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Abstract
In many applications involving follow-up studies, individuals’ lifetimes may be subject to both

left and right censoring. In this paper we consider regressing the median of the lifetime variable

or a transformation thereof on the corresponding covariates when the lifetimes are subject to both

left and right censoring and the values of both censoring variables are always observable. A semi-

parametric inferential procedure is proposed and the asymptotic properties of the proposed method

are discussed. We also propose an alternative empirical likelihood based inferential procedure for

the regression coefficients vector. Moreover, we make some discussion on classical doubly censored

data whose censoring variables cannot always be observed. The proposed methods are illustrated

by some simulation studies.
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§1. Introduction

In survival analysis, individuals’ lifetimes are often subject to different types of cen-
soring. Right censoring is one of the most common situations. Similar to right censoring,
left censoring occurs if the individual is observed to fail prior to some time while the ac-
tual failure time is unknown. When lifetimes are said to be subject to double censoring, it
means both left and right censoring exist. That is to say, lifetime T is observed when it lies
in a random interval [X, Y ] (X ≤ Y with probability 1) and is censored when it is smaller
than X or larger than Y . Classical double censoring is defined and widely discussed in
literature (Gehan [1]; Turnbull [2]; DeGruttola and Lagakos [3]; Zhang and Li [4]; Cai and
Cheng [5]), and it is different from interval censoring. For interval censoring, one can only
observe that the lifetime T lies in some random intervals without knowing its exact value
all the time.

In some situations of double censoring, both censoring variables, X and Y , might be
observed regardless of T bing censored or not. For example, a Stanford psychiatrist wanted
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to establish norms for infant development for a community in Kenya by investigating how
long would infants take to learn a particular task in order to make comparisons with
the known standards in the United States and United Kingdom. In his sample there
were children born between July 1 and December 31, 1969. When he started the study
in January 1970, some children had already learned to perform the task; whereas losses
occurred when some infants were still unsuccessful by the end of the study (Leiderman et
al. [6]). In this case, T would represent the time from birth to first learn to perform the
particular task and was subject to double censoring. The censoring variables, X and Y ,
representing the age of these infants at the beginning and the end of the study, could be
observed for each individual in the sample.

When the lifetimes appear with some corresponding covariates, regression models are
proposed. For survival data, the accelerated failure time (AFT) model is widely used and
discussed (Miller [7]; Buckley and James [8]; Leurgans [9]). The AFT model regresses
the mean of the logarithm of the lifetime on its covariates. Its ease of interpretation is
rather attracting to practitioners. However, the presence of censoring may preclude the
estimation of intercept parameter in the model (Meier [10]), and the AFT model usually
assumes the error terms follow identical distribution, which is not reasonable in some
applications.

The median is another important parameter for measuring the center of a long-tailed
or skew survival population. Unlike the mean, it can be well estimated when the censoring
is not too heavy while the mean is often not estimatable under such circumstances. There-
fore the regression of the median of the lifetime or a monotone transformation thereof on
the covariates is a natural alternative to the AFT model. For uncensored data, robust esti-
mation of median regression models obtained by least absolute deviations (LAD) method
and its asymptotic properties are studied by Bassett and Koenker [11], Koenker and Bas-
sett [12] and Chen et al. [13], among others. For right censored data, Powell [14, 15]
analyzed median regression models with the right censoring variables being always ob-
servable. For general random right censoring situation, recent works include Ying et al.
[16], Jung [17], Yang [18], Band and Tsiatis [19], Portnoy [20], Liu and Ren [21], etc.

Though the median regression for right censored data has been widely discussed, the
existing methods can not be applied to doubly censored data directly. In this paper we
propose a semiparametric inferential procedure for median regression models with left and
right censored data when both censoring variables are always observable. The main tool
we use is the estimation equation for such observations, which is a nature extension of the
one used by Ying et al. [16] for right censored data. Moreover, according to the estimating
equation, we propose an alternative empirical likelihood based inferential procedure for the
regression coefficients vector. The empirical likelihood method was introduced by Owen
[22]. The method has been extended to many areas and its advantages have been well-
recognized. A nice summary can be found in Owen [23]. Qin and Tsao [24], Liu and Ren
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[21] used the empirical likelihood method to make inference about right censored median
regression models. Our procedure is a parallel extension to left and right censored data.

The paper is structured as follows. In the Section 2, we discuss the median model
mainly by proposing an estimating equation and using extended LAD method to solve
it. In the Section 3, we define the empirical likelihood ratio for the regression coefficients
vector and show the corresponding limiting distribution. In the Section 4, some simulation
studies are carried out to evaluate the finite sample performances of our methods. We
also make some discussion on the usage of the proposed estimating equations for classi-
cal doubly censored data in Section 5. All technical derivations are summarized in the
Appendix.

§2. Median Regression Analysis

Let T be the continuous lifetime or transformation of it. Let U be a p × 1 vector
of covariates for T and denote Z = (1,U′)′. Conditional on Z, let the median of the
conditional distribution of T be denoted by m. Suppose there exists an unknown (p+1)×1
vector β such that

m = β′Z . (2.1)

Let β0 be the true value of β. Let X denote the random left censoring time with continuous
distribution function (1−H), and Y be the random right censoring time with distribution
function (1−G). Neither H nor G depends on Z. It is also assumed that T is independent of
(X, Y ), while X and Y may be dependent and P(X ≤ Y ) = 1. We observe N = Y ∧(T∨X),
where ∧ means minimum and ∨ means maximum, the censoring variables (X, Y ) and the
covariate vector Z. The observations are (Ni, Xi, Yi,Zi) i = 1, 2, · · · , n, which are i.i.d.
copies of (N, X, Y,Z). Let the conditional distribution of Ti − β′0Zi be denoted by Fi,
which is continuous, completely unspecified and may depend on the covariate vector Zi.

For the uncensored case, the LAD estimator for β0 is obtained by minimizing
n∑

i=1
|Ti − β′Zi|. (2.2)

Note that the minimizer for (2.2) is a root of the following estimating equation:

Un(β) =
n∑

i=1

[
I(Ti ≥ β′Zi)− 1

2

]
Zi ≈ 0, (2.3)

where I(·) is the indicator function. The approximation sign is used here because Un(β)
is a discontinuous function of β. Conditional on Zi, the expected value of Un(β0) is zero
under model (2.1), therefore Un(β) is a reasonable estimating function for β.

Since given Zi, the expected value of I(Ni ≥ β′0Zi) is (1/2)[G(β′0Zi)+H(β′0Zi)], which
is shown in Appendix A.1, a natural estimating equation, which resembles (2.3), for β0 is

S0
n(β) =

n∑
i=1

[ I(Ni ≥ β′Zi)
G(β′Zi) + H(β′Zi)

− 1
2

]
Zi ≈ 0.
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When G and H are not known, we propose the following estimating equation

Sn(β) =
n∑

i=1

[ I(Ni ≥ β′Zi)

Ĝ(β′Zi) + Ĥ(β′Zi)
− 1

2

]
Zi ≈ 0, (2.4)

where Ĥ and Ĝ are the empirical distributions based on Xi, i = 1, 2, · · · , n and Yi,
i = 1, 2, · · · , n, respectively.

A “root” β̂ of (2.4) may be defined as the minimizer of the function ‖Sn(β)‖, where
‖a‖2 = a′a for any column vector a. Since (2.4) is a discrete function for β, grid search
method is used to locate its root. Next we discuss the large sample properties of β̂. Assume
that the following regularity conditions hold:

1. g, h and fi, which are the derivatives of −G, −H and Fi, are uniformly bounded;

2. The covariates vector Z is bounded;

3. the true value β0 of β is in the interior of a bounded convex region D;

4. For β ∈ D, suppose that there exists constants t̃ such that P(Y ≥ t̃|Z)+P(X ≥ t̃|Z)
> 0 and β′Z ≤ t̃ with probability 1;

5. The matrix E[ZZ′f(0|Z)] is positive definite, where f(·|z) denotes the conditional
density of T − β′0Z given Z = z.

Theorem 2.1 Under the conditions 1-5, β̂ → β0 a.s., as n →∞.

The theorem is proved in Appendix A.2. In addition to the point estimate, one
may also consider the problem of testing the null hypothesis H0 : β0 = β, or construct-
ing confidence regions for β0. Usually, a Wald-type statistic based on β̂ and its large
sample distribution can be used. In Appendix A.4 we demonstrate that

√
n(β̂ − β0) is

asymptotically normally distributed with mean zero and certain variance-covariance ma-
trix. However, the variance-covariance matrix of the limiting distribution depends on the
unknown density functions fi. Because of the existence of left and right censored data,
they may not be well estimated.

One alternative way is to use the estimating function Sn(β) directly. We show in
Appendix A.3 that the distribution of n−1/2Sn(β0) is approximately normal with mean
zero and some variance-covariance matrix Γ. Similarly, we need to estimate Γ. However,
since the explicit expression of Γ is not easy to get, we turn to the well-known jackknife
variance estimator, which could be calculated quite simply. Denote Γ̂jack as the jackknife
estimator for Γ, then

Γ̂jack =
n− 1
n2

n∑
i=1

[
Sn−1,i(β̂)− 1

n

n∑
j=1

Sn−1,j(β̂)
]⊗2

,
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where

Sn−1,i(β̂) =
n∑

j=1
j 6=i

[ I(Nj ≥ β̂′Zj)

Ĝ(β̂′Zj) + Ĥ(β̂′Zj)
− 1

2

]
Zj , i = 1, 2, · · · , n,

and a⊗2 = aa′ for any column vector a. Let Γ̂ be any consistent estimator of Γ. From
the general theory of Jackknife, one may show that Γ̂jack =Γ̂ + op(1) under some regular
conditions (See, for example, Shao and Tu [25]). Thus, a natural test statistic based
on Sn for testing H0 would be n−1S′n(β0)Γ̂−1

jackSn(β0), which has the same approximately

chi-square distribution with (p + 1) degrees of freedom as n−1S′n(β0)Γ̂−1Sn(β0).
One may also hope to check the model assumption (2.1). We propose one to do this

as Ying et al. [16] did in Section 4 of their paper, by just replacing Ĝ(β̂′Zi)−1I(Yi ≥
β̂′Zi)− 1/2 there with [Ĝ(β̂′Zi) + Ĥ(β̂′Zi)]−1I(Ni ≥ β̂′Zi)− 1/2.

§3. Empirical Likelihood Inference for β0

Note that

E
[( I(Ni ≥ β′0Zi)

G(β′0Zi) + H(β′0Zi)
− 1

2

)
Zi

]
= 0, i = 1, 2, · · · , n,

it is possible to construct an empirical likelihood based confidence region for β0. As
discussed in Section 1, the empirical likelihood confidence region may complement the
normal approximation method effectively. Let p = (p1, p2, · · · , pn) be a probability vector,
i.e.,

∑
pi = 1 and pi ≥ 0 for all i. For i = 1, 2, · · · , n, define

Sni(β) =
[ I(Ni ≥ β′Zi)

Ĝ(β′Zi) + Ĥ(β′Zi)
− 1

2

]
Zi.

Then, an estimated empirical likelihood function is defined by

Ln(β) = sup
{ n∏

i=1
pi :

n∑
i=1

piSni(β) = 0,
n∑

i=1
pi = 1, pi ≥ 0

}
.

By the Lagrange multiplier and the similar arguments in Qin and Tsao [24], the corre-
sponding empirical log-likelihood ratio, evaluated at β0, is defined as

ln(β0) = −2 log Ln(β0)/n−n = 2
n∑

i=1
log{1 + λ′Sni(β0)},

where λ = (λ1, λ2, · · · , λp+1)′ is the solution of

1
n

n∑
i=1

Sni(β0)
1 + λ′Sni(β0)

= 0.
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To derive the limiting distribution, we need to assume that the conditions 1-5 hold.
Furthermore, let

Γ1 = lim
n→∞

1
n

n∑
i=1

[ I(Ni ≥ β′0Zi)
G(β′0Zi) + H(β′0Zi)

− 1
2

]2
ZiZ′i.

The following theorem gives the limiting distribution of ln(β0).

Theorem 3.1 Under the conditions 1-5, we have

ln(β0) → l1χ
2
1,1 + l2χ

2
2,1 + · · ·+ lp+1χ

2
p+1,1

in distribution as n → ∞, where the weights li’s are the eigenvalues of Γ−1
1 Γ and χ2

i,1

(i = 1, 2, · · · , p + 1) are independent chi-square random variables with one degree of
freedom.

The theorem is proved in Appendix A.5. In order to apply Theorem 3.1, the weights
li’s have to be estimated. Under the assumptions of Theorem 3.1, Γ1 can be consistently
estimated by

Γ̂1 =
1
n

n∑
i=1

[ I(Ni ≥ β̂′Zi)

Ĝ(β̂′Zi) + Ĥ(β̂′Zi)
− 1

2

]2
ZiZ′i.

Meanwhile, Γ could be estimated by Γ̂jack as discussed in Section 2. It follows that the
li’s can be estimated by the l̂i’s, which are the eigenvalues of Γ̂−1

1 Γ̂jack.
Now Let Rα(β) = {β : ln(β) ≤ cα}, where cα is the (1−α)th quantile of the weighted

chi-square distribution l̂1χ
2
1,1 + l̂2χ

2
2,1 + · · · + l̂p+1χ

2
p+1,1. By Theorem 3.1, Rα(β) is an

approximate confidence region for β0 with asymptotically correct coverage probability
1− α.

Note that the limiting distribution of our empirical likelihood ratio test statistic is
different from that of the standard empirical likelihood method. This is because we replace
the unknown nuisance parameters H and G by their consistent estimators in Sni(β0). By
appropriately modifying the construction of Sni(β0), it is possible to get an empirical
likelihood ratio test statistic with standard chi-squared limiting distribution.

§4. Simulation

In this section, simulation studies were conducted to investigate finite sample proper-
ties of the proposed inference procedures. We considered the following median regression
models:

Model A: The covariates ui’s were generated from uniform distribution U [0.5, 1.5].
For a given ui value, Ti was generated from a normal distribution with mean ui and con-
stant variance 1. The left censoring variable Xi’s were generated from U [−1, 1] distribution
and the right censoring variable Yi’s were from the distribution of U [1, 3] distribution.
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Model B: Same as Model A except that given ui, Ti was generated from a normal
distribution with mean ui and variance ui, i.e., the error items in model (2.1) depended
on ui’s.

Model C: The covariates ui’s took two values of 1, 2 with probability 0.5, respectively.
For a given ui value, Ti was generated from an exponential distribution with median ui and
mean ui/ log(2). The left censoring variable Xi was generated from U [0, 1] distribution
and the right censoring variable Yi was from the distribution of U [1, 8] distribution.

According the generating schemes, in all the models the true values of the intercept
and slope parameters are 0 and 1, respectively, and both left and right censoring proportion
are about 20%. We got β̂ by minimizing ‖Sn(β)‖. For each model and each sample size,
we generated M = 100 sets of data and calculated the averages and standard errors of the
estimates. The results are listed in Table 1.

Table 1
n intercept std slope std
10 0.089 0.388 0.883 0.370
20 -0.051 0.356 0.951 0.351

Model A 60 -0.036 0.357 1.037 0.329
100 -0.043 0.329 1.081 0.319
200 -0.037 0.300 1.034 0.282
10 0.087 0.420 0.845 0.363
20 -0.007 0.343 0.931 0.352

Model B 60 -0.103 0.329 1.068 0.349
100 -0.052 0.270 1.072 0.311
200 -0.050 0.252 1.063 0.287
10 -0.287 0.374 0.803 0.382
20 -0.173 0.361 0.988 0.368

Model C 60 -0.064 0.376 1.030 0.339
100 -0.008 0.363 1.045 0.316
200 -0.037 0.328 1.023 0.262

For all the models (especially for the Model C), the proposed estimator seems to be
a little bit biased when the sample size is small (say, < 60). With the increase of the
sample size, the averages go closer to the true value of the regression coefficients, and the
standard errors decrease.

Then we compared the performance of confidence regions based on the normal ap-
proximation based method (Norm) and the empirical likelihood based method (EL). For
each model and each sample size, we generated M = 1000 sets of data and simulated the
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empirical coverage probabilities of the two methods. The nominal levels were chose to be
0.90 and 0.95. The results are summarized in Table 2.

Table 2
0.90 0.95

nominal level n Norm EL Norm EL
60 0.838 0.876 0.896 0.936

Model A 100 0.859 0.884 0.913 0.946
200 0.878 0.910 0.919 0.956
60 0.845 0.898 0.889 0.946

Model B 100 0.866 0.891 0.925 0.940
200 0.880 0.899 0.948 0.945
60 0.816 0.885 0.868 0.929

Model C 100 0.849 0.896 0.897 0.940
200 0.879 0.895 0.938 0.945

Results in Table 2 led to the following observations: For all the models, the empirical
likelihood based method performs better than the normal approximation based method
when the sample size is not large. With the increase of the sample size, both methods
have quite good empirical coverage probabilities. Moreover, the empirical likelihood based
method seems to be less affected by the model assumptions. According to these obser-
vations, one is recommended to use the empirical likelihood based confidence region in
general. When the sample size is large, the normal approximation based one can also be
used.

§5. Further Discussion

Here we give some discussion on classical doubly censored data. Assume Xi, Yi, Ti, Ni

and Zi have the same meaning as those in Section 2. For classical doubly censored data,
we observe Ni, Zi and a double censoring indicator δi = 1I(Ti<Xi)2I(Xi≤Ti≤Yi)3I(Ti>Yi), but
the censoring variables are not available for those observed Ti’s.

Under this data structure, we still intend to use (2.4) to estimate β. However, since
the observations of Xi and Yi are not complete here, empirical function Ĝ and Ĥ are no
longer proper estimators for G and H. Note that Ni = Yi ∧ (Ti ∨ Xi) = Xi ∨ (Ti ∧ Yi),
which means that Y is right censored by T ∨X and X is left censored by T ∧ Y as well.
Thus, in the light of Kaplan-Meier PL estimator (Kaplan and Meier [26]), we estimate G

and H by

G̃(t) =
∏

i:N(i)≤t

(
1− 1

n− i + 1

)η(i)

,
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where ηi = 1 for δi = 3 and 0 for others, N(i)’s are the ordered observations of Ni’s and
η(i) is the value of η associated with N(i), and

H̃(t) = 1− ∏
i:N(i)>t

(
1− 1

i

)ζ(i)
,

where ζi = 1 for δi = 1 and 0 for others and ζ(i) is the value of ζ associated with N(i). We
rewrite (2.4) into

S̃n(β) =
n∑

i=1

[ I(Ni ≥ β′Zi)

G̃(β′Zi) + H̃(β′Zi)
− 1

2

]
Zi.

By minimizing ‖S̃n(β)‖ here we also get the estimator β̃. Naturally we are concerned
with the asymptotic properties of β̃ and S̃n(β0) as considered above, but the situation
becomes complicated here. Although G̃ has the same form as the Kaplan-Meier PL esti-
mator and H̃ is a corresponding estimator for left censoring data, Y is not independent of
the “right censoring variable” T ∨X and the same problem exists between X and T ∧ Y ,
since Y and X may be dependent. Thus G̃ here is not the common Kaplan-Meier PL
estimator for lifetimes with independent censoring variables. Thus, we are not sure about
the corresponding large sample properties of such estimator so far, and we are not clear
if β̃ and S̃n(β0) here have the same large sample behaviors as β̂ and Sn(β0) discussed
in Section 2 and 3. Though theoretical justifications are not available, we still did some
simulation with Model A, B and C in Section 4 by using such estimators to explore their
large sample behaviors. The results are listed in Table 3 and Table 4.

Table 3
n intercept std slope std
10 -0.258 0.363 0.931 0.409
20 0.017 0.372 0.905 0.354

Model A 60 0.003 0.355 1.010 0.330
100 0.016 0.318 0.987 0.309
200 0.011 0.317 0.990 0.299
10 -0.217 0.368 0.904 0.392
20 0.008 0.351 0.931 0.373

Model B 60 0.016 0.350 0.985 0.341
100 0.017 0.332 0.991 0.323
200 -0.001 0.249 1.019 0.298
10 -0.362 0.319 0.820 0.425
20 -0.325 0.314 0.934 0.415

Model C 60 -0.125 0.350 0.992 0.344
100 -0.059 0.322 1.049 0.300
200 0.026 0.342 0.987 0.284
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Table 4
0.90 0.95

nominal level n Norm EL Norm EL
60 0.843 0.851 0.904 0.930

Model A 100 0.869 0.856 0.928 0.936
200 0.862 0.869 0.931 0.926
60 0.839 0.845 0.913 0.930

Model B 100 0.869 0.864 0.921 0.930
200 0.874 0.869 0.931 0.934
60 0.844 0.870 0.914 0.927

Model C 100 0.875 0.872 0.936 0.937
200 0.900 0.883 0.946 0.953

The simulation results show some useful hints. When the sample size is small (say, <

60), the estimator does not perform well. The averages of the estimates indicate that β̃ may
be biased, especially for the Model C, in which T has a long tail distribution. However, with
the increase of the sample size, the bias disappears and the empirical coverage probabilities
go closer to the nominal ones. It seems that the large sample behaviors of β̂ and Sn(β0)
are still valid for β̃ and S̃n(β0) under our simulation designs. However, strict theoretical
proof of the properties of such estimators is still an open question.

Appendix

A.1 The Expected Value of I(Ni ≥ β′0Zi) Given Zi

For any β,

P(Ni ≥ β′Zi|Zi)

= P(Yi ≥ β′Zi, Xi ∨ Ti ≥ β′Zi|Zi)

= P(Yi ≥ β′Zi, Xi ≥ β′Zi, Ti ≥ β′Zi|Zi)

+P(Yi ≥ β′Zi, Xi ≥ β′Zi > Ti|Zi) + P(Yi ≥ β′Zi, Ti ≥ β′Zi > Xi|Zi).

By the fact that Yi ≥ Xi with probability 1 and the independence between Ti and (Xi, Yi),

P(Ni ≥ β′Zi|Zi) = P(Xi ≥ β′Zi|Zi)P(Ti < β′Zi|Zi) + P(Yi ≥ β′Zi|Zi)P(Ti ≥ β′Zi|Zi).

Since Ti is continuous and its conditional median mi = β′0Zi, given Zi, we get that

P(Ni ≥ β′0Zi|Zi) =
1
2
[G(β′0Zi) + H(β′0Zi)].
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A.2 Proof of Theorem 2.1

Let

Sn(β) =
n∑

i=1

{1
2
− Fi((β − β0)′Zi)G(β′Zi) + [1− Fi((β − β0)′Zi)]H(β′Zi)

G(β′Zi) + H(β′Zi)

}
Zi.

Similar to the proof of Appendix A in Ying et al. [16], we get that

sup
β∈D

‖n−1Sn(β)− n−1Sn(β)‖ = o(n−1/2+ε) a.s.. (A.1)

Denote

An(β) =
1
n

∂Sn(β)
∂β

= − 1
n

n∑
i=1

fiG
2 − fiH

2 + 2FigH − gH − 2FihG + hG

(G + H)2
ZiZ′i,

where Fi = Fi((β−β0)′Zi), fi = fi((β−β0)′Zi), G = G(β′Zi), H = H(β′Zi), g = g(β′Zi),
h = h(β′Zi). Notice that Fi(0) = 1/2, so with probability 1,

An(β0) = − 1
n

n∑
i=1

fi(0)(G2(β′0Zi)−H2(β′0Zi))
(G(β′0Zi) + H(β′0Zi))2

ZiZ′i

→ −E
[f(0|Z)(G2(β′0Z)−H2(β′0Z))

(G(β′0Z) + H(β′0Z))2
ZZ′

]
.

Because P(Xi ≤ Yi) = 1, we can get G(β′0Z) > H(β′0Z). Since the matrix E[ZZ′f(0|Z)] is
positive definite, the matrix

E
[f(0|Z)(G2(β′0Z)−H2(β′0Z))

(G(β′0Z) + H(β′0Z))2
ZZ′

]

is positive definite, and then An(β0) is negative definite. Because Sn(β0) = 0, it follows
that n−1Sn(β) is bounded away from zero for any β 6= β0. Coupled with (A.1) and the
definition of β̂, implies that β̂ → β0 a.s..

A.3 Asymptotic Normality of n−1/2Sn(β0)

Since n−1/2Sn(β0) is a sum of dependent random variable, we will look for a sum of
independent random variable to approximate it. By definition,

Sn(β0) =
n∑

i=1

[ I(Ni ≥ β′0Zi)

Ĝ(β′0Zi) + Ĥ(β′0Zi)
− 1

2

]
Zi

=
n∑

i=1

[ I(Ni ≥ β′0Zi)
G(β′0Zi) + H(β′0Zi)

− 1
2

]
Zi − n

∫ ∞

−∞

Ĝ(t)−G(t)

(Ĝ(t) + Ĥ(t))(G(t) + H(t))
dQ(t)

−n

∫ ∞

−∞

Ĥ(t)−H(t)

(Ĝ(t) + Ĥ(t))(G(t) + H(t))
dQ(t),
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where Q(t) = n−1
n∑

i=1
I(β′0Zi ≤ t ∨Ni)Zi.

Note that empirical distribution is a special case of Kaplan-Meier estimator, which
means Ĝ and Ĥ are also the Kaplan-Meier estimators for G and H, respectively. Then,
applying a well-known martingale representation for both (Ĝ − G)/G and (Ĥ − H)/H

(see, for example, Gill [27]) and using the similar arguments in Appendix B in Ying et al.

[16], we can show that the statistic Sn(β0) is asymptotically equivalent to
n∑

i=1
ηi, where

ηi =
[ I(Ni ≥ β′0Zi)
G(β′0Zi) + H(β′0Zi)

− 1
2

]
Zi − 1

2

∫ ∞

−∞

q1(t)
h1(t)

[
dI(Yi ≤ t)− I(Yi ≥ t)dΛ1(t)

]

− 1
2

∫ ∞

−∞

q2(t)
h2(t)

[
dI(Xi ≤ t)− I(Xi ≥ t)dΛ2(t)

]
,

and

q1(t) = lim
n→∞

1
n

n∑
i=1

G(β′0Zi)
G(β′0Zi) + H(β′0Zi)

I(β′0Zi ≥ t)Zi, h1(t) = lim
n→∞

1
n

n∑
i=1

I(Yi ≥ t);

q2(t) = lim
n→∞

1
n

n∑
i=1

H(β′0Zi)
G(β′0Zi) + H(β′0Zi)

I(β′0Zi ≥ t)Zi, h2(t) = lim
n→∞

1
n

n∑
i=1

I(Xi ≥ t),

Λ1(·) and Λ2(·) are the cumulative hazard functions for the right and left censoring vari-
ables, respectively. Thus, by the multivariate central limit theorem we can show that the
distribution of n−1/2Sn(β0) is asymptotically normal with mean zero and some variance-
covariance matrix Γ.

A.4 Local Linearity for Sn(β) and Asymptotic Normality for β̂

Before we show the local linearity of Sn(β), two lemmas are needed in the proof.

Lemma A.1 Let µ be a continuously differentiable function. Then for any fixed
constant c,

sup
|s−t|≤cn−1/3,s,t≤t̃

|µ(Ĝ(t)+Ĥ(t))−µ(G(t)+H(t))−µ(Ĝ(s)+Ĥ(s))+µ(G(s)+H(s))|=op(n−1/2).

Lemma A.2 Let νi be a sequence of constants. Then

sup
‖β−β0‖≤cn−1/3

∣∣∣
n∑

i=1
νiI(Ni ≥ β′Zi)−

n∑
i=1

νiI(Ni ≥ β′0Zi) +
n∑

i=1
νi

1
2
(G(β′0Zi) + H(β′0Zi))

−
n∑

i=1
νi[(1− Fi((β − β0)′Zi))G(β′Zi) + Fi((β − β0)′Zi)H(β′Zi)]

∣∣∣ = op(n1/2).

In particular we have

sup
‖β−β0‖≤cn−1/3

n∑
i=1

|I(Ni ≥ β′Zi)− I(Ni ≥ β′0Zi)| = Op(n2/3).
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Recall that β is in the n−1/3-neighborhood of β0. Therefore, by Lemma A.1 and A.2,
we can show that

Sn(β) = Sn(β0) + Sn(β) + op(n1/2). (A.2)

The details of proof are similar to Appendix C in Ying et al. [16], we omit them here.

Supposing that A = lim
n→∞An(β0) to be nonsingular, for any fixed constant c and all

β in ‖β − β0‖ < cn−1/3, by taking Taylor’s expansion of Sn(β) in (A.2) at β0, we get that

Sn(β) = Sn(β0) + nA(β − β0) + op(max(
√

n, n‖β − β0‖)).

Since n−1/2Sn(β0) → N(0,Γ) in distribution as n →∞, n1/2(β̂ − β0) → N(0,A−1ΓA−1)
in distribution. This completes the proof of asymptotic normality for β̂.

A.5 Proof of Theorem 3.1

We now have the asymptotic Normality of both n−1/2Sn(β0) and β̂ − β0. The later
implies that β̂ − β0 = Op(n−1/2). In order to prove Theorem 3.1, two other lemmas are
needed.

Lemma A.3 Under the conditions as in Theorem 3.1, we have

(i)
1
n

n∑
i=1

Sni(β0)Sni(β0)′ → Γ1, (ii) Γ̂1 → Γ1

in probability as n →∞.

Proof Similar to the proof of Lemma A.1 in Qin and Tsao [24]. ¤

Lemma A.4 Let X → N(0, Ip) in distribution as n → ∞, where Ip is the p × p

identity matrix. Let Σ be a p×p nonnegative definite matrix with eigenvalues l1, l2, · · · , lp,
Then,

X ′ΣX → l1χ
2
1,1 + l2χ

2
2,1 + · · ·+ lpχ

2
p,1

in distribution as n →∞, where χ2
i,1 (i = 1, 2, · · · , p) are independent chi-square random

variables each with one degree of freedom.

Proof See Qin and Jing [28]. ¤

Now, by using the above two lemmas and the similar argument in appendix in Qin
and Tsao [24], we have

ln(β0) =
n∑

i=1
λ′Sni(β0)Sni(β0)′λ + op(1)

=
(
Γ−1/2n−1/2

n∑
i=1

Sni(β0)
)′

(Γ1/2Γ−1
1 Γ1/2)

(
Γ−1/2n−1/2

n∑
i=1

Sni(β0)
)

+ op(1).
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Because of the asymptotic Normality of n−1/2Sn(β0), we have Γ−1/2(n−1/2
n∑

i=1
Sni(β0)) →

N(0, Ip+1) in distribution as n → ∞. Also note that Γ1/2Γ−1
1 Γ−1/2 and Γ−1

1 Γ have the
same eigenvalues. Thus, from Lemma A.4, Theorem 3.1 is proved.
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双侧截断数据的中位数回归

郑 明 郁 文

(复旦大学管理学院统计学系, 上海, 200433)

在很多实际应用中, 个体寿命时间可能被同时左截断与右截断. 本文在左右截断变量都能被观察到的假

设下, 提出了一种半参数推断方法, 来分析协变量对于相应寿命时间或其某种变换的中位数的影响, 并讨论了

所得估计量的渐近性质. 此外, 本文还提供了一种基于经验似然的回归参数推断方法, 并讨论了将这些方法推

广到经典双侧截断数据的可能性. 一些模拟计算被用于展示这些方法的有效性.

关键词: 左截断与右截断, 经验似然, 最小绝对离差, 中位数回归.

学科分类号: O212.1.
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