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Abstract

Consider semiparametric regression model y; = x;8+ g(¢;) + Vi (1 < i < n), where the known
design points (z;,t;), the unknown slope parameter 3, and the nonparametric component g are

oo oo
non-random, and the correlated errors V; = > ¢je;—; with Y |¢j| < 0o and e; are negatively
j=—o0 j=—o0
associated random variables. Under appropriate conditions, we study rates of strong convergence

for wavelet estimators of 8 and g(-). The results show that the wavelet estimator of g(-) can attain
the optimal convergence rate. Finite sample behavior of the estimator of (8 is investigated via
simulations too.
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81. Introduction
Consider the following semiparametric regression model:
yi = xiB + g(ti) + Vi, 1<i<n, (1.1)

where [ is an unknown parameter of interest, (x;,t;) are nonrandom design points, y; are
the response variables, V; are random errors, and ¢(-) is an unknown function defined on
the closed interval [0, 1].

The model (1.1) was first introduced by Engle et al. (1986) and has been extensively
studied. When the errors V; are i.i.d. random variables, various estimation methods have
been used to obtain estimators of the unknown quantities in (1.1), see e.g. Speckman
(1988), Hamilton and Truong (1997), Qian and Chai (1999), Qian et al. (2000) among
others. However, the independence assumption for the errors is not always appropriate

in applications, especially for sequentially collected economic data, which often exhibit
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evident dependence in the errors. Recently, the semiparametric regression with serially

correlated errors has attracted increasing attention by statisticians. For model (1.1) with
(o]

MA (o0) errors, which are of the form V; = " ¢;&_;, where &; are i.i.d. random variables,
7=0

Sun et al. (2002) discussed the law of iterated logarithm for the semiparametric least

square estimator of B and strong convergence rates of the nonparametric estimator of g(-),

under ¢; satisfying Z lcj| < oo and supn E |cj] < oo
=0

n>1 ]n

It is well known that the wavelet analysis has been used extensively in engineering
and technological fields. In order to meet practical demand, since 90’s, some authors have
considered to use the wavelet methods in statistics. For instance, Antoniadis et al. (1994)
and Donoho et al. (1996) estimated regression function and density function by using
wavelet technique, respectively.

Related to the wavelet estimation for model (1.1) and assume that the errors are
independent random variables, We refer to papers by Qian and Chai (1999), Qian et al.
(2000) and Xue (2003). But, up to now, there have been few results related to wavelet esti-
mation for model (1.1) with MA(c0) error process based on negatively associated random
variables.

A finite family of random variables {X;,1 < i < n} is said to be negatively associated

(NA) if, for every pair of disjoint subsets A and B of {1,2,--- ,n}, we have
Cov (f1(Xi,i € A), fo(X;,j € B)) <0,

whenever f; and f> are coordinatewise increasing and such that the covariance exists. An
infinite family of random variables is NA if every finite subfamily is NA. The definition of
NA random variables was introduced by Alam and Saxena (1981) and carefully studied by
Joag-Dev and Proschan (1983). Because of its wide applications in multivariate statistical
analysis and systems reliability, the notion of NA received considerable attention recently.
See Liang and Jing (2005), Liang et al. (2006), Jing and Liang (2004), Shao (2000),
Roussas (2000), Chen et al. (2003), and so on.
In this paper, we consider the model (1.1) and assume the following form for {V;}:
00 00
Vi= X cjeij with 2 el < oo, (1.2)
j=—o0 j=—o0

where {e;} are identically distributed, negatively associated random variables with Ee; = 0.
We shall investigate the wavelet estimators of 3 and ¢(-) in model (1.1) and discuss strong
convergence rates of these estimators. Our results show that the wavelet estimator of g(+)

can attain the optimal convergence rate.
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The paper is organized as follows. We introduce the wavelet estimators of 5 and g(-) in
Section 2. In Section 3, we list some assumptions and remarks. Main result is formulated
in Section 4. Some preliminary lemmas, which are used in the proof of the main result,
are collected in Section 5. Section 6 gives proof of the main result. A simulation study is

presented in section 7.

§2. Estimators

Let ¢ be father wavelet with compact support and unit integral of multiresolution
analysis {V,,,m € Z}, where Z is integer set. Since {¢(z — k),k € Z} is an orthogonal
family of L?(R) and Vj is the subspace spanned, if we denote

Omi(z) = 2"20(2Mx — k), k€ Z,

then {¢or, k € Z} is an orthogonal basis of Vp, and {¢k, k € Z} is an orthogonal basis of
Vin. For the more on wavelet see Watler (1994).

By ¢, we can define the following wavelet kernel:

Ep(x,u) =2"Ey(2Mz,2Mu), Eo(xz,u) = kgzqﬁ(a: —k)p(u — k).

We now construct the wavelet estimators of § and g. Assume that § in model (1.1)

is given, since EV; = 0, we have g(t;) = E(y; — ;8) (for i = 1,--- ,n). Hence, a natural
estimator of g(-) is
n
it.8) = 3 (5= 2i8) [ Enlt.5)ds,
i=1 A

where A; = [si—1,8i], s0 =0, s, =1, s, = (1/2)(t; + tix1), i =1,--- ,n— 1. Hence t; € A;

for 1 <i < n. In order to estimate (3, we minimize

[yi — 2i3 — gn(ti, B))°. (2.1)

-

S5(8) =

=1

n n n
Define S2 = 5522, Ti=mi— Yy, zj/ E,(ti,s)ds, vi =yi — > yj/ E,,(t;,s)ds. The
i=1 j=1 A; j=1 A;

minimizer in (2.1) is found to be
~ n
Bn = > Tili/ Sy (2.2)
i=1
So, a plug-in estimator of the nonparametric component g(-), based on Bn, is given by

3u(t) = (= i8) [ Bt 9)ds. (23

=1
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In the sequel, let C,C1,-- -, ¢, c1, - -+ denote positive constants whose values may vary

at each occurrence. a < b means a < Cb. For any function A(-) defined on [0, 1], let
At = A0 - 3 A(t) | Enlto)ds
j=1 A

Let (j1,--+,Jjn) and (my,- -+ ,7m,) denote permutations of (1,--- ,n) and the permutations

may vary at different places.

8§3. Some Assumptions

In order to list some restrictions for ¢ and g, we give two definitions here.

Definition 3.1 A father wavelet ¢ is said to be g-regular (Sy, ¢ € N) if for any
I < g, and for any integer [ and k, one has |d'¢/dz!| < Ci(14 |z|)~*, where Cy, is a generic

constant depending only on k.

Definition 3.2 A function space H” (7 € R) is said to be Sobolev space with
order v, i.e. if h € H" then / \iAL(w)\Q(l +w?)Ydw < oo, where I is the Fourier transform
of h.

Now we list the following some assumptions.
(A1) There exists a function h(-) defined on [0, 1] such that z; = h(t;) + u; and

(i) lim n~!

n
1=

u? =0 (0 < o < 00),
1
i\ T 1 2 . , ,
(i) llisogpmlénﬁgn}lguﬁ’ < oo for all permutations (j1,- -, jn) of (1,---,n);

(A2) g(-),h(-) € HY, a > 2/3;

(A3) ¢ € Sy, r > a. Let ¢(-) satisfy Lipschitz condition of order 1 and |p(¢) — 1| = O(€)

as £ — 0, where gg is the Fourier transformation of ¢;

(Ad) ¢/n < lISniiéln(ti —ti—1) < giegcn(tz —ti—1) < ca/m;

(A5) con/A(logn)!/* < 2™ < cyn/2(log )~/
(A5*) csnl/3 < 2m < cgn'/3,

Remark 1 (i) Condition (Al) is assumed in Sun et al. (2002) and Hérdle et al.
(2000) for multivariate setting; Conditions (A2)-(A3) were used by Xue (2003), Qian et
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al. (2000), Chen et al. (2003) and Liang et al. (2004); Condition (A4) is assumed in Xue
(2003) and Shi (1998), and (A4) implies ax (5; — si—1) = O(n71).

(ii) According to Antoniadis et al. (5954), condition (A2) follows that ¢(t) and h(t)
are continuous and differentiable on [0,1], which imply that g(¢) and h(t) satisfy Lipschitz

condition of order 1 on [0, 1].

Remark 2 Let us have a look at some consequences of the above assumptions:
(a) Assumptions (Al), (A2) for h(-), (A3)-(A4), and (A5) or (A5*) imply

>z —o0o and S5 3| < C.
- i=1

—~ n
In fact. From Z; = u; + h(t;) — > uj/ Ep.(ti, s)ds, we have
=1 Aj

DI W 1i%)1 /Etd)+z<>
— = = — — u s)ds u
n = n = n = j I3 7 i
2 n
o u]/E (t:,5 ds)——thz u]/E (t:, 5)
n ;=1
= L1+L2+L3+2L4—2L5—2L6.
Note that ax |h(t;)| = O(2~™) from (b) below. In order to verify the conclusion, we
<i<n
now introduce the following Abel Inequality (see Hérdle, Liang and Gao (2000), p.183):
Let Ay, A, -+, An; Bl,Bg, <+« By (B1 > By > --- > B, > 0) be two sequences of
real numbers, and let S;, = Z A;, My = mln Sk and My = max Si. Then
i=1 1<k 1<k<n
n
BiM; < S AuBy < By M. (3.1)
k=1

Now, let G, Hi (1 < k < n) be arbitrary real numbers satisfying (without loss of gener-
ality) Hy > Hy > --- > Hy,. Put Qs = H; — H,, 1 < s < n. By an application of (3.1),

we have

<
‘ - k; G 1<z<n‘H | 1I<n73§n‘ ; Gk" (32)

So, on applying the assumptions, Lemma 5.4 below and (3.2), it is easy to verify that
n

Ly — 0 (I =2,3,4,5,6). Hence, we have (1/n) Y. 7% — o from (A1)(i). Further we get
i=1

S;Z Sz < C.

i=1

(b) Assume that function A(-) satisfies a Lipschitz condition of order 1 on [0, 1]. From
Lemma 2.1 of Qian et al. (2000), under the assumptions (A3)-(A4) we have sup |A(t)| =
O@2™™)+0(n™t).
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§4. Main Results

Our main results are as follows.

Theorem 4.1 (a) Suppose that (A1)-(A5) hold and supny/logn > |¢;j| < oo.
n2l li[>n

If E|ep|*t? < oo for some § > 0 and Juax lug| = O(nd/22+9) (log n)1/2), then B, — 3 =
O(n=?(logn)'/?) as.. o
(b) Suppose that (A1)-(A4) and (A5*) hold. Let E|eo|?T® < oo for some § > 0. If

sup /27 37 |¢;| < 0o for some y <1/(2+6) and ax |u;| = O (nOA=1+1=2))/(2+0) Jog p),
n>1 lil>n <i<n

then 3, — 8 = o(n ™ 7logn) a.s..

In particular, if § = 1, v = 1/3, then, under supn®° 3 lej| < oo, max |u;| =
n>1 li|>n 1<i<n

O(n*/31ogn) and Eleg|? < oo, we have 3, — f = o(n"/3logn) a.s..

Theorem 4.2  Suppose that (A1)-(A4) and (A5*) hold, and that n®/¢ 3 |¢;| <
li[>n

0o, max |ug| = O(n'/3logn). If E|eg|® < oo, then sup [Gn(t)—g(t)] = O(n"'/3logn) as..
1<i<n 0<t<1

Remark 3  Since the NA property includes independence, our theorems include the
results in the i.i.d. setting as a special case. Theorem 4.2 shows that the estimator of the
nonparametric component in model (1.1) attains the optimal strong uniform convergence

rate known from nonparametric estimation in corresponding i.i.d. models.

85. Preliminary Lemmas

In this section, let {e;} be identically distributed, negatively associated random vari-
ables with Ee; = 0, and let {V;} be defined as in (1.2).

Lemma 5.1 (Jing and Liang (2004)) Let E|e;|P < oo for some p > 2. Assume
that {bni,1 <i < k,,n > 1} is an array of real numbers satisfying  max |bpi| = O(n=1/P),
where k, < Mn (M an integer not depending on n) is a sequence of positive integers. If
% b2, = o((logn)~1), then % bniei = o(1) a.s.; if % b2, = O((logn)™!), then % bpie; =
ZO:(ll) a.s. = = =

Lemma 5.2 (Liang et al. (2006)) Assume that {a,;(t),1 < i < n,n > 1} is a
family of real functions defined on [0, 1] satisfying

(i) il\am(t)\ = O(1) and max |ani(t)] = O(n~*%), for some s > 0, uniformly in

=

— 1<i<n
te0,1];
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(ii) ax lani(s) — ani(t)] < c|s — t|, uniformly in ¢ € [0,1] and n > 1.
<i<n

Assume that Eleg|? < oo for some p > 2. Then, for the linear process defined in (1.2) with

n
supn!/?+* 3 |¢j| < oo for 1/p<a<min(s—1/p,1—1/p,s/2), we have sup | Y ani(t)Vi| =
n>1 lj|>n 0<t<1 i=1

O(n~*logn) a.s..
Lemma 5.3 (Liang et al. (2006)) Let E|eg|P < oo for some p > 2. If supn3/2~7

n>1

- > |ej| < oo, for some n > max(1/p,1 —1/p), then  max ! Z Vj,| = O(n"logn) as..
li|>n

In particular, if p = 2, n = 1/2, then, under supn
n>1 |j|>n

O(n'?logn) a.s.;if p=2+46 for some § > 0, = 1—7 for somie y < < 1/(2+6), then, under
=O0(n'"7logn) a.s..

Ji

Eleo|?*® < oo and supn
’I’L>1 ‘]‘>n 1<m<n

Lemma 5.4 (Xue (2003)) (a) Under (A3) we have

(1) sup |En(t,s)|=0(2m); (2) sup / |E(t,s)|ds < C.
0<t,s<1 0<t<1
(b) Under (A3) and (A4) we have
(3) 1121?51 Z ] m(ti, s)|ds < C (4) 1rélja<xnlzl N |Em (ti, s)|ds < C.

§6. Proofs of Main Results

Proof of Theorem 4.1 (a) From the definition of B, in (2.2),
Bn—B = 552{ Y TVi— > ﬁ( > Vj/ Em(ti,s)d8> + > @@}}
i=1 i=1 j=1 Aj i=1
= S,y — Ion + I3}
and Iy, = > uVi+ Y hiV; — > V%( > Uj/ Em(tias)ds) =: Inin + Li2n, — I13n, Where
i=1 i=1 i=1 j= A;
gi = g(ti), }VLZ = ﬁ(ti), and 7; = ﬁl +u;— Y. uj/ Ep.(ti,s)ds. Hence, from Remark 2 (a),
j= .
it suffices to show that

Iin + Iion — Iz — Ion + I3, :O(\/nlogn)’ a.s..

It is easy to see that

Iy, = 1§1u2<]§1vj/14jEm(tz,s)ds>+Z§1hl ZV/ ol t,,sds)
+§1 (pi Up /A Em(ti,s)ds) (é}lvj/AJ_ Em(ti,s)ds). (6.1)
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On applying (3.2), (A1), (A5), and according to Remark 2, Lemma 5.4 and Lemma 5.3,

we have

Zzu, ZV/ E, tl,sds)‘

- max
1<k<n

< max‘ E (ti,s) ds max Zuh
1<i,j<n 1<m<n

e

= O(%) 'O( 1210gn) - O(n''?logn) = O(y/nlogn), a.s., (6.2)
j/'Em(ti,s)ds)’

5, Bt ] | >
)n O(1)-O(n mlogn) nO((lOgn) ), as., (6.3)
Z:j / Ep(ti, 5)ds (Zvj AvEm(ti,s)ds)‘

< max ]hzl max
1<i<n 1<k<n

Vii

= 02"

n

m
= O(1) max E (ti, 3) ds max | > Ur,
1<z,]<n 1<m<n | ;5
l
- max E,(tr,s ds‘- max V.
1<k,j<n Z-Zl/Aj m(fri: 3) 1<1<n ; .

_ O(%) -0O(n?logn) - O(n'?logn) - O(1) = O(y/nlogn), a.s.. (6.4)

Thus, from (6.1)-(6.4) it follows that I, = O(y/nlogn). Similarly,

n n __ n
S uigi] + | 3 i + | 3 ( uj/ B (15,9)d5)
i=1 i=1 =

|I3n| S

< max [g;| - max
1<i<n 1<k<n

\+n max Bl - ax [gi

l
> Uy,

+ max [g;| - max ;
i=1

1<i<n 1<k, j<n

20| < 1I£?<}fl‘h| 1Zman Z;V'i

/ Em(tm,s)ds‘ - max Z uj, ‘ = O(y/nlogn).
Aj 1<m<n
Therefore I19,, — I35, — I2n + I3, = O(y/nlogn), a.s.. Next, we prove

L, = O(y/nlogn), a.s.. (6.5)

Here, we will use a similar arguments as in Liang et al. (2006). Note that

Illn 1 1 n
= Sy eij = Aip + Agn. (6.6
Vvnlogn  /nlogn Zuz];ncﬁz 7 \/nlognizzluz \j%ncjez ’ tn Az (65)

= O(y/nlogn),

E E (t m,s)ds) - max

1<l<n

= 0<<1ogn>5/2>,

m

>, Vi,

=1

han| - < 1945 %n

+ max
1<k<n




i BOCE EEG: HUKMA (c0) R 22 T - S BRI pAS T e Slod 43

n
By > |u;| = O(n) and Ee3 < oo, for any a > 0, we have

i=1
P(lA 1 E S 2
>a) < { , A ;‘}
(’ Qn‘ Oé) = a2n logn Z; Ug |]~|Z>n cjeij
1 n n
o E{ ‘ | o )
>~ a2n log n ilz_l |u11 | i2z_1 ’u'LQ’ |J1|Z>n le 67,1 J1 ‘12|Z>n C]Q 612 o
< e (o S Jei)
(logn o J
An application of the Borel-Cantelli lemma together with ny/logn > |¢j| < oo implies
l3|>n
Az =o0(1),  as. (6.7)

2m min(n,n+l) 2n
Note that Ay, = (nlogn)~ /2 3 ( > uici_l)el = > bye and
I=1-n I=1-n

mae, bl < sl 5 lesf) /v/logn = O /),

t=max(1,l—n)

1-n<I<2n 1<i<n j=—o00
2n ) 1 2n  min(n,n+l) 2n  min(n,n+l)—1 min(n,n+1)
ooy o= ——{ Yoowda+zy Y Y uwuweic)
I=1-n nlogn Yi—j_p t=max(1,l—n) [=1-n s=max(1l,l-n) t=s+1
{2z £ @)rexu( £ 1gl) } = 0losm
T EHCE Ay £ ) o
nlogn \ = j=—00 Jj=—00 ’

Hence, according to Lemma 5.1, we have Ay, = O(1) a.s., which, together with (6.6)-(6.7),
yields (6.5).
(b) From the proof in (a), it suffices to show that

Iin + Loy — I3y — Ioy + I3, = O(nl_w logn), a.s..

Following the line as in (a), from the assumptions one can obtain that Iy, — I13, — I2n +

I3, = o(n'™Vlogn), a.s.. Now, we verify that I11, = o(n'~7logn), a.s.. Write

ni=7logn  nl=7logn

I 1
{Su ¥ ooyt Su T eeny) = M+ 45,

Jj=-n =1 |j|>n
It is easy to see that
C 2
P(|As,| > 0) £ ——— (/27 32 |},
" n(logn)? i5n J

which yields that A}, = o(1) a.s. from supn'/?*7 3" |¢;| < oo.
e li[>n
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. , 1 2n min(n,n+1) om /
2n
1_213;{2” by | = O(”_l/(2+§))7 Z nl =o((logn)~ 1),

=1-
Hence, according to Lemma 5.1, we have A}, = 0(1) a.s..

This completes the proof of Theorem 4.1. O
Proof of Theorem 4.2 Observe that

sup [gn(t) — g(t)]

0<t<1
n ~
<  sup m(t, s)ds| + sup z 5—ﬂn)/ Em(t,s)ds‘
0<t<1 0<t<1li=1 A;
+ sup / E,(t,s)ds —g ‘
0<t<1

= B+ B2TL + Bsp,.

From (A4) and Lemma 5.4 we have
3 / En(t,5)ds| < 3° [ 1Ba(t, )lds = 0(1);
i=1Ja, i=1J A,

om )
/Ai Ent,5)ds| = 0(27) = 0(n~2%).

Note that Ey(t,s) uniformly satisfies Lipschitz condition of order 1 on ¢, so it is easy to
verify that |E,,(t1,5) — Em(t2, s)| < C22™ |ty — to| for s, t1,t2 € [0,1]. Hence, in view of
Lemma 5.4 we can obtain that

22m
/ Em(tl,s)ds - / Em(tg, S)dS S Ci‘tl - t2| == O(|t1 - t2|).
Ay A; n

From (A4) and Lemma 5.2, choosing p = 3, a = 1/3, s = 2/3, we have

max
1<i<n

max
1<i<n

Bi, = O(n"logn) a.s..

y (A1) (ii), (A2), (A4), (3.2), and Theorem 4.1 (b), where § = 1, v = 1/3, it follows

By < C|B—FBal swp {Z [Bn(t:5)lds - max [h(s)|
0<t<1 Isis
k
+ o, [, VBt s | & s}
= o(nil/glogn) a.s..

Finally, from Remark 2 (b) we have B3, = O(2™™) = o(n~"?logn). Therefore, the proof
is completed. [l
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§7. Simulations

In this Section, we carry out a simulation to study the finite sample performance of

the estimators 3 and g of 0 and g, respectively. The observations are generated from
y; = 3.5x; + sin(27t;) + V;,

where V; is an AR(1) process V; = 0.5V;_1 + ¢; and e; are i.i.d. U(—0.5,0.5) random
variables, t; = (i —0.5)/n, x; are generated from z; = t? +u; and u; = (i—1)/(n—1) —0.5.

We choose the scale function ¢(z) = I(0 < x < 1). For a given sample size n, taking
2m = pl/3_ We generate 1000, 2000 and 5000 samples, respectively, from the above model.
Biases and mean square errors (MSE) of the estimator B are given in following Table based

on 50 replications.

n Bias(g) MSE(E)
1000 -0.0488 0.2855
2000 -0.1097 0.1217
5000 -0.0127 0.0626

From the Table, it can be seen that MSE of the estimator B reduces obviously as

increasing of the sample size n.
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