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Abstract

In this paper, we study the adjustment coefficient as a function of the retention levels for com-
binations of quota-share with excess of loss reinsurance in the compound Poisson model perturbed
by diffusion. We calculate the quota-share on original terms and the excess of loss reinsurance
premium according to the expected value principle. Then the result that the adjustment coefficient
is a unimodal function of the retention limit for excess of loss reinsurance in this risk model is
obtained. In the last part of this paper, an upper bound for the probability of ruin in finite horizon
is given.
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§1. Introduction

The adjustment coefficient plays an important role in risk theory. Several have concen-
trated their attention on the effects of reinsurance by the adjustment coefficient. Waters!!
proved that the adjustment coefficient is a unimodal function of the retention level in case
of proportional reinsurance. He proved that the adjustment coefficient was a unimodal
function of the retention limit for excess of loss reinsurance, assuming that the reinsurance
premium calculation principle was the expected value principle and the annual claims had
a compound Poisson distribution. In Centenol!), combinations of quota-share with excess
of loss reinsurance were considered. Centenol? studied the insurer’s adjustment coeffi-
cient as function of the retention levels for combinations of quota-share with excess of loss
reinsurance in the Sparre Anderson model, generalizing some results of Centenoll.

In this paper, we study the adjustment coefficient as function of the retention levels

for combinations of quota-share with excess of loss reinsurance in the compound Poisson
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model perturbed by diffusion. We calculate the quota-share on original terms and the
excess of loss reinsurance premium according to the expected value principle.

The paper is structured as follows: in Section 2, we give some assumptions about the
compound Poisson risk model after reinsurance. Two lemmas are given for the proof of the
theorem in Section 3. In Section 3, an important result about the adjustment coefficient
is given. We give an upper bound for the probability of ruin in finite horizon in Section

4, following by an example.

§2. Some Assumptions

We assume the number of claims { N (¢) }+>0 follows a Poisson process, i.e. the number

of claims, N (t), that occur in the interval (0, ¢] can be written as
N(t) =sup{n: S, <t} (2.1)

with Sy =0, Sy, = T1+T+- - -+T;, for n > 1, where {T;}5°, are independent and identically
distributed non-negative random variables. S,, denotes the epoch of the nth claim and T;
is the time between the i — 1th and the ith claim. Let the expected value of T; be 1/\.
{Xi}2, are independent random variables with common distribution F(z) : F'(0) = 0 and
0 < F(x) <1for 0 <z < +oo. For simplicity we assume that F(z) is differentiable, with
F'(xz) = f(z) being the individual claim amount probability density function. Let u be
the expected value of X;. We also assume that Mx(r), the moment generating function
of F(z), exists for some 0 < 7 < 400 and

lim My (r) = lim E[e"*] = +o0. (2.2)

r—T r—T
Now we consider the surplus process of the insurance company as follows

N (1)
Ult)=u+Pt— 3 X;+W, (2.3)
=1

where u > 0 is the insurer’s initial surplus and the premiums are received continuously at
a constant rate P per unit of time. {W;} is a Wiener process with infinitesimal drift 0 and
infinitesimal variance 2D > 0. Thus W, is normally distributed with mean 0 and variance
2Dt.

Let us consider the case that insurer is willing to reduce his or her risk by means of
reinsurance under the form of combination of quota-share with excess of loss reinsurance.

We assume that e > ¢ and (1 — e)P — (1 + a)A\u < 0, where eP is the amount used to
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cover the insurer’s expenses per unit of time, « is the loading coefficient. We note that
for the quota-share retention level a, the insurer pays the reinsurance premium (1 — a)P
less a commission ¢(1 — a)P.

After the reinsurance arrangement the insurer’s surplus process becomes

N(®)
Usm(t) =u+ ((1 —e)P — Pyp)t — > min(aX;, M) + Wy, (2.4)
i=1
where P,y = (1—¢)(1—a)P+(1+ a))\/ (ax — M)dF(z) is the reinsurance premium.
M/a

The parameter a denotes the quota-share retention level and M denotes the excess of loss
retention limit. The process is a martingale if and only if
Ele™VeM® U, 1 (0) = u] = e (2.5)
That is
M/a 00
)\[/ " dF (x) —i—/ eMdF (z) — 1} +Dr? —((1—e)P — P, yv)r =0. (2.6)
0 M/a
If we let
M/a 00
Honm(r) = )\[/ e"*dF (x) —i—/ eMAF (z) — 1} +Dr? —((1—€e)P — Py r)r, (2.7)
0 M/a
then the positive root R, as of Hg pr(r) = 0 is the adjustment coefficient in risk theory. The
adjustment coefficient is very important in estimating the ruin probability. The interested
reader can see [3] or [4] for detailed introduction. Let E[W (a, M)] denote the insurer’s
expected net profit per period of time after reinsurance and expenses, i.e. E[W(a, M)] =
(1 —e€)P — Py pr — AE[ X, 0], where X, pr = min(aX;, M).

Let L be the set of points for which the insurer’s net expected profit is positive, i.e.
L={(a,M):0<a<1,M >0 and E[W(a, M) > 0}. (2.8)

The next two lemmas are useful in the proof of the theorem in Section 3.
Lemma 2.1 1. The adjustment coefficient is positive if and only if (a, M) € L.
2. For any (a, M) € L, H, ,(r) is positive at r = Rq n.

Proof 1. Fix (a, M), we have

a(r) = NE[ X are" eM] 4+ 2Dr — ((1 — )P — Por). (2.9)

Let

¢ 00, if M < 4o0;
T, if M = 400,
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where M = 400 means no excess of loss reinsurance. Noting that

H,(0) =0, (2.10)
lirréHaﬁM(r) = 400, (2.11)
r—

H] y(r) = NE[XZ pre¥eM] 4+ 2D > 0, (2.12)

we conclude that H, p/(r) is a convex function. So we can say that the adjustment coeffi-
cient is positive if and only if
ar(0) <0. (2.13)
It is equivalent to
ME[Xom] — (1 —e)P — Py ) <0, (2.14)
that is, E[W (a, M)] > 0. The first part of the Lemma 2.1 is proved.
2. Suppose (a, M) € L. From the proof of part 1, we can see Hy ,,(0) < 0 and
Ho pm(Rov) = 0. Given the convexity of H, ar(r), we conclude that H&M(Ra,M) > 0,
which completes the proof. O
Note that the above proof does not depend on the reinsurance premium calculation

principles used for both the arrangements.

Let ( )
e—c)P
= 2.15
W A= P - E[X] (2.15)
and
A={a:0<a<1 and there exists an M such that E[W(a, M)] = 0}. (2.16)

Lemma 2.2 Under the assumptions on the reinsurance premium P, 57, we have

1. A= (ap,1].

2. For each a € A there is a unique M such that E[W (a, M)] = 0, i.e. there is a
function ® mapping A into (0, +00) such that M = ®(a) is equivalent to E[W (a, M)] = 0.

3. ®(a) is convex.

4. lim ®(a) = +o0.

Pra(:oaf(') 1. If let E[W (a,+o00)] = Mlim+ E[W (a, M)], then
EW(a,+00)] = lim E[W(a,M)]
— i {(1 —e)P—(1—c)(1—a)P - \1+a) /M/a(ax ~ M)dF(z)

_A(/OM/“amdF@)+M(1_F(f‘j))>}

= 1-e)P—(1-c¢)(1—a)P— \aE[X]. (2.17)
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Differentiating E[W (a, +00)], we get

W:(l—C)P—)\E[X]>O

and
E[W (ag,+00)] = (1 —¢) — (1 —¢)(1 — ap) — AagE[X] =0, (2.18)

hence when 0 < a < ag, E[W (a, +00)] < 0.
Calculating the derivative of E[W (a, M)] with respect to M, we get

S = aran(-r(F) a1 £()))
) [1_F<%>}M7 (2.19)

which is positive, so when 0 < a < ag, E[W (a, M)] < E[W(a, +00) < 0.
Now we prove there is a finite solution to E[W (a, M)] = 0, when ap < a < 1.
Since E[W (ap,0)] < E[W (ag, +o0)] = 0 and
dE[W[(a,0)]
da
we get that when ag < a < 1, E[W(a,0)] < 0. Fix a € (ao, 1], we have E[W (a, +00)] >
E[W (ag,+00)] = 0, so we conclude that there is a unique M such that E[W (a, M)] = 0.

=(1—-c¢)P—(1+a)XE[X] <0,

2. In the proof of part 1 we have already proved that
OE[W (a, M)]
oM
so E[W (a, M)] is increasing in M and there exists a unique M such that E[W (a, M )] = 0.
3. Calculating the derivative of both sides of E[W (a, M)] =0 at M = ®(a), we get

> 0,

dM OE[W (a, M)] OE[W (a, M)]
da _{ da }/{ oM HM:@(a)’ (2:20)
d*m O’E[W (a, M)] s OE[W (a, M)]\2
daz _{[ 0a? < oM )
B 282E[W(a, M)] OE[W (a, M )] OE[W (a, M)]
daoM da oM

82E[Ig/]\2a2, M)] <6E[W8(;L, M)]>2]/(9E[”(;(A‘;W)3}‘M:¢(a). (2.21)

Due to the fact that E[W (a, M )] = 0, we can calculate that

OEIW(a, M) ([ M
T = (1P A1+ )/M/a dF(x) /\/0 dF (z)
_ (e —c)P —XaM(1— F(M/a)) (2.22)
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The other partial derivatives of E[W (a, M)] can be calculated as follows,

W _ _J‘gav(ﬂj) (2.23)
W — 2ot - F(%)} (2.24)
W _ _%af(%> (2.25)
8E[§C/L((9c3\,4M)] _ Ajﬁ@(%) (2.26)

Substitute (2.22)-(2.26) into (2.21), we get

M (e—c)*P3f(M/a)
da2 — (A\)2a3[1 — F(M/a)]3 > 0. (2.27)

Hence ®(a) is convex.
4. We can see that lim ®(a) = +oo is equivalent to E[W(a,+o0)] = 0. From the
a—ag

proof of part 1, the conclusion is right. O

83. An Important Result About the Adjustment
Coefficient

Theorem 3.1 For a fixed value of a € (ag, 1], R4,n is a unimodal function of M,

attaining its maximum value at the only point satisfying

M =

In(1 + a). (3.1)
a,M

Proof The adjustment coefficient R, s is, for fixed a € (ap,1] and M > ®(a), the
only root of Hy ps(r) = 0, where Hy pr(r) = AE[e"XaM] — X+ Dr? — ((1 —e) — Py pr)r.
Let us consider R, s as a function of (a, M) € L. From the implicit function theorem

it follows that

i e o

We have already known

r=Rq M

OHg n (1)

0.
or >

r=Rq M

Since

M) (o (M) -t r(2)

= (1= F(E))ne™ a4 o)) (32)
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we know
8HQ7M(T‘)

=0
8M T:Ra,M

is equivalent, for finite M, to AefleM — X\(1 + ) = 0. That is

M:

In(1 + «).
a,M

Calculate the second derivative with respect to M of R, yr, we get

ety e =~ aattl0)] [ 0]

. (3.3)
r=Rq,r,0Rq, v /OM=0

We know that
8Ha M(T)

)

or

T:Ra,]\{,aRayM/aM:()

and

82Ha7M(r)
aM?
= Han f(%) PR~ X(1 4 a)] + R (1 - F(%))ARG,M&@MM

a a

r=Rg nr,0Ra, 1 /OM=0

— Ry, (1 - F(%))AeRmMM >0, (3.4)

so we conclude that
O’ Ry (1)
76(]1\42 |aRa,M/aM:o <0. (3.5)
From the above proof, we can see, for fixed a € (ag,1], R4 has at most one turning
point, and when such a point exists it is a maximum. The maximum will exist if we can
guarantee that there is a finite solution to Aefe™ — \(1+ «a) = 0.
Fix a € (agp, 1], let

Darr(Ranr) = Aeflad — \(1 + ). (3.6)

Since lim R, = 0, we get
M—®(a)

lim Da,M(Ra,M) = —a\ <0,
Mﬂ@(a),Ra,j\/IHO

and

lim Da,M(Ra,M) = 400,
M—+o00,Rq p—0

so there exists one solution and it is unique. O
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84. Upper Bound for the Probability of Ruin
in Finite Horizon
In this section, we give the upper bound for the probability of ruin in finite horizon

under the risk model (2.4). Let a time horizon ¢t > 0 be given and let T, denote the time
of ruin. The finite time ruin probability ¥(u,t) is defined by

U(u,t) = P{T, < t}. (4.1)
In the classical risk model
N(t)
Ut)=u+ct— > X, (4.2)
i=1
put ¢t = yu, we have
W, t) = W(u, yu) < exp{—uR,}, (4.3)

where R, = sup(r — yAh(r) + yre). The result (4.3) can be found in [page 136] in [4].
r>R

In our model defined by (2.4), we have

Ry = sup (r—yHq,m(r)), (4.4)
TZRCL,M

where H, pr(r) is defined by (2.7). Put

g(r) =r —yHqm(r), (4.5)
we have

g'(r) =1—yHg () (4.6)
and

g"(r) = —yHg p (1), (4.7)

which is negative by the proof of Lemma 2.1, so g(r) is concave.

Result Considering the risk model defined by (2.4), for (a, M) € L, we have

1
e Ran iy >
HZLM(Ra,M)
U (u, yu) < R T
e~ Wa,n | if y< /7,
H:z,M(Ra,M)

where Rq s is the solution to ¢(r) = 0.
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Proof For (a, M) € L, we have R, s is positive by Lemma 2.1. Note that g(r) =
r—yH, p(r), which yields g(Rq ) = Ra,m. We have known g(r) is concave, hence when

r > Rq M, it can be seen that

R, = Ry m (4.8)
is equivalent to
g (Ranr) <0, (4.9)
that is
y > . (4.10)
HZL,M(RGVM)
When
g (Ranr) > 0, (4.11)
we can see that I, is the solution to
g'(r) =1—yH, \(r) =0, (4.12)
we denote this solution ]/%a, M- O

Example Assume that the individual claim amount distribution is Exp(1), i.e.
F(z) = 1—exp(—x), x > 0. We assume that the inter arrival times have mean 1, i.e.
A=1

We have

M/a M
Hop(r) = / exp(raxz — x)dx + exp (rM — ;) +Dr?* — ((1—e)P — Pyas)r
0
and
M/a M
o (r) = a/ zexp(rax — x)dz + M exp (TM - ;) +2Dr — (1 —e)P — Py ).
0

Let D =05, a=06 M=30, P=1.6, =03, c=0.2 and a = 0.8,
We have R, = 0.0093 and HC’L’M(RQVM) = (.0081.

Let 1/y = 0.0090, so
1

H(II,M(RQM)'
}A?Q,M is the solution to H,, ;,(r) = 0.0090, and we have }ABQ,M = 0.0098.

Then R,y < ]:?m M, that is what we have expected.
Let 1/y = 0.0060, so

y <

1
y>-——.
HZz,M(Ra,M)
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]:’,a,M is the solution to H:LM(T) = 0.0060, and we have ﬁa,M = 0.0081.
Then R, pr > }Afa, M, that is what we have expected.
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