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Abstract
Lee and Spurrier[8] present a new procedure for making successive comparisons between or-

dered treatments. Their procedure has important applications for problems where the treatments

can be assumed to satisfy a simple ordering, such as for a sequence of increasing dose-levels of a

drug. The advantage of their procedure is that it provides more chance to detect when changes

in the treatment means occur than other test procedures (for example: test in Hayter[4]). The

disadvantage of their procedure is that it is not as powerful as other test procedures. In this paper

we propose a test procedure which try to keep the advantage of Lee and Spurrier’s procedure and

promote the power performance of their test procedure.
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§1. Introduction

Consider the one-way analysis of variance model

Xij = µi + εij , 1 ≤ i ≤ k, 1 ≤ j ≤ ni,

where the εij are independent N(0, σ2) random variables. Let Xi, 1 ≤ i ≤ k, be the

ith sample mean based upon ni observations, and let S2 be an unbiased estimate of

σ2 distributed independently of the Xi as S2 ∼ σ2χ2
v/v for some degrees of freedom v.

Usually, the mean squared error in the analysis of variance will be used as the estimate

S2 with v =
k∑

i=1
ni − k.

Suppose that the data represent information on k treatments which can be assumed to

satisfy the simple ordering µ1 ≤ µ2 ≤ · · · ≤ µk. A problem that has received considerable

attention is that testing the null hypothesis

H0 : µ1 = · · · = µk
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against the simple ordered alternative hypothesis

HA : µ1 ≤ · · · ≤ µk

with at least one strict inequality. Bartholomew[1] derived the likelihood ratio test for this

problem. Williams [15, 16] proposed a different test procedure for this problem based on

the statistic µ̂k − X1, and Marcus[10] discussed a modification of Williams’s test, which

uses the statistic µ̂k − µ̂1, where µ̂1, µ̂2, · · · , µ̂k are the maximum likelihood estimators of

µ1, µ2, · · · , µk under the order restriction µ1 ≤ µ2 ≤ · · · ≤ µk.

It is also useful to be able to make direct comparisons of the treatments through the

generation of a set of simultaneous confidence intervals. Hayter[4] proposed a one-sided

studentized range test (OSRT) which provides simultaneous one-sided lower confidence

bounds for the ordered pairwise comparisons µi − µj , 1 ≤ j < i ≤ k. Lee and Spurrier[8]

proposed successive comparisons test (LST) for ordered treatments which provides simul-

taneous one-sided lower confidence bounds for the successive ordered pairwise comparisons

µi+1 − µi, 1 ≤ i ≤ k − 1. LST procedure provides more chance to detect when changes

in the treatment means occur than ORST. However, this procedure is not as powerful as

ORST in rejection the null hypothesis that the treatment effects are all equal in favour

of the alternative hypothesis of simple order. In this paper we propose a test procedure

which try to keep the advantage of Lee and Spurrier’s procedure and promote the power

performance of their test procedure.

Consider the subset of pairwise differences

µ2 − µ1, µ3 − µ2, · · · , µk − µk−1, µk − µ1.

Let the one-sided critical points d = dk,α,ν,R be defined by the equation

PH0

(
max

1≤i≤k−1

Xi+1 −Xi

S
√

1/ni+1 + 1/ni

≤ d,
Xk −X1

S
√

1/nk + 1/n1

≤ d
)

= 1− α, (1.1)

the two-sided critical points d′ = d′k,α,ν,R be defined by the equation

PH0

(
max

1≤i≤k−1

|Xi+1 −Xi|
S

√
1/ni+1 + 1/ni

≤ d′,
|Xk −X1|

S
√

1/nk + 1/n1

≤ d′
)

= 1− α. (1.2)

We construct the following sets of one-sided simultaneous confidence intervals for

successive comparisons and µk − µ1:

µi+1 − µi ∈
(
Xi+1 −Xi − Sd

√
1

ni+1
+

1
ni

,+∞
)
, 1 ≤ i ≤ k − 1,

µk − µ1 ∈
(
Xk −X1 − Sd

√
1
nk

+
1
n1

,+∞
)
, (1.3)

《
应
用
概
率
统
计
》
版

权
所
用



第六期 赵海兵: 有序处理连续比较的置信区间 563

and two-sided simultaneous confidence intervals

µi+1 − µi ∈
(
Xi+1−Xi−Sd′

√
1

ni+1
+

1
ni

, Xi+1−Xi+Sd′
√

1
ni+1

+
1
ni

)
, 1 ≤ i ≤ k − 1,

µk − µ1 ∈
(
Xk −X1 − Sd′

√
1
nk

+
1
n1

, Xk −X1 + Sd′
√

1
nk

+
1
n1

)
. (1.4)

The critical points dk,α,ν,R and d′k,α,ν,R depend upon the covariance matrix R of the normal

random variables

ti =
Xi+1 −Xi

σ
√

1/ni+1 + 1/ni

, 1 ≤ i ≤ k − 1, tk =
Xk −X1

σ
√

1/nk + 1/n1

,

which has 1’s on the diagonal and 0’s everywhere else except for

ri,i+1 = ri+1,i = −
√

nini+2√
(ni + ni+1)(ni+1 + ni+2)

, 1 ≤ i ≤ k − 2,

r1,k = rk,1 =
√

n2nk√
(n1 + n2)(n1 + nk)

,

rk−1,k = rk,k−1 =
√

n1nk−1√
(n1 + nk−1)(n1 + nk)

.

Obviously, the critical values d, d′ are larger than those of LST, but smaller than those of

OSRT. So this procedure provides simultaneous confidence intervals for successive com-

parisons which are shorter than those provided by OSRT, but longer than those provided

by LST. By the following discussion, we will find that this procedure has a substantially

more power than LST, but less power than OSRT. Along with the increasing of k, the

inferior positions of the proposed procedure decrease sharply.

We organized this paper in the following way. In Section 2, we calculate critical points

dk,α,ν,R and d′k,α,ν,R by simulation. In Section 3, we show how to short the length of the

confidence intervals given in (1.3), (1.4) using the relationship between step-down decision

procedures and confidence sets. In Section 4, we do a simulation for a comparison of the

power performance of the proposed procedure with those of LST and OSRT, and compare

their abilities of detecting when changes in the treatment means occur when the equality

is rejected. Section 5 illustrates the procedure with an example.

§2. Computation of Critical Points

There are many statist focusing on the calculation of the critical points for multiple

comparisons problems. Among them, Genz and Bretz[3] proposed a numerical computation

method. Liu et al.[9] used a recursive integration technique.
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Table 1 Values of d(upper) and d′(lower) for α = 0.05

ν\k 3 4 5 6 7 8 9

5 2.737 3.006 3.204 3.353 3.483 3.590 3.691

3.252 3.489 3.675 3.809 3.923 4.035 4.130

10 2.369 2.561 2.694 2.808 2.891 2.966 3.033

2.740 2.906 3.029 3.130 3.216 3.287 3.348

16 2.256 2.416 2.537 2.628 2.703 2.767 2.826

2.578 2.720 2.827 2.916 2.992 3.050 3.100

20 2.217 2.374 2.485 2.576 2.659 2.708 2.762

2.531 2.663 2.769 2.847 2.916 2.976 3.025

25 2.190 2.341 2.445 2.530 2.602 2.661 2.711

2.492 2.621 2.716 2.795 2.862 2.920 2.964

30 2.171 2.318 2.420 2.504 2.574 2.631 2.680

2.464 2.592 2.687 2.760 2.826 2.881 2.928

40 2.146 2.288 2.388 2.475 2.538 2.592 2.641

2.434 2.553 2.648 2.717 2.783 2.832 2.877

60 2.126 2.264 2.362 2.437 2.501 2.556 2.599

2.402 2.524 2.608 2.680 2.739 2.788 2.830

120 2.101 2.235 2.333 2.406 2.467 2.519 2.564

2.371 2.486 2.570 2.640 2.695 2.744 2.782

∞ 2.077 2.211 2.303 2.375 2.434 2.483 2.528

2.344 2.452 2.537 2.600 2.656 2.699 2.738

Miwa et al.[13] developed a method based on the computation of the orthant proba-

bility for a general multivariate normal vector with a positive definite correlation matrix.

However, It’s a pity their methods can’t be employed here for our special correlation ma-

trix R. We advise to get the critical points dk,α,ν,R and d′k,α,ν,R by simulation. We present

some critical points in the balanced cases when all of the sample sizes ni are equal. Table 1

shows the simulation results for α = 0.05, different k and ν. The case ν = ∞ denotes that

σ2 is known. To get one critical value we perform 100,000 simulated samples generated by

MATLAB. We further repeated this process 10 times and computed the average of the 10

estimated upper α points. For other cases, the critical values can be simulated similarly.

To compare the critical points among the proposed procedure, LST and ORST, some

values of them in the balanced cases are reported together in Table 2, where c = ck,α,ν,R∗ ,
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c′ = c′k,α,ν,R∗ , which can be found in Liu et al.[9], satisfy

PH0

(
max

1≤i≤k−1

Xi+1−Xi

S
√

1/ni+1+1/ni

≤c
)

= 1−α, PH0

(
max

1≤i≤k−1

|Xi+1−Xi|
S

√
1/ni+1+1/ni

≤c′
)

= 1−α,

and h = hk,α,ν , which can be found in Hayter[4], satisfy

PH0

(
max

1≤i<j≤k

Xj −Xi

S
√

1/nj + 1/ni

≤ h
)

= 1− α.

Table 2 Compare critical points h(first), d(second) with c(third),

d′(fourth) with c′(fifth) when α = 0.05

ν\k 3 4 5 6 7 8 9

5 3.872 4.520 5.000 5.380 5.696 5.961 6.197

2.737 3.006 3.204 3.353 3.483 3.590 3.691

2.565 2.881 3.103 3.275 3.415 3.532 3.634

3.252 3.489 3.675 3.809 3.923 4.035 4.130

3.031 3.319 3.531 3.697 3.835 3.951 4.053

10 3.353 3.833 4.180 4.452 4.676 4.864 5.029

2.369 2.561 2.694 2.808 2.891 2.966 3.033

2.227 2.456 2.615 2.737 2.835 2.918 2.990

2.740 2.906 3.029 3.130 3.216 3.287 3.348

2.569 2.778 2.929 3.047 3.143 3.225 3.296

30 3.070 3.460 3.736 3.948 4.121 4.265 4.391

2.171 2.318 2.420 2.504 2.574 2.631 2.680

2.042 2.227 2.353 2.449 2.525 2.589 2.644

2.464 2.592 2.687 2.760 2.826 2.881 2.928

2.321 2.488 2.606 2.697 2.770 2.832 2.885

∞ 2.943 3.295 3.539 3.725 3.875 4.000 4.107

2.077 2.211 2.303 2.375 2.434 2.483 2.528

1.960 2.126 2.238 2.322 2.389 2.445 2.493

2.344 2.452 2.537 2.600 2.656 2.699 2.738

2.212 2.361 2.464 2.543 2.607 2.659 2.704

Table 2 shows that c < d < h and c′ < d′ are true. Along with the increasing of k,

the degrees of the differences between c and d and c′ and d′ become narrower, but the

differences between c and h become larger.
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§3. Step-Down

In this section we short the confidence intervals produced by the proposed procedure

based on a step-down test. First, we introduce the step-down test we need here. It

should be noted that the step-down procedure here is not the classical step-down. In fact

it only contains some sub-steps of the classical step-down. The reason for that we do

not use the classical one is that the classical one does not afford manageable inversions to

confidence sets to provide more information about the bounds for µi+1−µi (see Hayter and

Hsu[5]). Second, we derive the confidence intervals based on the duality between confidence

intervals and hypothesis testing. The technique by which we derive the confidence intervals

has been used in Hayter and Hsu[5] and Hayter et al.[6].

3.1 Step-Down Test

Here we give a step-down test for testing the null hypothesis H0 : µ1 = · · · = µk

against the simple ordered alternative hypothesis HA : µ1 ≤ · · · ≤ µk with at least one

strict inequality as follows:

(1) If (Xk −X1)/(S
√

1/nk + 1/n1) ≤ d and (Xi+1 −Xi)/(S
√

1/ni+1 + 1/ni) ≤ d,

1 ≤ i ≤ k − 1 → not reject H0, no declaration is made about µ1, · · · , µk.

If (Xk −X1)/(S
√

1/nk + 1/n1)≤d and max
1≤i≤k−1

(Xi+1 −Xi)/(S
√

1/ni+1 + 1/ni)>d

→ reject H0, declare µi+1 > µi if (Xi+1 −Xi)/(S
√

1/ni+1 + 1/ni) > d.

If (Xk −X1)/(S
√

1/nk + 1/n1) > d → reject H0, declare µk > µ1, go to the next

step.

(2) If max
1≤i≤k−1

(Xi+1 −Xi)/(S
√

1/ni+1 + 1/ni) ≤ c → no declaration is made about

the relationship between µi+1 and µi for 1 ≤ i ≤ k − 1.

If max
1≤i≤k−1

(Xi+1 −Xi)/(S
√

1/ni+1 + 1/ni) > c → declare µi+1 > µi if (Xi+1 −Xi)

/(S
√

1/ni+1 + 1/ni) > c.

This step-down only contains some sub-steps of classical step-down, so it controls the

familywise error rate at α. Another thing should be noted is that this step-down procedure

has the same power performance as the procedure (1.3) for our test problem.

3.2 Confidence Intervals

Consider the acceptance sets given by

µk − µ1 ≤ 0 ⇒ A(µi, 1 ≤ i ≤ k) =
{
(Xi, 1 ≤ i ≤ k) :

Xi+1 −Xi − (µi+1 − µi) ≤ dS
√

1/ni+1 + 1/ni , 1 ≤ i ≤ k − 1,

Xk −X1 − (µk − µ1) ≤ dS
√

1/nk + 1/n1

}
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and

µk − µ1 > 0 ⇒ A(µi, 1 ≤ i ≤ k) =
{
(Xi, 1 ≤ i ≤ k) :

Xi+1 −Xi − (µi+1 − µi) ≤ cS
√

1/ni+1 + 1/ni , 1 ≤ i ≤ k − 1
}
.

Each of these acceptance sets has a coverage probability of exactly 1−α. These acceptance

sets A(µi, 1 ≤ i ≤ k) can be inverted to form the following 1− α level confidence sets for

µk − µ1 and µi+1 − µi, 1 ≤ i ≤ k − 1:

If

Xk −X1 > dS
√

1/nk + 1/n1

⇒ µi+1 − µi ∈
[
Xi+1 −Xi − cS

√
1/ni+1 + 1/ni,+∞

)
; µk − µ1 ∈ (0,+∞).

If

Xk −X1 ≤ dS
√

1/nk + 1/n1

⇒ µi+1 − µi ∈
[
Xi+1 −Xi − dS

√
1/ni+1 + 1/ni,+∞

)
;

µk − µ1 ∈
[
Xk −X1 − dS

√
1/nk + 1/n1,+∞

)
. (3.1)

Notice that the generated confidence intervals always correspond to the step-down

procedure. These confidence intervals provide the same confidence intervals for successive

pairwise comparisons as (1.3) when Xk −X1 ≤ dS
√

1/nk + 1/n1 and shorter ones when

Xk −X1 > dS
√

1/nk + 1/n1.

In the same way we can short the two-sided confidence intervals for successive com-

parisons in (1.4). We don’t discuss it in more detail.

§4. Power Study

To test k ordered treatments being all equal and detect when changes in the treatment

means occur when the equality is rejected, we can use our proposed procedure, LST or

OSRT. In this section our primary goal is to compare the power performance and the

ability of detecting between these procedures.

Let µ = (µ1, · · · , µk)′ and A = {µ : µ1 ≤ · · · ≤ µk}, then A is a convex set. Table

3 gives simulation results to compare the power performance of the proposed procedure

(3.1), denoted by ‘PRO’, with those of OSRT and LST for 3 ≤ k ≤ 9, α = 0.05 and σ2

being known to be 1. Here for simplicity we fix n = 1 and consider the center direction

(1, 2, · · · , k)′/
√

2 and the edge direction (1, · · · , 1, 2)′/
√

2 in the set A, because they are

among the extreme cases.
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Table 3 demonstrates that the power performance of ORST procedure is the best, the

power performance of LST is the worst. Both ORST and the proposed procedure have

substantially more power than LST. The power dominations of ORST and PRO over LST

are getting greater with k becoming larger when the true direction is the center direction.

Table 3 Power comparison between the three procedures

k

Direction Procedure 3 4 5 6 7 8 9

Center OSRT 0.198 0.316 0.480 0.666 0.830 0.937 0.984

PRO 0.198 0.301 0.436 0.594 0.747 0.863 0.938

LST 0.145 0.152 0.161 0.166 0.168 0.172 0.173

Edge OSRT 0.113 0.101 0.095 0.090 0.087 0.083 0.080

PRO 0.113 0.099 0.091 0.088 0.081 0.080 0.077

LST 0.097 0.086 0.078 0.074 0.070 0.069 0.066

Table 4 Detecting ability comparison between three procedures

k

Direction λ procedure 3 4 5 6 7 8 9

Center 2 PRO 0.160 0.130 0.107 0.093 0.081 0.076 0.067

LST 0.168 0.131 0.107 0.093 0.081 0.076 0.067

OSRT 0.141 0.092 0.066 0.051 0.040 0.034 0.029

6 PRO 0.852 0.810 0.777 0.752 0.729 0.710 0.694

LST 0.852 0.810 0.777 0.752 0.729 0.710 0.694

OSRT 0.822 0.749 0.691 0.644 0.601 0.568 0.538

Edge 2 PRO 0.148 0.117 0.100 0.087 0.076 0.071 0.064

LST 0.170 0.130 0.109 0.093 0.081 0.075 0.068

OSRT 0.141 0.092 0.068 0.051 0.040 0.034 0.029

6 PRO 0.841 0.800 0.770 0.745 0.723 0.706 0.688

LST 0.850 0.808 0.777 0.751 0.728 0.710 0.690

OSRT 0.820 0.746 0.690 0.643 0.601 0.567 0.538

Table 4 compares the abilities of detecting between this three procedures. For sim-

plicity we let n = 1, α = 0.05 and suppose σ2 is known to be 1. We consider the center

direction λ × (1, 2, · · · , k)′ and the edge direction λ × (1, · · · , 1, 2)′, λ = 2, 6. We repeat

100,000 samples to get the probability of detecting µk > µk−1 for each procedure. Table 4

tells that, along the edge direction, the detecting ability of the PRO procedure is close to
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the detecting ability of LST, and, lager k is, higher the close degree is. Along the center

direction, the PRO procedure has the same detecting ability as LST when k ≥ 5. The

detecting ability of the OSRT always becomes weaker with k being larger.

So, when our interest is to test k ordered treatments being all equal and provide useful

information regarding the changes occurring in adjacent populations, the PRO procedure

is an attractive alternative, especially when k is large.

§5. Example

The construction of simultaneous confidence intervals for successive differences of

treatment effects is illustrated by the following example.

Example 1 Bhalla and Sokal[2] studied the effect of density on the dry weight of

hybrid houseflies. In this experiment k = 7 different densities were considered correspond-

ing to 2560, 1280, 640, 320, 160, 80 and 40 individuals per 36g of medium. In each case

n = 5 replicates were obtained and the sample averages in milligrams were reported as

X1 = 0.74; X2 = 0.73; X3 = 1.40; X4 = 1.57; X5 = 2.24; X6 = 2.63; X7 = 3.23 and a

pooled estimate S = 0.283 was obtained with ν = 28 degrees of freedom.

Liu et al.[9] derived the 99% confidence level confidence intervals for the successive

differences of the treatment effects using LST as following

µ2 − µ1 ∈ (0.584,+∞), µ3 − µ2 ∈ (0.096,+∞), µ4 − µ3 ∈ (−0.404,+∞),

µ5 − µ4 ∈ (0.096,+∞), µ6 − µ5 ∈ (−0.184,+∞), µ7 − µ6 ∈ (0.026,+∞). (5.1)

By these confidence intervals they established that µ3 > µ2, µ5 > µ4 and µ7 > µ6. If

the one-sided studentized range test was used, they obtained the interval for µ7 − µ6 is

(−0.047,+∞) and found the inference µ7 > µ6 cannot be drawn.

Next we show what the conclusion is when the proposed procedure (3.1) is used for

this example. We can get the critical point d satisfying (1.1) as d = 3.250 by simulation

for this example. Notice that X7 − X1 = 2.49 > dS
√

2/7 = 0.492. By the procedure

(3.1), we can arrive the same confidence intervals and the same conclusions for successive

comparisons as (5.1).
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有序处理连续比较的置信区间

赵 海 兵

(上海财经大学统计与管理学院, 上海, 200433)

Lee and Spurrier[8]为有序均值的连续比较提出了一个新的检验过程. 他们的过程对满足简单序的均值

有重要的应用价值, 例如在研究增长剂量对药物效用的影响. 与其它检验过程相比(例: Hayter[4]中的检验),

其优点在于产生了更短的连续比较的置信限, 从而能够提供更多机会发现在何药剂量处有不同的效用. 但

作为有序均值的齐性检验, 它的势表现远劣于其它检验. 本文的目的是提出一检验过程在尽量保持Lee and

Spurrier[8]检验的优点的同时大大地提高其势表现.
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