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Abstract
A multivariate partially linear model is considered in this paper. The B-spline least squares

estimator for both the parametric and the noparametric components is proposed. Moreover, we

investigate the the asymptotic normality of the estimator of the parametric component and the

convergence rate of the estimator of nonparametric function.
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§1. Introduction

The general partially linear model is given by

Y = XT β + g(T ) + e, (1.1)

where X and T are explanatory variables, β is a vector of parameters, g(·) is an smooth

function of T , e is random error. The model was introduced by Engle et al. (1986) and

further studied by Heckman (1986), Chen (1988), Speckman (1988) and You et al. (2004).

Some applications of the partially linear models have been described in the literature

(Härdle et al. (2000)).

All the models under consideration are univariate models. In some applications, it

may be of interest to work with a multidimensional response variable. For example, in

finance, it is now widely accepted that, working with series, such as assert returns, in a

multidimensional framework leads to better results than work with separate univariate

model. In this paper, we consider the multivariate partially linear model

Yi = XT
i H + g(Ti) + ei, i = 1, 2, · · · , n, (1.2)

∗The project supported by the Natural Sciences Foundations of China (10771107) and Tianjin (07JCYBJC04

300).
?Corresponding author, E-mail: zjwang@nankai.edu.cn.

Received December 24, 2007.

《
应
用
概
率
统
计
》
版
权
所
用



第二期 陈广雷 王兆军: 多元部分线性模型的B-样条估计 139

where Yi = (yi1, · · · , yid), Xi = (xi1, · · · , xip)T and Ti be ranges over a nondegenerate

compact 1-dimensional interval D, the error ei = (ei1, · · · , eid) are assumed to be inde-

pendent and identically distributed with mean 0 and variance-covariance Σ, (Xi, Ti) and

ei are independent, H = (β1, · · · , βd) is the p × d matrix of unknown parameters and

g(T ) = (g1(T ), · · · , gd(T )) is the 1× d vector of unknown functions. For simplicity, let

Y = (y1, · · · ,yd) = (Y T
1 , · · · , Y T

n )T ,

X = (x1, · · · ,xp) = (X1, · · · , Xn)T ,

G = (g1, · · · ,gd) = (g(T1)T , · · · ,g(Tn)T )T ,

e = (e1, · · · , ed) = (eT
1 , · · · , eT

n )T ,

matrix form of the model (1.2) is

Y = XH + G + e. (1.3)

Using Vec operator and the Kroneker products (see Christenson (1996)), the model can

be rewritten as

Vec(Y) = [Id ⊗X]Vec(H) + Vec(G) + Vec(e). (1.4)

Beatriz et al. (2006) considered a kernel estimation for the model (1.3). It is well

known that kernel estimation, which is a local smoothing method, is a popular nonpara-

metric smoothing technique. However, kernel type methods can be quite computationally

expensive because they require re-fitting at every point where the fitted function needs

to be evaluated. In this paper, we propose a spline estimation for the model (1.3). The

attraction of the spline based global smoothing is that it is closely to parametric model

and thus it reduces the computation substantially.

The rest of this paper is organized as follows. Section 2 presents the B-spline estimates

for the model (1.3) based on global smoothing method. Section 3 states the main results.

Section 4 gives some concluding remarks. Mathematical proofs are obtained in Appendix

A.

§2. B-Spline Estimation

As in most works on nonparametric smoothing, without lose of generality, the esti-

mation of the function vector g(·) is conducted on compact set D = [0, 1].

Let Nn denote a positive integer and ti = i/Nn, i = 0, 1, · · · , Nn be the knot sequence.

A polynomial spline of degree m ≥ 0 on D with knot sequence t0, · · · , tNn is a function
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that is a polynomial of degree m on each of the intervals [ti, ti+1), i = 0, · · · , Nn − 2,

and [tNn−1, tNn ], and globally has m − 1 continuous derivatives for m ≥ 1. A piecewise

constant function, linear spline and quadratic spline correspond to m = 0, 1, 2, respectively.

The collection of spline functions of a particular degree and knot sequence forms a linear

function space and it is easy to construct a convenient basis for it. For example, the space

of splines with degree 3 and knots sequence t0, · · · , tNn form a linear space of dimension

Nn + 3. The truncated power basis for this space is 1, t, t2, t3, (t− t1)3+, · · · , (t− tNn−1)3+,

where (t−ti)+ = max{0, t−ti}, i = 0, · · · , Nn−1. A basis with better numerical properties

is the B-spline basis. See de Boor (2001) and Györfi et al.(2002) for the detail of B-spline.

Let Sm,Nn be a space of polynomial splines on D with a fixed degree m and knots

t0, · · · , tNn , K = Nn+m denote the dimension of Sm,Nn . Under some smooth conditions, gs

can be approximated well by a spline function g∗s in the sense that sup
t∈D

|gs(t)− g∗s(t)| → 0

as the number of knots of the spline tends to infinity, see de Boor (2001). Let Bk(·)
(k = 1, · · · ,K) be a set of basis functions of Sm,Nn . Then, exist a set of constants θks,

k = 1, · · · ,K, s = 1, · · · , d, such that

gs(t) ≈ g∗s(t) =
K∑

k=1

θksBk(t).

For the multivariate partially linear model (1.2), we estimate the parameters βs and θs =

(θ1s, · · · , θKs)T ∈ RK , s = 1, · · · , d, through minimizing

L(H,Θ) =
d∑

s=1

n∑
i=1

{
Yis −XT

i βs −
K∑

k=1

θksBk(Ti)
}2

(2.1)

with respect to βs and θs. The obtained estimates of βs and θs are denoted by β̂s =

(β̂1s, · · · , β̂ps)T and θ̂s = (θ̂1s, · · · , θ̂Ks)T , respectively. Then, gs(t) is estimated by ĝs(t) =
K∑

k=1

θ̂ksBk(t). Therefore, H and g(·) can be estimated by Ĥ = (β̂1, · · · , β̂d), ĝ(t) = (ĝ1(t),

· · · , ĝd(t)). We refer to β̂s and ĝs(·), s = 1, · · · , d as the least squares spline estimates in

this paper.

For convenience and simplicity, some notations are introduced.

B =




B1(T1) B2(T1) · · · BK(T1)

B1(T2) B2(T2) · · · BK(T2)
...

...
. . .

...

B1(Tn) B2(Tn) · · · BK(Tn)




, PB = B(BTB)−1BT .
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Then,

L(H,Θ) = [Vec(Y)− (Id ⊗X)Vec(H)− (Id ⊗B)Vec(Θ)]T

· [Vec(Y)− (Id ⊗X)Vec(H)− (Id ⊗B)Vec(Θ)], (2.2)

where Id is the d× d identify matrix. Recalling the properties of Kronecker products

(I) [A⊗B][C⊗D] = [AC⊗BD],

(II) [A⊗B]T = [AT ⊗BT ],

(III) ([Id ⊗A])−1 = [Id ⊗A−1],

we get the estimators Ĥ and Θ̂ as follows:

Vec(Ĥ) = [Id ⊗ ([XT (In − PB)X]−1XT (In − PB))]Vec(Y),

Vec(Θ̂) = [Id ⊗ ((BTB)−1BT )](Vec(Y)− [Id ⊗X]Vec(Ĥ)), (2.3)

which matrix forms are given by

Ĥ = [XT (In − PB)X]−1XT (In − PB)Y,

Θ̂ = (BTB)−1BT (Y −XĤ), (2.4)

which also are equivalent to, for s = 1, · · · , d,

β̂s = [XT (In − PB)X]−1XT (In − PB)ys,

θ̂s = (BTB)−1BT (ys −Xβ̂s). (2.5)

§3. Main Results

In this section, we focus on the asymptotic theories of our proposed estimators on

interval D = [0, 1]. For any real-valued function g on D, define

‖g‖∞ = sup
t∈D

|g(t)| and ‖g‖2 =
{∫

D
g2(t)dt

}1/2
.

For two sequences of positive number an and bn, we write an ¹ bn if an/bn is uniformly

bounded and an ³ bn if an ¹ bn and bn ¹ an. Let P−→ and L−→ denote the convergence

in probability and distribution, respectively. Define h = 1/Nn, and | · | denote either the

Euclidian norm of a vector or the absolute value of a real number according to the context.

The following conditions are needed for the statement of the main results.

(C1) The distribution of T is absolutely continuous and its density is bounded away

from 0 and ∞ on D.
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(C2) Let l, γ and M denote real constants such that 0 < γ ≤ 1 and 0 < M ; gs is an

l-times continuously differentiable function such that

|g(l)
s (t′)− g(l)

s (t)| ≤ M |t− t′|γ , for 0 ≤ t, t′ ≤ 1.

Think of q = l + γ as a measure of the smoothness of the function gs, for s = 1, · · · , d.

(C3) Vt = Cov (X|T = t), there exist positive definite matrices V00 and V01 such

that both Vt −V00 and V01 −Vt are nonnegative definite for all t ∈ D.

(C4) The condition mean functions µi(t) = E(xi|T = t), (i = 1, ..., p), are all bounded

and continuous on D.

(C5) The number of knots Nn ³ nr, with 1/(2q + 1) ≤ r < 1/2.

Remark 3.1 Condition (C1), (C2), (C4), (C5) are common in nonparametric

regression literature, see for example of Chen (1988), Huang (2003). The Condition (C3)

is standard for asymptotic normality.

Set vij = Cov (xi − µi(T ), xj − µj(T )) = Cov (xi, xj) − Cov (µi(T ), µj(T )), for 1 ≤ i,

j ≤ p, and V = (vij)p×p.

Under the above conditions, we can state our main results.

Theorem 3.1 Suppose that conditions (C1)–(C5) hold and that m ≥ q. Then

√
n(Vec(Ĥ−H)) L−→ Np×d(0,Σ⊗V−1).

In particular, for each s ∈ {1, · · · , d},

√
n(β̂s − βs)

L−→ Np(0, σssV−1).

Theorem 3.2 Suppose that conditions (C1)–(C5) hold and that m ≥ q. Then

‖ĝs − gs‖2
2 = Op((nh)−1 + h2q), for s = 1, · · · , d.

Remark 3.2 Theorem 3.1 not only constructs the asymptotically normal estimator

of H but also provides a test statistics for testing H0 : H = H0. Theorem 3.2 shows that

ĝs is consistent in estimating gs, that is, ‖ĝs − gs‖2 = op(1). If q > 1/2, Theorem 3.2 has

the optimal order of h as n−1/(2q+1), in which case ‖ĝs − gs‖2 = Op(n−q/(2q+1)), which

is the same optimal global convergence rates of estimators for nonparametric regression

(Stone (1985)).
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§4. Concluding Remarks

The results have been obtained assuming that the design points are random. When

the design points are fixed, all the results also hold. In this paper we used B-splines with

equally spaced knots. It is interesting to consider free-knot splines in the current context.

We have focused on the case where T is one-dimensional. When T is multi-dimensional,

the proposed method is conceptually applicable, where tensor product splines can be used.

However, actual implementation may require substantial further development.

Appendix: Proofs of the Main Results

The spline estimates Ĥ and ĝ(·) are uniquely determined by the function space Sm,Nn

and different sets of basis functions can give the same estimates Ĥ and ĝ(·), so we employ

the B-spline basis in our proofs for convenience. However, the results do not depend on

the choice of basis.

Set Bk = K1/2ϕk, k = 1, · · · ,K, where ϕk are B-splines as defined in Chapter 5 of

[6]. There are positive constants M1 and M2 such that

M1|θ|2 ≤
∫ { K∑

k=1

θkBk(t)
}2

dz ≤ M2|θ|2, (A.1)

where θ = (θ1, · · · , θK)T (see Theorem 4.2 of Chapter 5 of [6]).

We need the following lemmas for proving the main results.

Lemma A.1 Under the Conditions (C1) and (C5), there is an interval [M3,M4]

with 0 < M3 < M4 < ∞, such that

P
{

all the eigenvalues of
1
n
BTB fall in [M3,M4]

}
→ 1, as n →∞.

Proof The proofs see Burman (1999). ¤

Lemma A.2 If g satisfies condition (C2), then exists a constant C >0 and a spline

function g∗ ∈ Sm,Nn with m ≥ q, such that

‖g − g∗‖∞ ≤ Chq. (A.2)

Proof This result is due to Theorem XII.1 in de Boor (2001). ¤

Set εij = xij −µj(Ti), ε = (ε1, · · ·, εp), εj = (ε1j , · · ·, εnj)T , µ(T ) = (µ1(T ), · · ·, µp(T ))

and µj(T ) = (µj(T1), · · · , µj(Tn))T for 1 ≤ i ≤ n, 1 ≤ j ≤ p.
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Lemma A.3 Under the conditions (C1), (C3)–(C5), then as n →∞,

1
n
XT (In − PB)X P−→ V. (A.3)

Proof Observing that the (i, j)th matrix element, we obtain

(XT (In − PB)X)ij = (εi + µi(T ))T (In − PB)(εj + µj(T ))

= εT
i (In − PB)εj + εT

i (In − PB)µj(T )

+µi(T )T (In − PB)εj + µi(T )T (In − PB)µj(T ). (A.4)

It follows from Condition (C1) and (A.1) that E[Bk(t)]2 ³ 1 and Lemma A.1, we have

E(|εT
i PBεi||PB) = E(εT

i B(BTB)−1BT εi|PB)

³ 1
n

E(εT
i BBT εi|PB)

=
1
n

E
{ K∑

k=1

( n∑
l=1

Bk(Tl)εli

)2∣∣∣PB

}

=
1
n

K∑
k=1

n∑
l=1

E[B2
k(Tl)ε2

li|PB]

¹ K = op(n),

and

E[|εT
i PBεj | |PB] ≤ {E[|εT

i PBεi| |PB] + E[|εT
i PBεj | |PB]}/2 = op(n).

It follows from the law of large numbers that εT
i εj/n converges to vij in probability.

Consequently,

εT
i (In − PB)εj/n

P−→ vij , as n →∞. (A.5)

If we can prove

n−1µi(T )T (In − PB)µi(T ) P−→ 0, for 1 ≤ i ≤ p, (A.6)

then the conclusion of Lemma A.3 will hold. Since In − PB is an idempotent matrix, it

follows from (A.5) and (A.6), the Markov inequality and the Cauchy-Schwarz inequality

that

n−1εT
i (In − PB)µj(T ) P−→ 0, for 1 ≤ i, j ≤ p,

except on an event whose probability tends to 0 as n tends to ∞.

It follows from condition (C4) and Lemma A.2, there exists a constant C > 0 and

spline functions µ∗i (t) ∈ Sm,Nn with m ≥ 1, such that

‖µi − µ∗i ‖∞ ≤ Ch, for 1 ≤ i ≤ p. (A.7)
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Write γ∗i = (γ∗1i, · · · , γ∗Ki)
T , µ∗i (t) =

K∑
k=1

γ∗kiBk(t), and µ∗i (T ) = (µ∗i (T1), · · · , µ∗i (Tn))T .

Then µ∗i (T ) = Bγ∗i . Observe that |µi − µ∗i | ≤ ‖µi − µ∗i ‖∞ ≤ Ch, and

(In − PB)µi(T ) = (In − PB)(µi(T ) + Bγ∗i −Bγ∗i ) = (In − PB)(µi(T )− µ∗i (T )).

Then,

|[(In − PB)µi(T )]j | = |[(In − PB)(µi(T )− µ∗i (T ))]j |
≤ |(µi(T )− µ∗i (T ))j |+ |(PB(µi(T )− µ∗i (T ))j |
≤ Ch + max

1≤j≤n
|(µi(T )− µ∗i (T ))j |

n∑
l=1

|ajl|

≤ Ch + Ch
n∑

l=1

|ajl|, (A.8)

where PB = (ajl)n×n. Let Bj = (B1(Tj), · · · , BK(Tj))T . By Lemma A.1 and the fact that
K∑

k=1

ϕ2
k(t) ≤ 1 for all t ∈ D, we have

ajj = BT
j (BTB)−1Bj ³ 1

n
BT

j Bj =
1
n

K∑
k=1

[Bk(Tj)]2 ≤ K/n,

except on an event whose probability goes to 0 as n →∞. On the other hand,

|ajl| = |BT
j (BTB)−1Bl| ≤ (ajj + all)/2 ≤ K/n,

except on an event whose probability goes to 0 as n → ∞. Note that there are at most

O(n/K) nonzero elements in each row of PB based on the local properties of the B-spline

basis. Thus, by (A.8), there is a constant C1 > 0 such that

|[(In − PB)µi(T )]j | ≤ C1h, for 1 ≤ j ≤ n, 1 ≤ i ≤ p, (A.9)

except on an event whose probability goes to 0 as n →∞. We have

n−1µi(T )T (In − PB)µi(T ) = n−1
n∑

j=1
[(In − PB)µi(T )]2j ≤ C1h

2 P−→ 0.

Hence (A.6) is true. ¤

Lemma A.4 Let m ≥ q. Under the Condition (C1)–(C5), one has

XT (In − PB)G = Op(n1/2hq + nhq+1). (A.10)

In particular, Let h = O(n−1/(2q+1)), then

XT (In − PB)G = Op(nq/(2q+1)) = op(n1/2).
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Proof Observe that for 1 ≤ s ≤ d,

[XT (In − PB)gs]i = µi(T )T (In − PB)gs + εT
i (In − PB)gs.

It follows from condition (C2) and Lemma A.2, the argument used to derive (A.9) that

there exists a constant C1 > 0 such that

|[(In − PB)gs]j | ≤ C1h
q, for 1 ≤ j ≤ n, 1 ≤ s ≤ d, (A.11)

except for an event whose probability goes to 0 with n. It follows from (A.9) and (A.11),

there is a constant C > 0 such that

|µi(T )T (In − PB)gs| = |µi(T )T (In − PB)(In − PB)gs| ≤ nChq+1,

except for an event whose probability goes to 0 as n → ∞. It follows from (A.5) and

(A.11), the Markov inequality and the Cauchy-Schwarz inequality that

εT
i (In − PB)gs = Op(n1/2hq), for 1 ≤ i ≤ p. (A.12)

The proof of Lemma A.4 is complete. ¤

Proof of Theorem 3.1 Observe that

Vec(Ĥ−H) = (Id ⊗ [(XT (In − PB)X)−1XT (In − PB)])Vec(G)

+ (Id ⊗ [(XT (In − PB)X)−1µ(T )T (In − PB)])Vec(e)

+ (Id ⊗ [(XT (In − PB)X)−1εT (In − PB)])Vec(e). (A.13)

Thus, Theorem 3.1 will be proved if we can show that as n →∞,

√
n(Id ⊗ [(XT (In − PB)X)−1εT (In − PB)])Vec(e) L−→ Np×d(0,Σ⊗V−1), (A.14)

√
n(XT (In − PB)X)−1µ(T )T (In − PB)e P−→ 0 (A.15)

and
√

n(XT (In − PB)X)−1XT (In − PB)G P−→ 0. (A.16)

Note that equation (A.16) is equivalent to

√
n[XT (In − PB)X]−1XT (In − PB)gs

P−→ 0, s = 1, · · · , d.
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It follows from the Lemma A.3 and A.4, the argument used to derive (A.9) that

E|µ(T )T (In − PB)es|2 = E
{ p∑

i=1

( n∑
j=1

ejs[(In − PB)µi(T )]j
)2}

=
p∑

i=1

n∑
j=1

E(e2
js[(In − PB)µi(T )]2j )

=
p∑

i=1

n∑
j=1

σ2
ssE([(In − PB)µi(T )]2j )

≤ nC1σ
2
ssh

2.

Therefore, µ(T )T (In − PB)es = Op(n1/2h) = op(n1/2). we have

√
n(XT (In − PB)X)−1µ(T )T (In − PB)e

= (n−1XT (In − PB)X)−1n−1/2µ(T )T (In − PB)e

= Op(1)n−1/2op(n1/2) = op(1).

Hence (A.15) is true.

It follows from the condition (C5), the Lemma A.3 and A.4 that

√
n[XT (In − PB)X]−1XT (In − PB)gs

= [n−1XT (In − PB)X]−1n−1/2XT (In − PB)gs

= Op(1)n−1/2Op(n1/2hq + nhq+1) = op(1).

Hence (A.16) is true.

Let PBε = (r1, · · · , rn)T , then

E{{[Id ⊗ (εT PB)]Vec(e)}T [Id ⊗ (εT PB)]Vec(e)}
= E{[Vec(e)]T [Id ⊗ (PBεεT PB)]Vec(e)]}

=
d∑

s=1
E[eT

s PBεεT PBes] =
d∑

s=1
E
∣∣∣

n∑
j=1

ejsrj

∣∣∣
2

=
d∑

s=1

n∑
j=1

E|ejsrj |2 =
d∑

s=1

n∑
j=1

σ2
ssE|rj |2

=
d∑

s=1
σ2

ssE(tr(εT PBε)) = Op(K)
d∑

s=1
σ2

ss.

Thus,

{Id ⊗ (εT PB)}Vec(e) = op(n1/2). (A.17)

Obviously, it follows from the central limit theorem that

n−1/2{Id ⊗ (εT )}Vec(e) L−→ Np×d(0,Σ⊗V). (A.18)
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By (A.17), (A.18) and Lemma A.3, we obtain (A.14). This establishes Theorem 3.1 by

(A.14)-(A.16). ¤

Proof of Theorem 3.2 It follows from (2.4) that

θ̂ = (BTB)−1BT (Y −XĤ).

Note that ĝs(t) =
K∑

k=1

θ̂ksBk(t). Set Ỹ = (Ỹ T
1 , · · · , Ỹ T

n )T with Ỹi = XT
i (H − Ĥ) + g(Ti).

Then Ỹ = X(H − Ĥ) + G. Define θ̃ = (BTB)−1BT Ỹ. Write θ̃ = (θ̃1, · · · , θ̃d), where

θ̃s = (θ̃1s, · · · , θ̃Ks)T . Let g̃s(t) =
K∑

k=1

θ̃ksBk(t). In the following we evaluate the first

magnitude of ‖ĝs − g̃s‖2 and then that of ‖g̃s − gs‖2.

Clearly θ̂s − θ̃s = (BTB)−1BTes. Since

E{Bk(Ti)Bk(Tj)eisejs} = 0, (i 6= j),

we obtain that

E{eT
s BBTes} = E

{ K∑
k=1

[ n∑
j=1

Bk(Tj)ejs

]2}

=
K∑

k=1

n∑
j=1

E[Bk(Tj)ejs]2 ¹ nK.

Hence, eT
s BBTes = Op(nK). Using Lemma A.1, we have that

|θ̂s − θ̃s|2 = eT
s B(BTB)−1(BTB)−1BTes ¹ 1

n2
eT

s BBTes = Op

(K

n

)
,

which together with (A.1) yields

‖ĝs − g̃s‖2
2 ³ |θ̂s − θ̃s|2 = Op

(K

n

)
.

Let g∗s ∈ Sm,Nn be such that (A.11) holds. Then

‖g∗s − gs‖2 ¹ ‖g∗s − gs‖∞ ¹ hq.

Write g∗s(t) =
K∑

k=1

θ∗ksBk(t), θ∗s = (θ∗1s, · · · , θ∗Ks)
T and g∗s = (g∗s(T1), · · · , g∗s(Tn))T . Obvi-

ously, g∗s = Bθ∗s . By (A.1) and Lemma A.1, we have

‖g̃s − g∗s‖2
2 ³ |θ̃s − θ∗s |2 ³

1
n

(θ̃s − θ∗s)
TBTB(θ̃s − θ∗s)
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with probability tending to 1. Since Bθ̃s = B(BTB)−1BT ỹs is an orthogonal projection,

where ỹs is the s’th column of Ỹ, then

1
n

(θ̃s − θ∗s)
TBTB(θ̃s − θ∗s) ≤ 1

n
|ỹs −Bθ∗s |2 =

1
n
|X(βs − β̂s) + gs − g∗s |2

≤ 2
n

[|X(βs − β̂s)|2 + |gs − g∗s |2
]

= 2(βs − β̂s)T
( 1

n
XTX

)
(βs − β̂s) +

2
n

n∑
j=1

[gs(Tj)− g∗s(Tj)]2

≤ 2λ1|βs − β̂s|2 +
2
n

n∑
j=1

[gs(Tj)− g∗s(Tj)]2,

where λ1, the largest eigenvalue of XT X/n, is bounded. By condition (C2), E[gs(T ) −
g∗s(T )]2 ³ ‖gs − g∗s‖2

2 and thus

1
n

n∑
j=1

[gs(Tj)− g∗(Tj)]2 = Op(‖gs − g∗s‖2
2).

On the other hand, by condition (C3), and Theorem 3.1, we have

(βs − β̂s)T
( 1

n
XTX

)
(βs − β̂s) = Op(n−1).

Consequently, ‖g̃s − g∗s‖2
2 = Op(n−1 + h2q). Furthermore,

‖ĝs − gs‖2
2 ¹ ‖ĝs − g̃s‖2

2 + ‖g̃s − g∗s‖2
2 + ‖g∗s − gs‖2

2.

Therefore, it follows from the above arguments that ‖ĝs − gs‖2
2 = Op((nh)−1 + h2q). The

proof of Theorem 3.2 is complete. ¤
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多元部分线性模型的B-样条估计

陈广雷

(中国人民武装警察部队学院基础部, 廊坊, 065000)

王兆军

(南开大学数学科学学院, 天津, 300071)

本文考虑多元部分线性回归模型的估计问题, 得到了该模型参数的最小二乘估计和非参数函数的B-样条

估计, 并证明了参数估计的渐近正态性, 给出了非参数函数估计的最优收敛速度.

关键词: 多元回归, 部分线性模型, B-样条, 渐近正态.
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