NHAMRST E TG Chinese Journal of Applied Probability
FH 20104FE4H and Statistics Vol.26 No.2 Apr. 2010

The Multivariate Partially Linear Model with B-Spline *
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Abstract

A multivariate partially linear model is considered in this paper. The B-spline least squares
estimator for both the parametric and the noparametric components is proposed. Moreover, we
investigate the the asymptotic normality of the estimator of the parametric component and the
convergence rate of the estimator of nonparametric function.
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81. Introduction
The general partially linear model is given by
Y = XT84 g(T) +e, (1.1)

where X and T are explanatory variables, (3 is a vector of parameters, ¢(-) is an smooth
function of T, e is random error. The model was introduced by Engle et al. (1986) and
further studied by Heckman (1986), Chen (1988), Speckman (1988) and You et al. (2004).
Some applications of the partially linear models have been described in the literature
(Hardle et al. (2000)).

All the models under consideration are univariate models. In some applications, it
may be of interest to work with a multidimensional response variable. For example, in
finance, it is now widely accepted that, working with series, such as assert returns, in a
multidimensional framework leads to better results than work with separate univariate

model. In this paper, we consider the multivariate partially linear model

Y; = X H +g(T;) + e, i=1,2,---,n, (1.2)
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where Y; = (yi1, -, Yia), Xi = (i1, ,arip)T and T; be ranges over a nondegenerate
compact 1-dimensional interval D, the error e; = (e;1,- -+ ,e;q) are assumed to be inde-
pendent and identically distributed with mean 0 and variance-covariance ¥, (X;,7;) and
e; are independent, H = (f1,---,(y) is the p x d matrix of unknown parameters and

g(T) = (q1(T), - ,94(T)) is the 1 x d vector of unknown functions. For simplicity, let

matrix form of the model (1.2) is
Y=XH+G +e. (1.3)

Using Vec operator and the Kroneker products (see Christenson (1996)), the model can
be rewritten as

Vec(Y) = [1; ® X]Vec(H) + Vec(G) + Vec(e). (1.4)

Beatriz et al. (2006) considered a kernel estimation for the model (1.3). It is well
known that kernel estimation, which is a local smoothing method, is a popular nonpara-
metric smoothing technique. However, kernel type methods can be quite computationally
expensive because they require re-fitting at every point where the fitted function needs
to be evaluated. In this paper, we propose a spline estimation for the model (1.3). The
attraction of the spline based global smoothing is that it is closely to parametric model
and thus it reduces the computation substantially.

The rest of this paper is organized as follows. Section 2 presents the B-spline estimates
for the model (1.3) based on global smoothing method. Section 3 states the main results.

Section 4 gives some concluding remarks. Mathematical proofs are obtained in Appendix

A.

§2. B-Spline Estimation

As in most works on nonparametric smoothing, without lose of generality, the esti-
mation of the function vector g(-) is conducted on compact set D = [0, 1].
Let N,, denote a positive integer and ¢t; = i/Ny,, i =0,1,--- , N,, be the knot sequence.

A polynomial spline of degree m > 0 on D with knot sequence %o, --- ,ty, is a function
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that is a polynomial of degree m on each of the intervals [t;, ti+1), ¢ = 0,--+ , N, — 2,
and [tyn,—1,tn,], and globally has m — 1 continuous derivatives for m > 1. A piecewise
constant function, linear spline and quadratic spline correspond to m = 0, 1, 2, respectively.
The collection of spline functions of a particular degree and knot sequence forms a linear
function space and it is easy to construct a convenient basis for it. For example, the space
of splines with degree 3 and knots sequence %o, --- ,ty, form a linear space of dimension
N, + 3. The truncated power basis for this space is 1,¢,t2,¢3, (t —t1)3, -+, (t — tn,-1)3,
where (t—t;)+ = max{0,t—t;},i=0,--- , N,—1. A basis with better numerical properties
is the B-spline basis. See de Boor (2001) and Gyorfi et al.(2002) for the detail of B-spline.

Let Sy, n, be a space of polynomial splines on D with a fixed degree m and knots
to, - ,tn,, K = Np+m denote the dimension of Sy, n,,. Under some smooth conditions, g,

can be approximated well by a spline function g} in the sense that sup |gs(¢) — gX(t)| — 0
teD

as the number of knots of the spline tends to infinity, see de Boor (2001). Let Bg(-)
(k=1,---,K) be a set of basis functions of Sy, n,. Then, exist a set of constants 0y,
k=1,---,K,s=1,---,d, such that

()= G5(0) = 3 OuuBulr).

For the multivariate partially linear model (1.2), we estimate the parameters 35 and 05 =

(b1s,--- ,0ks)" € RX, s=1,---  d, through minimizing
d n T K 2
L(H,0) = % 3 {Vis = X[ 8, — 3. 0 Bu(T)) | (2.1)
s=1i=1 k=1

with respect to s and 0;. The obtained estimates of G5 and 0 are denoted by Bs =
(//3\15, e ,Bps)T and 0, = (515, e ,5K5)T, respectively. Then, gs(t) is estimated by gs(t) =
f: é\ksBk(t). Therefore, H and g(-) can be estimated by H= (31, e ,351), g(t) = (q1(t),
{ﬁil,’g\d(t)). We refer to 35 and 9s(+), s =1,--- ,d as the least squares spline estimates in
this paper.

For convenience and simplicity, some notations are introduced.

Bi(Ty) Bs(Ty) --- Bg(Th)

B Bl(.TQ) 32(.T2) BK.(TQ) .,  Pg=BB'B)"'B”.
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Then,

LH,®) = [Vec(Y)— (I;® X)Vec(H) — (I; ® B)Vec(©)]T
[Vec(Y) — (Iy ® X)Vec(H) — (I; ® B)Vec(0®)], (2.2)

where I, is the d x d identify matrix. Recalling the properties of Kronecker products
(I) [A®BJ[C®D]=[AC® BD],
1) [A®@B|" =[AT @ BT],
(1) ([fa® A~ = [la@ A7,

we get the estimators H and © as follows:

Vec(H) = [I; ® (X (I, — Pg)X] 'XT (I, — Pg))]Vec(Y),
Vec(©) = [I; ® (BTB)~'BT)](Vec(Y) — [I; @ X]Vec(H)), (2.3)

which matrix forms are given by

H = X" (1, — Pg)X] X" (I, — Pp)Y,
© = (B"B)"'BY(Y — XH), (2.4)
which also are equivalent to, for s=1,--- ,d,

s = [XT (I, — Ps)X]7'X"(I,, — Pg)ys,
6, = (B"B)"'B”(y, — X3,). (2.5)

§3. Main Results

In this section, we focus on the asymptotic theories of our proposed estimators on

interval D = [0, 1]. For any real-valued function g on D, define

1/2
lolle =suplo(0]  and lgla={ [ o*(00at} "
teD D

For two sequences of positive number a,, and b,,, we write a,, < b, if a, /by, is uniformly
bounded and a,, < b, if a,, < b,, and b, <X a,. Let F, and L, denote the convergence
in probability and distribution, respectively. Define h = 1/N,,, and | - | denote either the
Euclidian norm of a vector or the absolute value of a real number according to the context.

The following conditions are needed for the statement of the main results.

(C1) The distribution of T is absolutely continuous and its density is bounded away

from 0 and oo on D.
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(C2) Let I, and M denote real constants such that 0 < v <1 and 0 < M; g is an

[-times continuously differentiable function such that
9Ot =P < Mt —t",  for 0<t, ' <1,

Think of ¢ =+ v as a measure of the smoothness of the function gs, for s =1,--- | d.
(C3) Vi = Cov (X|T = t), there exist positive definite matrices Voo and Vy; such
that both Vy — Vg and V1 — V; are nonnegative definite for all t € D.
(C4) The condition mean functions p;(t) = E(z;|T =t), (i = 1, ...,p), are all bounded
and continuous on D.

(C5) The number of knots N, <n", with 1/(2¢+ 1) <r < 1/2.

Remark 3.1 Condition (C1), (C2), (C4), (C5) are common in nonparametric
regression literature, see for example of Chen (1988), Huang (2003). The Condition (C3)
is standard for asymptotic normality.

Set vi; = Cov (z; — pi(T), xj — pi(T)) = Cov (x;, ) — Cov (i (T), 5 (T)), for 1 < 4,
j<p, and V = (vij)pxp-
Under the above conditions, we can state our main results.

Theorem 3.1  Suppose that conditions (C1)—(C5) hold and that m > g. Then
Vi(Vee(H — H)) = Npg(0, S @ V1.

In particular, for each s € {1,--- ,d},

~

V(B = Bs) = Np(0, 05V ).
Theorem 3.2  Suppose that conditions (C1)-(C5) hold and that m > g. Then
195 = gsl13 = Op((nh) ™" + %), for s=1,---,d.

Remark 3.2 Theorem 3.1 not only constructs the asymptotically normal estimator
of H but also provides a test statistics for testing Hy : H = Hy. Theorem 3.2 shows that
gs is consistent in estimating g, that is, ||gs — gs|l2 = 0p(1). If ¢ > 1/2, Theorem 3.2 has
the optimal order of h as n /(41 in which case [|gs — gslla = Op(n~9/(4F1) which
is the same optimal global convergence rates of estimators for nonparametric regression

(Stone (1985)).
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84. Concluding Remarks

The results have been obtained assuming that the design points are random. When
the design points are fixed, all the results also hold. In this paper we used B-splines with
equally spaced knots. It is interesting to consider free-knot splines in the current context.
We have focused on the case where T is one-dimensional. When T is multi-dimensional,
the proposed method is conceptually applicable, where tensor product splines can be used.

However, actual implementation may require substantial further development.

Appendix: Proofs of the Main Results

The spline estimates H and g(-) are uniquely determined by the function space Sy, n,,
and different sets of basis functions can give the same estimates H and g(+), so we employ
the B-spline basis in our proofs for convenience. However, the results do not depend on
the choice of basis.

Set By = K'Y2¢y, k=1,--- , K, where ¢, are B-splines as defined in Chapter 5 of
[6]. There are positive constants M; and My such that

2 K, 2 2
wmfop < [{ 3 080} d < dpp, (A1)

where 0 = (01, ,0x)T (see Theorem 4.2 of Chapter 5 of [6]).

We need the following lemmas for proving the main results.

Lemma A.1 Under the Conditions (C1) and (C5), there is an interval [M3, M)
with 0 < M3 < My < 00, such that

1
P{all the eigenvalues of —BTB fall in [Mj, M4]} — 1, as n — oo.
n

Proof The proofs see Burman (1999). O

Lemma A.2 If g satisfies condition (C2), then exists a constant C'>0 and a spline

function g* € Sy, N, with m > ¢, such that
lg — 9" lloc < Ch2. (A.2)

Proof This result is due to Theorem XII.1 in de Boor (2001). O

Set g4 = wij — pi(Ti), € = (€1, -, &p), €5 = (€1, -+ - €ng) 5 (T) = (1 (T), -+, pp(T))
and pj(T) = (uj(Th), -+, p1j ()" for 1 <i <m, 1< j <p.
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Lemma A.3 Under the conditions (C1), (C3)—(C5), then as n — oo,
17 P
“XT(I, — Pg)X -5 V. (A.3)
n

Proof Observing that the (7, j)th matrix element, we obtain

(X' (I, — Pe)X)i; = (ci+p(T) (In — PB) (g5 + 15 (7))
= & (In— P)ej + €] (In — Pa);(T)
+pi(T) (I — P)ej + pi(T)" (I — Pe)pi(T).  (A.4)

It follows from Condition (C1) and (A.1) that E[By(¢)]> < 1 and Lemma A.1, we have

E(lel Pgei||PB) = E(¢!B(B'B)'B¢|Pp)

1
= —E(eI'BB”¢;|Pg)

IA

and

Elle] Paej| |Pg] < {E[le] Pgeil |Ps] + Elle] Paej| |Pg]}/2 = op(n).

It follows from the law of large numbers that z-:iTsj /n converges to v;; in probability.
Consequently,

el (I, — Pp)ej/n RN Vi, as m — oo. (A.5)

If we can prove
n (T (I, — Pp)ps(T) —= 0,  for 1<i<p, (A.6)

then the conclusion of Lemma A.3 will hold. Since I,, — Pg is an idempotent matrix, it
follows from (A.5) and (A.6), the Markov inequality and the Cauchy-Schwarz inequality
that

n el (I, — Pe)uj(T) == 0,  for 1<i, j <p,

except on an event whose probability tends to 0 as n tends to oo.
It follows from condition (C4) and Lemma A.2, there exists a constant C' > 0 and

spline functions p}(t) € Sy, N, with m > 1, such that

s = pillso < Chy - for 1<i<p. (A7)
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K

Write v/ = (77, 77;(i)T7 pi(t) = kE PYZz‘Bk(t)’ and pi(T) = (p; (T1),- - 7/1?(Tn))T'
=1

Then pf(T) = B~y;. Observe that |u; — pf| < ||i — 11} ]|oo < Ch, and

(In = P)pi(T) = (In — PB)(1:(T) + By = BY}) = (In — P)(1::(T) — 15 (T)).
Then,

(I — P)pi(T)]5] [[(In — PB)(1i(T) — p1; (T))];]

< |(i(T) — 3 (7)1 + (P (a(T) — 5 (T))]

< Ch+ ax. (1 (T) — 15 (7)) l; |aj

< Ch+ChY ajl, (A.8)
=1

where Pg = (aji)nxn. Let B; = (B1(T}), -+, Bx(T;))T. By Lemma A.1 and the fact that
K

> pi(t) <1forall t € D, we have

k=1

1 XK
5 ZIBUT) < K/n,

aj; = E?(BTB)flﬁj = -B. Bj =
except on an event whose probability goes to 0 as n — oco. On the other hand,
Bl pTp\—-17
|aji| = ’Bj (B"B) "By < (aj; +ay)/2 < K/n,

except on an event whose probability goes to 0 as n — co. Note that there are at most
O(n/K) nonzero elements in each row of Pg based on the local properties of the B-spline

basis. Thus, by (A.8), there is a constant C; > 0 such that
[[(L, — PB) i (1)) < Cih, for 1<j<n,1<i<p, (A.9)
except on an event whose probability goes to 0 as n — co. We have
0~ (1) (I, — Po)i(T) = n”! z (I — Pa)ui(T))% <G> 2= 0.
Hence (A.6) is true. O
Lemma A.4 Let m > ¢. Under the Condition (C1)—(C5), one has

XT(1,, — Pg)G = O,(n*/?h? 4+ nhett). (A.10)
In particular, Let h = O(n~'/(24¢+1))  then

XT(I,, — Pg)G = 0,(n?21tV)) = o,(n1/?).
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Proof Observe that for 1 < s <d,
[XT(I, — P)gs)i = wi(T)" (I, — Pg)gs + ! (In — P)gs.

It follows from condition (C2) and Lemma A.2, the argument used to derive (A.9) that

there exists a constant C; > 0 such that
[[(In — PB)gsl;| < C1hY, for 1<j<n,1<s<d, (A.11)

except for an event whose probability goes to 0 with n. It follows from (A.9) and (A.11),
there is a constant C' > 0 such that

i (T)F (1, — Pg)gs| = |ui(T)" (I, — Pg)(I, — Pg)gs| < nChIT,

except for an event whose probability goes to 0 as n — oo. It follows from (A.5) and

(A.11), the Markov inequality and the Cauchy-Schwarz inequality that
el'(I, — Pr)gs = Op(nl/th), for 1 <i<np. (A.12)

The proof of Lemma A.4 is complete. 0

Proof of Theorem 3.1 Observe that

VecH—-H) = (I;®[(X"(I, — Pg)X)"'X"(I, — Pg)])Vec(G)
+ (La @ (XTI, — P)X) ™' w(T)" (I, — Pg)])Vec(e)
+(I; @ [(XT(I, — Pg)X)teT (1, — Pg)])Vec(e). (A.13)
Thus, Theorem 3.1 will be proved if we can show that as n — oo,

V(I @ [(XT(I, — Pe)X) e (I, — Pg)])Vec(e) - Npua(0,S@ V7Y, (A.14)

Va(XT(I, — Pg)X) (T (I, — Pg)e — 0 (A.15)

and

Vn(XT(I, — Pg)X) " 'X7(I, — Pg)G —> 0. (A.16)

Note that equation (A.16) is equivalent to

VXTI (L, — Pg)X]'XT(I, - Pp)gs =0,  s=1,--,d.
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It follows from the Lemma A.3 and A.4, the argument used to derive (A.9) that

D n 2
ElW(D) (1~ Poje = E{ 32 ( 2 esel(h — Po)niT);) }
- z > B (11~ Po)(T)L)
1= j:
= z > L E(( ~ Po)(T)L)
1= j:
< nCyoh?.

Therefore, u(T)" (I, — Pg)es = O,(n'/?h) = 0,(n'/?). we have

VAXT (I — P)X) " () (I — Pr)e
= (n'XT(1, — Pg)X)"'n"Y2u(T)T (I, — Pg)e
= Op(1)n~20p(n'/?) = 0y(1).
Hence (A.15) is true.
It follows from the condition (C5), the Lemma A.3 and A.4 that

ValX" (1, — Pe)X] ' X" (I, - Ps)es
= [n XTI, — Pe)X]"'n"V2X" (1, — PB)g,
= 0,(1)n~Y20,(n*2he + nhi*t) = 0,(1).
Hence (A.16) is true.
Let Pge = (r1,--- ,rn)", then
E{{[I; ® (T Pg)|Vec(e)}T[I; ® (eI Pg)]Vec(e)}
= E{[VGC( N e ® (PB€5TPB)]VGC( )1}

= Z lel Pgec” Pge,] = ‘
s=1 s=1 'j=

n
> E’€]5T]’ = Z Z UssE‘mz

=1 s=1j7=1

E(r(7 Pac)) = 0,(K) 3 2

s=1

Il
M

©
Il
—

<.

I
||M&

Thus,
{I; ® (7 Pg)}Vec(e) = 0,(n'/?). (A.17)

Obviously, it follows from the central limit theorem that

n VI, @ (7)) Vec(e) 2 Npwa(0,% @ V). (A.18)
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By (A.17), (A.18) and Lemma A.3, we obtain (A.14). This establishes Theorem 3.1 by
(A.14)-(A.16). O

Proof of Theorem 3.2 It follows from (2.4) that
6= (B"B)'BY(Y — XH).

Note that Gua(t) = 5 BruBi(t). Set ¥ = (V.- ¥7)T with ¥; = XT(H - H) +g(T)).
Then Y = X(H —k_fi) + G. Define 5 = (BTB)"'BTY. Write = (6y,--- ,0,), where
0, = (01, ,0xs)T. Let Go(t) = Z OrsBy(t). In the following we evaluate the first
magnitude of ||gs — gs||2 and then that of llgs — gs]|2-

Clearly 53 — 05 = (B"B)"'B”e,. Since

E{Bx(T}) Bx(Tj)eisejs} = (i # 7),
we obtain that
K n 2
E{e!BBTe,} = E{k;[; k(Tj)ejs} }
_ g é E[By(T))ejs]? < nkK.

Hence, e/ BBTe, = O,(nK). Using Lemma A.1, we have that
702 JTRRIR-LURIR)-IRT L ronr K
0, — 6, = e’B(B"B){(B"B)'B”e, < — /BB, :0,,(7),
n n

which together with (A.1) yields
P ~ K
19 — o113 = 18— 012 = 0p (= ).
Let g} € Sy N, be such that (A.11) holds. Then

gt — gsll2 < 1lgF — gslloo =< hY.

Write g5(t) = zeksBko 0 = (07, . 0c,)7 and g& = (g2(T1), -, g5(T))T. Obvi-
ously, gf = B0* By (A.1) and Lemma A.1, we have

~ . ~ . 1~ . ~ i
195 — 93113 = 165 — 621 = (05— 0:)"B'B(0, — 0%)
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with probability tending to 1. Since Bgs = B(B”B)"'B’y, is an orthogonal projection,

where y; is the s’th column of 3?, then

1~ * " * L. * 1 2 *
ﬁ(es_gs)TBTB(Qs_es) < E|YS_B95|2: E|X(ﬁs_68)+gs_gs|2

< Z[X(B, - B + g, - &2

= 25~ B (L XTX) (8~ Bo) 30 [9a(T5) — g3(T)P

2 n
n j=1

~ 2 n
S 2/\1’55 - ﬁs‘z + ﬁ Z [gs(Tj) - g;k(Tj)]Q:
7j=1

where A1, the largest eigenvalue of XTX/n, is bounded. By condition (C2), E[gs(T) —
gr(M)]* = |lgs — g;*l!% and thus

S

32 05(T3) = 4" ()1 = Opllge = g313)
On the other hand, by condition (C3), and Theorem 3.1, we have
(55~ B (XTX) (3, ~ ) = Oyln™)
Consequently, ||gs — g*[|3 = Op(rf1 + h24). Furthermore,
195 — 95113 =< 1195 — GslI3 + 11 — 93113 + llgz — gslI3-

Therefore, it follows from the above arguments that ||gs — gs||3 = Op((nh)~! + h??). The
proof of Theorem 3.2 is complete. U
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