q) be 2877 x 2k=J
and 2/ x 27 normalized Hadamard matrices respectively, where g = 1or—; and ¢y = 1.
Let Gi, = E;, F1, and Ej, and F}, be defined in (2.1) for [; =1 up to m —my, lo =1 up
to 2877 — 1 and I3 = 1 through 2/ — 1. The 2FI grid for a Q?Ef(m_k)
dy = {Ey — Egry_y, Fi — Fyi_1,Gi — Gy, }, i

design, denoted by

1 Fy Fy Fyj_4
1 Fy Fy Fyi_4
E, Eq Gy * e *
Es Es Ga * *
: : (2.7)
Em_mj Em_mj Gm_m]. * . *
Em—m;+1 | Bm—m;+1 * Em—m;41F2 -+ Emom1Fo
Eor—j_4 Eor—i_q * Bogw—iyFo -+ Eoej 119,

Thus, the total number N (k,m) of clear 2F1s in dy is N(k,m) = (29 —2)(2¥7 —1 — (m —
mj)) = (27 —2)(2k=9+1 4+ 27 — 3 —m). Moreover, oy(k,m) = (2771 —1)(m — 2771 +1) from
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Tang et al. (2002). We have

N(k,m) —aq(kym) = (271 = DR 427 =3 —m) — (m— 271 +1)]
= (Qj_l — 1)[mj,1 + Qmj —3m — 1].

Therefore, for 1 < j <[k/2], when m; <m < (mj—1+2m;—1)/3, N(k,m)—oy(k,m) > 0.
This theorem is valid. O

From this theorem, when 1 < j < [k/2] and m; < m < (mj_1 + 2m; — 1)/3, the
resulting designs have more clear 2FIs than those obtained by Tang et al. (2002). Let us

20—(20—6
construct a 2y ( )

design by using the approach of Theorem 2.1.
Let Hig = (70, - ,75) and Hy = (cg, -+ ,c3) be 16 x 16 and 4 x 4 normalized
Hadamard matrices respectively, where 79 = 116 and ¢g = 14. Let G1 = F1 Iy, Go = EsFY,

E;, and Fj, be defined by (2.1) for i = 1 up to 15 and i3 = 1 through 3. The 2FI grid

for a 2%101_(20_14) design, denoted by ds = {E1 — E15, F1 — F3,G1,Ga}, is
1 F1 F2 F3
1 Fi Fy Fy
El El Gl * *
E2 E2 G2 * * . (28)
E3 E3 * EgFQ E3F3
Eys Eys * Ey5Fy Ey5F3
. . _ _ 20— (20—6) .
The design ds contains N(6,20) = 2(15 — 2) = 26 clear 2FIs. The 2 design

obtained by Tang et al. (2002) has «;(6,20) = 19 clear 2FIs. Obviously, N(6,20) >
a;(6,20), and the design in (2.8) contains more clear 2FIs.

83. Summary Remarks

(m—k)

In this paper, we provide an approach to construct 2}7111_ designs containing the

maximum number of clear 2FIs. The designs constructed contain more clear 2FIs than
those obtained Tang et al. (2002) for some m and k. It is still an open problem on the

(m—k)

precise maximum number of clear 2FIs in a 2?111_ design. This problem is under

investigation now.
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