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Abstract
In this paper, we study the adjustment coefficient as a function of the retention levels for com-

binations of quota-share with excess of loss reinsurance in the compound Poisson model perturbed

by diffusion. We calculate the quota-share on original terms and the excess of loss reinsurance

premium according to the expected value principle. Then the result that the adjustment coefficient

is a unimodal function of the retention limit for excess of loss reinsurance in this risk model is

obtained. In the last part of this paper, an upper bound for the probability of ruin in finite horizon

is given.
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§1. Introduction

The adjustment coefficient plays an important role in risk theory. Several have concen-

trated their attention on the effects of reinsurance by the adjustment coefficient. Waters[5]

proved that the adjustment coefficient is a unimodal function of the retention level in case

of proportional reinsurance. He proved that the adjustment coefficient was a unimodal

function of the retention limit for excess of loss reinsurance, assuming that the reinsurance

premium calculation principle was the expected value principle and the annual claims had

a compound Poisson distribution. In Centeno[1], combinations of quota-share with excess

of loss reinsurance were considered. Centeno[2] studied the insurer’s adjustment coeffi-

cient as function of the retention levels for combinations of quota-share with excess of loss

reinsurance in the Sparre Anderson model, generalizing some results of Centeno[1].

In this paper, we study the adjustment coefficient as function of the retention levels

for combinations of quota-share with excess of loss reinsurance in the compound Poisson
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114 应用概率统计 第二十六卷

model perturbed by diffusion. We calculate the quota-share on original terms and the

excess of loss reinsurance premium according to the expected value principle.

The paper is structured as follows: in Section 2, we give some assumptions about the

compound Poisson risk model after reinsurance. Two lemmas are given for the proof of the

theorem in Section 3. In Section 3, an important result about the adjustment coefficient

is given. We give an upper bound for the probability of ruin in finite horizon in Section

4, following by an example.

§2. Some Assumptions

We assume the number of claims {N(t)}t≥0 follows a Poisson process, i.e. the number

of claims, N(t), that occur in the interval (0, t] can be written as

N(t) = sup{n : Sn ≤ t} (2.1)

with S0 = 0, Sn = T1+T2+· · ·+Tn for n ≥ 1, where {Ti}∞i=1 are independent and identically

distributed non-negative random variables. Sn denotes the epoch of the nth claim and Ti

is the time between the i − 1th and the ith claim. Let the expected value of Ti be 1/λ.

{Xi}∞i=1 are independent random variables with common distribution F (x) : F (0) = 0 and

0 < F (x) < 1 for 0 < x < +∞. For simplicity we assume that F (x) is differentiable, with

F ′(x) = f(x) being the individual claim amount probability density function. Let µ be

the expected value of Xi. We also assume that MX(r), the moment generating function

of F (x), exists for some 0 < τ ≤ +∞ and

lim
r→τ

MX(r) = lim
r→τ

E[erX ] = +∞. (2.2)

Now we consider the surplus process of the insurance company as follows

U(t) = u + Pt−
N(t)∑
i=1

Xi + Wt, (2.3)

where u > 0 is the insurer’s initial surplus and the premiums are received continuously at

a constant rate P per unit of time. {Wt} is a Wiener process with infinitesimal drift 0 and

infinitesimal variance 2D > 0. Thus Wt is normally distributed with mean 0 and variance

2Dt.

Let us consider the case that insurer is willing to reduce his or her risk by means of

reinsurance under the form of combination of quota-share with excess of loss reinsurance.

We assume that e > c and (1 − e)P − (1 + α)λµ < 0, where eP is the amount used to
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cover the insurer’s expenses per unit of time, α is the loading coefficient. We note that

for the quota-share retention level a, the insurer pays the reinsurance premium (1− a)P

less a commission c(1− a)P .

After the reinsurance arrangement the insurer’s surplus process becomes

Ua,M (t) = u + ((1− e)P − Pa,M )t−
N(t)∑
i=1

min(aXi,M) + Wt, (2.4)

where Pa,M = (1− c)(1−a)P +(1+α)λ
∫ ∞

M/a
(ax−M)dF (x) is the reinsurance premium.

The parameter a denotes the quota-share retention level and M denotes the excess of loss

retention limit. The process is a martingale if and only if

E[e−rUa,M (t)|Ua,M (0) = u] = e−ru. (2.5)

That is

λ
[ ∫ M/a

0
eraxdF (x) +

∫ ∞

M/a
erMdF (x)− 1

]
+ Dr2 − ((1− e)P − Pa,M )r = 0. (2.6)

If we let

Ha,M (r) = λ
[ ∫ M/a

0
eraxdF (x) +

∫ ∞

M/a
erMdF (x)− 1

]
+ Dr2 − ((1− e)P −Pa,M )r, (2.7)

then the positive root Ra,M of Ha,M (r) = 0 is the adjustment coefficient in risk theory. The

adjustment coefficient is very important in estimating the ruin probability. The interested

reader can see [3] or [4] for detailed introduction. Let E[W (a,M)] denote the insurer’s

expected net profit per period of time after reinsurance and expenses, i.e. E[W (a,M)] =

(1− e)P − Pa,M − λE[Xa,M ], where Xa,M = min(aXi,M).

Let L be the set of points for which the insurer’s net expected profit is positive, i.e.

L = {(a,M) : 0 ≤ a ≤ 1,M ≥ 0 and E[W (a,M) > 0}. (2.8)

The next two lemmas are useful in the proof of the theorem in Section 3.

Lemma 2.1 1. The adjustment coefficient is positive if and only if (a,M) ∈ L.

2. For any (a,M) ∈ L, H ′
a,M (r) is positive at r = Ra,M .

Proof 1. Fix (a,M), we have

H ′
a,M (r) = λE[Xa,MerXa,M ] + 2Dr − ((1− e)P − Pa,M ). (2.9)

Let

ξ =





+∞, if M < +∞;

τ, if M = +∞,
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where M = +∞ means no excess of loss reinsurance. Noting that

Ha,M (0) = 0, (2.10)

lim
r→ξ

Ha,M (r) = +∞, (2.11)

H ′′
a,M (r) = λE[X2

a,MerXa,M ] + 2D > 0, (2.12)

we conclude that Ha,M (r) is a convex function. So we can say that the adjustment coeffi-

cient is positive if and only if

H ′
a,M (0) < 0. (2.13)

It is equivalent to

λE[Xa,M ]− ((1− e)P − Pa,M ) < 0, (2.14)

that is, E[W (a,M)] > 0. The first part of the Lemma 2.1 is proved.

2. Suppose (a,M) ∈ L. From the proof of part 1, we can see H ′
a,M (0) < 0 and

Ha,M (Ra,M ) = 0. Given the convexity of Ha,M (r), we conclude that H ′
a,M (Ra,M ) > 0,

which completes the proof. ¤
Note that the above proof does not depend on the reinsurance premium calculation

principles used for both the arrangements.

Let

a0 =
(e− c)P

(1− c)P − λE[X]
(2.15)

and

A = {a : 0 < a ≤ 1 and there exists an M such that E[W (a,M)] = 0}. (2.16)

Lemma 2.2 Under the assumptions on the reinsurance premium Pa,M , we have

1. A = (a0, 1].

2. For each a ∈ A there is a unique M such that E[W (a,M)] = 0, i.e. there is a

function Φ mapping A into (0, +∞) such that M = Φ(a) is equivalent to E[W (a,M)] = 0.

3. Φ(a) is convex.

4. lim
a→a0

Φ(a) = +∞.

Proof 1. If let E[W (a,+∞)] = lim
M→+∞

E[W (a,M)], then

E[W (a,+∞)] = lim
M→+∞

E[W (a,M)]

= lim
M→+∞

{
(1− e)P − (1− c)(1− a)P − λ(1 + α)

∫ ∞

M/a
(ax−M)dF (x)

−λ
( ∫ M/a

0
axdF (x) + M

(
1− F

(M

a

)))}

= (1− e)P − (1− c)(1− a)P − λaE[X]. (2.17)
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Differentiating E[W (a,+∞)], we get

dE[W (a,+∞)]
da

= (1− c)P − λE[X] > 0

and

E[W (a0,+∞)] = (1− e)− (1− c)(1− a0)− λa0E[X] = 0, (2.18)

hence when 0 ≤ a < a0, E[W (a,+∞)] < 0.

Calculating the derivative of E[W (a,M)] with respect to M , we get

∂E[W (a,M)]
∂M

= (1 + α)λ
(
1− F

(M

a

)
− λ

(
1− F

(M

a

)))

=
[
1− F

(M

a

)]
αλ, (2.19)

which is positive, so when 0 ≤ a ≤ a0, E[W (a,M)] < E[W (a,+∞) < 0.

Now we prove there is a finite solution to E[W (a,M)] = 0, when a0 < a ≤ 1.

Since E[W (a0, 0)] < E[W (a0,+∞)] = 0 and

dE[W [(a, 0)]
da

= (1− c)P − (1 + α)λE[X] < 0,

we get that when a0 < a ≤ 1, E[W (a, 0)] < 0. Fix a ∈ (a0, 1], we have E[W (a,+∞)] >

E[W (a0,+∞)] = 0, so we conclude that there is a unique M such that E[W (a,M)] = 0.

2. In the proof of part 1 we have already proved that

∂E[W (a,M)]
∂M

> 0,

so E[W (a,M)] is increasing in M and there exists a unique M such that E[W (a,M)] = 0.

3. Calculating the derivative of both sides of E[W (a,M)] = 0 at M = Φ(a), we get

dM

da
= −

{∂E[W (a,M)]
∂a

}/{∂E[W (a,M)]
∂M

}∣∣∣
M=Φ(a)

, (2.20)

d2M

da2
= −

{[∂2E[W (a,M)]
∂a2

(∂E[W (a,M)]
∂M

)2

− 2
∂2E[W (a,M)]

∂a∂M

∂E[W (a,M)]
∂a

∂E[W (a,M)]
∂M

+
∂2E[W (a,M)]

∂M2

(∂E[W (a,M)]
∂a

)2]/(∂E[W (a,M)]
∂M

)3}∣∣∣
M=Φ(a)

. (2.21)

Due to the fact that E[W (a,M)] = 0, we can calculate that

∂E[W (a,M)]
∂a

= (1− c)P − λ(1 + α)
∫ ∞

M/a
xdF (x)− λ

∫ M/a

0
xdF (x)

=
(e− c)P − λαM(1− F (M/a))

a
. (2.22)
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The other partial derivatives of E[W (a,M)] can be calculated as follows,

∂2E[W (a,M)]
∂a2

= −M2

a3
αλf

(M

a

)
, (2.23)

∂E[W (a,M)]
∂M

= λα
[
1− F

(M

a

)]
, (2.24)

∂2E[W (a,M)]
∂M2

= −λα

a
f
(M

a

)
, (2.25)

∂E[W (a,M)]
∂a∂M

=
λαM

a2
f
(M

a

)
. (2.26)

Substitute (2.22)-(2.26) into (2.21), we get

d2M

da2
=

(e− c)2P 2f(M/a)
(λα)2a3[1− F (M/a)]3

> 0. (2.27)

Hence Φ(a) is convex.

4. We can see that lim
a→a0

Φ(a) = +∞ is equivalent to E[W (a,+∞)] = 0. From the

proof of part 1, the conclusion is right. ¤

§3. An Important Result About the Adjustment

Coefficient

Theorem 3.1 For a fixed value of a ∈ (a0, 1], Ra,M is a unimodal function of M ,

attaining its maximum value at the only point satisfying

M =
1

Ra,M
ln(1 + α). (3.1)

Proof The adjustment coefficient Ra,M is, for fixed a ∈ (a0, 1] and M > Φ(a), the

only root of Ha,M (r) = 0, where Ha,M (r) = λE[erXa,M ]− λ + Dr2 − ((1− e)− Pa,M )r.

Let us consider Ra,M as a function of (a,M) ∈ L. From the implicit function theorem

it follows that
∂Ra,M

∂M
= −

[∂Ha,M (r)
∂M

]/[∂Ha,M (r)
∂r

]∣∣∣
r=Ra,M

.

We have already known
∂Ha,M (r)

∂r

∣∣∣
r=Ra,M

> 0.

Since

∂Ha,M (r)
∂M

= λrerM
(
1− F

(M

a

))
− r(1 + α)λ

(
1− F

(M

a

))

= r
(
1− F

(M

a

))
[λerM − λ(1 + α)], (3.2)
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we know
∂Ha,M (r)

∂M

∣∣∣
r=Ra,M

= 0

is equivalent, for finite M , to λeRa,M − λ(1 + α) = 0. That is

M =
1

Ra,M
ln(1 + α).

Calculate the second derivative with respect to M of Ra,M , we get

∂2Ra,M

∂M2
|∂Ra,M/∂M=0 = −

[∂2Ha,M (r)
∂M2

]/[∂Ha,M (r)
∂r

]∣∣∣
r=Ra,M ,∂Ra,M/∂M=0

. (3.3)

We know that
∂Ha,M (r)

∂r

∣∣∣
r=Ra,M ,∂Ra,M/∂M=0

> 0,

and

∂2Ha,M (r)
∂M2

∣∣∣
r=Ra,M ,∂Ra,M/∂M=0

=
Ra,M

a
f
(M

a

)
[λeRa,MM − λ(1 + α)] + Ra,M

(
1− F

(M

a

))
λRa,MeRa,MM

= R2
a,M

(
1− F

(M

a

))
λeRa,MM > 0, (3.4)

so we conclude that
∂2Ra,M (r)

∂M2
|∂Ra,M/∂M=0 < 0. (3.5)

From the above proof, we can see, for fixed a ∈ (a0, 1], Ra,M has at most one turning

point, and when such a point exists it is a maximum. The maximum will exist if we can

guarantee that there is a finite solution to λeRa,M − λ(1 + α) = 0.

Fix a ∈ (a0, 1], let

Da,M (Ra,M ) = λeRa,M − λ(1 + α). (3.6)

Since lim
M→Φ(a)

Ra,M = 0, we get

lim
M→Φ(a),Ra,M→0

Da,M (Ra,M ) = −αλ < 0,

and

lim
M→+∞,Ra,M→0

Da,M (Ra,M ) = +∞,

so there exists one solution and it is unique. ¤
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§4. Upper Bound for the Probability of Ruin

in Finite Horizon

In this section, we give the upper bound for the probability of ruin in finite horizon

under the risk model (2.4). Let a time horizon t > 0 be given and let Tu denote the time

of ruin. The finite time ruin probability Ψ(u, t) is defined by

Ψ(u, t) = P{Tu ≤ t}. (4.1)

In the classical risk model

U(t) = u + ct−
N(t)∑
i=1

Xi, (4.2)

put t = yu, we have

Ψ(u, t) = Ψ(u, yu) ≤ exp{−uRy}, (4.3)

where Ry = sup
r≥R

(r − yλh(r) + yrc). The result (4.3) can be found in [page 136] in [4].

In our model defined by (2.4), we have

Ry = sup
r≥Ra,M

(r − yHa,M (r)), (4.4)

where Ha,M (r) is defined by (2.7). Put

g(r) = r − yHa,M (r), (4.5)

we have

g′(r) = 1− yH ′
a,M (r) (4.6)

and

g′′(r) = −yH ′′
a,M (r), (4.7)

which is negative by the proof of Lemma 2.1, so g(r) is concave.

Result Considering the risk model defined by (2.4), for (a,M) ∈ L, we have

Ψ(u, yu) ≤





e−uRa,M , if y ≥ 1
H ′

a,M (Ra,M )
;

e−uR̂a,M , if y <
1

H ′
a,M (Ra,M )

,

where R̂a,M is the solution to g′(r) = 0.
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Proof For (a,M) ∈ L, we have Ra,M is positive by Lemma 2.1. Note that g(r) =

r− yHa,M (r), which yields g(Ra,M ) = Ra,M . We have known g(r) is concave, hence when

r ≥ Ra,M , it can be seen that

Ry = Ra,M (4.8)

is equivalent to

g′(Ra,M ) ≤ 0, (4.9)

that is

y ≥ 1
H ′

a,M (Ra,M )
. (4.10)

When

g′(Ra,M ) > 0, (4.11)

we can see that Ry is the solution to

g′(r) = 1− yH ′
a,M (r) = 0, (4.12)

we denote this solution R̂a,M . ¤

Example Assume that the individual claim amount distribution is Exp(1), i.e.

F (x) = 1 − exp(−x), x > 0. We assume that the inter arrival times have mean 1, i.e.

λ = 1.

We have

Ha,M (r) =
∫ M/a

0
exp(rax− x)dx + exp

(
rM − M

a

)
+ Dr2 − ((1− e)P − Pa,M )r

and

H ′
a,M (r) = a

∫ M/a

0
x exp(rax− x)dx + M exp

(
rM − M

a

)
+ 2Dr − ((1− e)P − Pa,M ).

Let D = 0.5, a = 0.6, M = 30, P = 1.6, e = 0.3, c = 0.2 and α = 0.8.

We have Ra,M = 0.0093 and H ′
a,M (Ra,M ) = 0.0081.

Let 1/y = 0.0090, so

y <
1

H ′
a,M (Ra,M )

.

R̂a,M is the solution to H ′
a,M (r) = 0.0090, and we have R̂a,M = 0.0098.

Then Ra,M < R̂a,M , that is what we have expected.

Let 1/y = 0.0060, so

y >
1

H ′
a,M (Ra,M )

.
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R̂a,M is the solution to H ′
a,M (r) = 0.0060, and we have R̂a,M = 0.0081.

Then Ra,M > R̂a,M , that is what we have expected.
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带干扰复合泊松模型下对调整系数的新研究

王 伟 张春生

(南开大学数学学院, 天津, 300071)

本文研究了带干扰复合泊松模型中采用成数再保与超额损失再保险混合策略时作为自留额水平函数的调

整系数. 我们按照原始条款计算成数再保费, 按照期望值保费原则计算超额损失再保费, 这样得到了调整系数

是超额损失自留额极限的单峰函数的结论. 本文最后部分给出了有限时间破产概率的上界.

关键词: 调整系数, 超额损失再保险与成数分保的组合, 干扰, 破产概率, 上界.
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