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Abstract
This paper study the duality of heterogeneous coagulation-fragmentation process (HCFP)

which models the coagulation, fragmentation and diffusion of clusters of particles on lattice. The

closed form of stationary distribution for HCFP is obtained, and then the integrated form of

BBGKY hierarchy of HCFP is given.
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§1. Introduction

The model of homogeneous coagulation process is proposed by Smoluckowski (1916),

who derived an infinite system ordinary differential equations for describing the coagula-

tion of collision moving according to Brownian motion. Since then the model has been

widely generalized and studied (see refs. [5], [6], [7], [8], [9], [11], [12], [13], [14]). For read-

ers who are interested in mathematical aspects of the coagulation-fragmentation models,

we recommend two survey papers of Aldous (1999) and Collet (2004).

Most of the related works on coagulation-fragmentation models focus mainly on the

problem that whether the distribution of the density of the cluster particles as a func-

tion of time and space is a solution to the coagulation-fragmentation equations. However,

in the theory of stochastic interacting particle systems one of fundamental problem is

to seek all stationary distributions. As far as we know, there are only a few models

such as symmetric simple exclusion processes, basic contact processes, zero-range pro-

cesses and voter models for which one can completely characterize all stationary dis-

tributions, see [Liggett, 1985]. For coagulation-fragmentation models, Han (1995) and
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Durrett (1999) gave an explicit form of the stationary distribution to the homogeneous

coagulation-fragmentation model. Berestyki (2004) gave the equilibrium measures to the

exchangeable coagulation-fragmentation model. When we consider the diffusion effect in

the coagulation-fragmentation model, can we give the closed form of the stationary distri-

bution of it (HCFP)? Moreover, what is the duality of it? In this paper, we mainly solve

above two problems. We find the jumping rate function such that the stationary distribu-

tion of heterogeneous coagulation-fragmentation can be given out explicitly, and also give

the integrated form of BBGKY hierarcky of the heterogeneous coagulation-fragmentation

process.

§2. The Heterogeneous Coagulation-Fragmentation

Processes

In this section, some notations and preliminaries are given. Consider the following

interacting particles system: In each site x ∈ Zd of d-dimensional integer lattice, particles

can coagulate to form a cluster, and two clusters can coagulate to form a larger one, and

larger cluster can fragmentate into two smaller ones, and all of them can also move to

their neighbor sites y.

Let Σ be a finite subset of Zd, N = {0, 1, 2, · · · }, N+ = {1, 2, · · · } and X(Σ) = {A :

A ∈ NΣ×N+}, where A = (a(x, k) : a(x, k) ∈ N, x ∈ Σ, k ∈ N+). Here we assume that

the number, |Σ|, of set Σ is at least great than 2. Thus, A can be regarded as a matrix

with indexes in Σ × N+. For each x ∈ Σ, denote by a(x, k) the number of k-clusters in

site x. Let Ix,i = (a(y, j) : y ∈ Σ, j ∈ N+) ∈ X(Σ) be a matrix such that a(y, j) = 0 for

(y, j) 6= (x, i) and a(y, j) = 1 for (y, j) = (x, i). For A ∈ X(Σ), let

Ak
x,y := A + Iy,k − Ix,k, if a(x, k) > 0 and ‖x− y‖ = 1,

A+
x,ij := A + Ix,i+j − Ix,i − Ix,j , if a(x, i) > 0 and a(x, j) > 0,

A−x,ij := A− Ix,i+j + Ix,i + Ix,j , if a(x, i + j) > 0,

Ax := (a(x, 1), a(x, 2), · · · ),

|Ax| =
∑
k

ka(x, k) and |A| =
∑
x∈Σ

|Ax|. Here, Ak
x,y means that the state of the process

obtained from a state A after a jump of a cluster of size k from site x to the site y, and

A+
x,ij denotes that the state obtained from a state A after a cluster of size i coagulates

with a cluster of size j to form a cluster of size i + j in the site x, i.e.,

(i) + (j) → (i + j).
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A−x,ij means that the state obtained from a state A after a cluster of size i + j breaks into

a cluster of size i and a cluster of size j in site x, i.e.,

(i + j) → (i) + (j)

and Ax denotes the distribution of the numbers of the different clusters in site x.

Let N denote the total number of particles in the system, then N =
∑
x∈Σ

|Ax|. Let

XN (Σ) = {A : A ∈ X(Σ), |A| = N}, and X be the limit of XN (Σ) as (N → ∞, B ↗
Zd). Now we define the heterogeneous random coagulation-fragmentation process (HCFP)

considered in the paper as follows: the process, denoted by {AN (t), t ≥ 0}, is a continuous-

time irreducible Markov chain on the finite state space XN (Σ) with state transition rates

QAA′ :=





1
2d

g(a(x, k)), if A′ = Ak
x,y,

Kijg(a(x, i))g(a(x, j)− δij), if A′ = A+
x,ij ,

Fijg(a(x, i + j)), if A′ = A−x,ij ,

0, if A′ 6= Ak
x,y, A

+
x,ij , A

−
x,ij

and

QAA = − ∑
A′∈XN (Σ),A′ 6=A

QAA′ ,

where A,A′ ∈ XN (Σ), g(·) denotes the diffusion rate which is a positive function ex-

cept g(0) = 0, Kij and Fij are coagulation and fragmentation kernels respectively, and

δij = 1 for i = j and 0 for i 6= j. Here the choice of rates of coagulation, fragmenta-

tion and diffusion reflect the case like in a polymer system that, reaction occurs with a

probability proportional to both the number of reactants, and inversely proportional to

the volume; here the density is taken to be equal to one, so that the volume coincides

with the total number of units N . Though there are many ways of action of the diffusion

on the coagulation and fragmentation, the main reason for us to take the special forms,

g(a(x, i))g(a(x, j) − δij) and g(a(x, i + j)), is that we can easily obtain the stationary

distribution of the process by the forms. Note that the coagulation and fragmentation do

not depend directly on the diffusion rate when g(k) = k.

The HCFP which evolves on the d-dimension integer lattice Zd with the dynamics split

into two parts: diffusion and reaction. The diffusion represents the migrations of individual

clusters between different sites. It consists in independent symmetric random walks with

nearest neighbor jumps, we denote the associated generator by Ld. The reaction part

describes the coagulation between two cluster and the fragmentation of k-cluster (k ≥ 2)

at site x, and this part of the generator is denoted by Lr.

《
应
用
概
率
统
计
》
版
权
所
用



518 应用概率统计 第二十六卷

Now we give the generator for a cylinder function f by

Lf(A) = Ldf(A) + Lrf(A), (2.1)

Lr = Lk + Lf ,

where Ld, Lk, Lf are diffusion operator, coagulate operator and fragment operator respec-

tively defined as follows:.

Ldf(A) =
∑

y,x:|x−y|=1

∑
k

1
2d

g(a(x, k))[f(Ak
x,y)− f(A)];

Lkf(A) =
∑
x

∑
i,j

Kijg(a(x, i))g((a(x, j)− δij))[f(A+
x,ij)− f(A)];

Lff(A) =
∑
x

∑
2≤i+j

Fijg(a(x, i + j))[f(A−x,ij)− f(A)], (2.2)

§3. The Stationary Distribution

The stationary distributions for the homogeneous random coagulation-fragmentation

processes have been given by Han (1995) and Durrett, Granovsky and Gueron (1999).

Here we shall present the stationary distribution for the HCFP. Assume that

H1 : The diffusion rate g(·) satisfies sup
m
|g(m + 1)− g(m)| < ∞.

H2 : Kij = Kji, Fij = Fji, Kijh(i)h(j) = Fijh(i + j), i, j ≥ 0, (3.1)

where h(·) is a positive function. As Van Dongen and Ernst (1984) stated, when the

process describes the system of polymers in which intramolecular reactions do not occur,

and therefore only branched-chain (non-cyclic) polymers are formed and all un-reacted

functional groups are equally reactive, k!h(k) may denote the number of distinct ways

of forming a k-mers from k distinguishable units and the equation (3.1) states that the

number of distinct ways for (i+j)-mers to break up into i-mer and j-mers (F (i, j)h(i+j))

equals the number of bonds between (i) and (j) polymers in (i + j)-mer configurations

(K(i, j)h(i)h(j)). In fact, the total fragmentation rate of a k-mer is taken to be propor-

tional to the number of bonds in Van Dongen and Ernst (1984), i.e.,
1
2

∑
i+j=k

Fij =
1
λ

(k − 1).

1/λ (λ > 0) represents the fragmentation strength. The equation (3.1) is usually called

detailed balance condition.

Note that the condition H1 is not necessary for obtaining the stationary distribution

in the following, but it can guarantee that the limit process (N → ∞ and B ↗ Zd) of

{AN (t), t ≥ 0} is a unique Feller process (see [8]).
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Theorem 3.1 Suppose the two conditions H1 and H2 hold. Then {AN (t), t ≥ 0}
has a unique stationary distribution µN given by

µN (A) =
1

ZN

∏
x∈Σ

N∏
k=1

[h(k)]a(x,k)

g(a(x, k))!
, A ∈ XN (Σ) (3.2)

and the process is reversible with this stationary distribution, where ZN is the normaliza-

tion factor, i.e.,

ZN =
∑

A∈XN (Σ)

∏
x∈Σ

N∏
k=1

[h(k)]a(x,k)

g(a(x, k))!
, (3.3)

where g(m)! = g(1)g(2) · · · g(m) with g(0)! := 1. Usually, ZN is called the partition

function of the process.

Proof We first check that

µN (A′)QA′A = µN (A)QAA′ (3.4)

for all A,A′ ∈ XN (Σ). It is equivalent to check

Q(A,A′)
Q(A′, A)

=
µ(A′)
µ(A)

for all A,A′ ∈ XN (Σ). In fact, we have

Q(A,A′)
Q(A′, A)

=
g(a(x, k))

g(a(y, k) + 1)
=

g(a(x, k))
h(k)

h(k)
g(a(y, k) + 1)

=
µ(A′)
µ(A)

for the case A′ = Ak
x,y and, by (2.1),

Q(A,A′)
Q(A′, A)

=
Kij

Fij

g(a(x, i))g(a(x, j))
g(a(x, i + j) + 1)

=
h(i + j)

Nh(i)h(j)
g(a(x, i))g(a(x, j))
g(a(x, i + j) + 1)

=
h(i + j)

g(a(x, i + j) + 1)
g(a(x, i))

h(i)
g(a(x, j))

h(j)
=

µ(A′)
µ(A)

for A′ = A+
x,ij , i 6= j. Similarly, we can check that (3.2) holds for A′ = A+

x,ij , i = j and

A′ = A−x,ij . Thus, (3.2) holds for all A,A′ ∈ XN (Σ) and therefore

∑
A′∈XN (Σ)

µN (A′)QA′A = µN (A)
∑

A′∈XN (Σ)

QAA′ = 0.

This means that µN is a reversible stationary distribution of the process. Since all states

in XN (Σ) connect mutually, that is, for A,A′ ∈ XN (Σ), there are A1, A2, · · · , Ak ∈ XN (Σ)

(k ≥ 1) such that Q(A,A1)Q(A1, A2) · · ·Q(Ak, A
′) > 0. This means that the process is an

irreducible Markov chain on the finite state space, so the stationary distribution is unique.

¤
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§4. Duality

We define the Poisson polynomials by

k(N) =





1, k = 0

N(N − 1)(N − 2) · · · (N − k + 1), 0 < k ≤ N

0, k > N

and Poisson polynomials for configurations A ∈ X and B ∈ XN (Σ) by

D(A,B) =
∏
x

∏
k

b(x, k)(a(x,k)). (4.1)

Theorem 4.1

LdD(A, ·)(B) = L∗dD(·, B)(A), (4.2)

E[D(A,Bt)] = E[D(At, B)], (4.3)

where LdD(A, ·)(B) means that Ld acts on the second variable, L∗d is the dual operator

of Ld, and E is the expectation of independent product of the Ld-process starting from A

and the Ld-process starting from B.

Proof By the definition of D(·, ·), we have

L∗dD(·, B)(A)) =
∑

x,y:|x−y|=1

∑
k

[1
2
a(y, k)D(Ak

y,x, B)−D(A,B)
]

=
∑

x,y:|x−y|=1

∑
k

{ ∏
(z,j)6=(x,k),(y,k)

b(z, j)(a(z,j)) 1
2
a(y, k)

× [b(x, k)(a(x,k)+1)b(y, k)(a(y,k)−1) − b(x, k)(a(x,k))b(y, k)(a(y,k))]
}

, (4.4)

note that

a(y, k)b(y, k)(a(y,k)−1)b(x, k)(a(x,k)+1)

= (b(y, k)− 1)(a(y,k))(a(x, k) + 1)(b(x, k) + 1)(a(x,k))

= (b(x, k) + 1)(a(x,k))[(a(x, k)− b(x, k) + 1)(b(y, k)− 1)(a(y,k))

+ b(x, k)(b(y, k)− 1)(a(y,k))]

= (b(y, k) + 1)(a(y,k))[b(x, k)(a(x,k)) + b(x, k)(b(x, k)− 1)(a(x,k))]

= (b(y, k) + 1)(a(y,k))b(x, k)(a(x,k)) + b(x, k)(b(y, k) + 1)(a(y,k))(b(x, k)− 1)(a(x,k)), (4.5)

and

(b(y, k) + 1)(a(y,k)) = a(y, k)b(y, k)(a(y,k)) − b(y, k)b(y, k)(a(y,k), (4.6)
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so we have

a(y, k)b(x, k)(a(x,k)+1)b(y, k)(a(y,k)−1)

= a(y, k)b(y, k)(a(y,k))b(x, k)(a(x,k)) − b(y, k)b(y, k)(a(y,k))b(x, k)(a(x,k))

+ b(x, k)(b(y, k) + 1)(a(y,k))(b(x, k)− 1)(a(x,k)). (4.7)

Put (4.7) into (4.4), we have

L∗dD(·, B)(A) =
∑

x,y:|x−y|=1

∑
k

[1
2
b(x, k)D(A,Bk

x,y)−
1
2
b(y, k)D(A,B)

]

=
∑

x,y:|x−y|=1

∑
k

1
2
b(x, k)[D(A,Bk

x,y)−D(A,B)]

= LdD(A, ·)(B).

Thus (4.2) is proved. Furthermore, we also have

d
ds

E[D(At−s, Bs)] = 0, 0 ≤ s ≤ t, (4.8)

then integrating over s, we get

E[D(A,Bt)] = E[D(At, B)]. (4.9)

So Theorem 4.1 is proved. ¤
Furthermore, if denote by At the process with generator Ld and starts from a given

configuration A ∈ XN (Σ), and by Bt the process with generator L and initial distribution

µ. Write the correlation function of the process Bt by u(A, t|µ), that is

u(A, t|µ) := Eµ[D(A,Bt)],

then we have

u(A, t|µ) =
∑
A′

P(t, A, A′)u(A′, 0|µ)

+
∫ t

0
ds

∑
A′

P(t− s,A, A′)Eµ[LrD(A′, Bs)], (4.10)

where P(t, A, A′) is the transition probability go from A to A′, in time t when the generator

is Ld, and the equation (4.10) is called “BBGKY hierarchy” in physics.

Let ε be the expectation with respect to the product of the (At, Bt), by Theorem 4.1

we have
d
ds

ε[D(At−s, Bs)] = ε[LrD(At−s, Bs)], (4.11)

where Lr acts on Bs. Then integrate (4.11) over s, we obtain (4.10).
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非齐次聚合分解过程的对偶性
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文章研究了格子点上带扩散的非齐次聚合分解过程(HCFP)的对偶性, 给出了HCFP的平稳分布和HCFP

的积分形式的BBGKY hierarchy.
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