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Abstract

In this paper we consider a risk process perturbed by diffusion and obtain the integro-
differential equation for the Gerber-Shiu expected discounted penalty function. Furthermore, we
prove that the Gerber-Shiu function satisfies a certain renewal equation in the case of the general-
ized Erlang(2).
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§1. Introduction

Consider a risk process

Ki(t) K3(t)
Ut)=u+ct— > X;— Y; +oB(t), (1.1)
i=1 j=1

where u > 0 is initial surplus, ¢ is the positive constant premium income rate, {X;,i > 1}
are the claim sizes form the first class, assumed to be i.i.d. positive random variables
with a common p.d.f. fx(z), while {Y},j > 1} are the claim sizes form the second class,
assumed to be i.i.d. random variables with a common p.d.f. fy(z), the claim number
process K(t) is a Poisson process with parameter p, i.e. the corresponding claim intel-
arrival times, denoted by {L;}i>1, are i.i.d. exponentially distributed r.v. with parameter
w; By contrast, the claim number process Ks(t) is a renewal process with ii.d. claim
inter-arrival times {W;};>1, which are independent of {L;};>1 and generalized Erlang(n)
distributed, i.e. the W;’s are distributed as the sum of n independent and exponentially
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distributed r.v.’s Sy, ;== Vi + Vo + --- +V,,, where V; (i = 1,--- ,n) may have different
exponential parameters \; >0. {B(t):t>0} is a standard Brownian motion, o is a positive
constant.

We assume that {X;,i > 1}, {Y},j > 1}, Ki(t), K2(t) and B(t) are independent each
other. Now define

T =inf{t > 0,U(t) <0}, T = oo if the set is empty,
to be the time of the ruin, and

Y(u) = P(T' < 00|U(0) = u),
¢s(u) = E(e” T w(U(T =), [U(T) )M (1 <o0u(r) <o [U(0) = 1)

to be the ruin probability and the expected discounted penalty function if the ruin is

caused by a claim, respectively. Let

da(u) = E(e™ T Iip o0 v/(7)20) U (0) = u)

be the Laplace transform of the ruin time 7" due to the oscillations. Then

P(u) = ds(u) + ¢a(u)

is the Gerber-Shiu expected discounted penalty function.

Recently, many studies tackle ruin problems for Sparre Anderson models, in which
claims occur according to a more general renewal process. Li and Garrido (2005) consider
a risk process with claim i.i.d. inter-arrival times distributed as generalized Erlang(n)
(n € NT) with perturbed diffusion, extending the classical risk model and the Erlang(2)
model of Dickson (1998), Dickson and Hipp (2001) and Cheng and Tang (2003). Gerber
and Shiu (2005) extend the model to generalized Erlang(n) waiting times. In this paper,
we consider the expected discounted penalty function for a risk process perturbed by
a diffusion. As in Li and Garrido (2005) we assume that claim process is generalized
Erlang(n) process. An outline of the paper is as follows. For the risk model (1.1), we first
obtain the integro-differential equation for the Gerber-Shiu expected discounted penalty
function in Section 2, and in Section 3 we get the renewal equation for integro-differential

equation when Ks(t) is the generalized Erlang(2) process case.

§2. Integro-Differential Equations

For the model (1.1), we obtain the integro-differential equation for the Gerber-Shiu

expected discounted penalty function as follows:



FN ML B K sh RS K Gerber-Shiupd 3 579

Theorem 2.1 Let I, D and P denote the identity operator, differential operator

and Integration operator, respectively. Let P(H(u)) = / H(u — z)fx(z)dz. It is as-
0

sumes that ¢(u), ¢s(u), and ¢4(u) are 2nth differentiable. Then ¢4(u), pg(u) satisfies the

following equations for u > 0,

<£[1 (4(D) = §-P) )éu(u) + ADYur (u) = /Ou 6s(u— @) fy (x)dz +wa(u),  (2.1)

with ¢4(0) = 0,

11 ((D) — )%P) () = /0“ a(u— ) fy (2)de, (2.2)

(D) = (1+ 5:“)1— %D— ;j D2, i=1,2,---,n,
o) = ('S 5 11 (wm) - -7)).

wi(u) = /OO w(u,z —u) fx(z)de, wa(u) = / w(u, z —u) fy (x)dz.

Proof Fixed the number j = 0,1,--- ,n — 1 of exponential r.v.’s of the sum
Si=Vi+Vo+---+V;,5=1,2,--- ,n—1, with Sy = 0. We define

¢s,5(u) = E(e T Dw(U(T=), [U(T) )L (1<o0,(r)<0)|Sj = 1, U(0) = w),

with ¢s0(u) = ¢s(u) and ¢,;(0) =0, j =1,2,--- ,n — 1. Then we consider infinitesimal
interval [S;, S; + dt] for j =1,2,--- ,n — 2, we get

Ps,5(u)
= e YP(Ly > dt, Vi1 > dt)E(¢s j(u + cdt + o B(dt)))
+P(Ly > dt, Vjy1 < dt)E(ds ji1(u+ cdt + oB(dt)))}

u+cdt+o B(dt)
+ e—5t{P(L1 < dt, Vigr > dt) [/ E(¢s,j(u+ cdt + o B(dt) — x)) fx (x)dx
0

+ / w(u+ cdt + oB(dt), z — u — cdt — aB(dt))fX(x)dx}
u+cdt+oB(dt)

u+cdt+o B(dt)
+P(L < dt, Vigr < dt)| / E(s 1 (u+ cdt + oB(dt) — ) fx (x)de
0

+ /OO w(u + cdt + oB(dt), z — u — cdt — aB(dt))fX(a:)dx} } (2.3)
u+cdt+o B(dt)
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Substituting
P(Ll > dt, ‘/j_i'_]_ > dt) =1- (,U, + )\]+1)dt + O(dt)
P(Ll > dt, ‘/j-&-l < dt) = (1 — ,udt) ]+1dt + (dt),
P(L1 < dt,Vjp1 > dt) = pdt(1 — Aj1dt) + o(dt),
P(Ll < dt, ‘/j+1 < dt) = udt)\J+1dt = O(dt)
0t — 1 — 6t + o(dt),
and

2
E (s -+ cdt + 0 B(d))) = Gusw) + [ed], () + 560 (u)]dt + o)
into (2.3), letting dt — 0 and rearranging it, we get
2
(8 + A1 + 1)) — 6l () = -6l ()
= Aj410s+1(u) + M(/Ou ¢s,5(u — ) fx (z)dz + /

u

e}

w(u,x — u)fx(x)d$),

SO

5+ p c o> . n 7
s 1+ D — D* — Plos i(u) + wi(u), (2.4
Pagaln K a+1> A+ 2h4 Aj+1 }qﬁ i) Aj+1 ), 24

where w1 (u / w(u, x — u) fx(x)de. Similarly, for j =n — 1, we have
/ Gom(u — @) fy(@)da + ws(u)

_ [(1+5;Lnu)l—)\nD—2)\D2— Pl6sna(u) + -wi(w)

where wo(u) = / w(u,x —u) fy(z)dz, I, D and P denote the identity operator, differ-
ential operator and Integration operator in turn.
For ¢s0(u) = ¢s(u), we get

(F194(D) = £-P)uta) + QDY 0) = [ 6.0 =) (a)da + wafu),

i=1 Ai
where
~i(D) = (1 + 5;“'“)1— %D - ;jp{ i=1,2,--,n,
= (52t (o 2.0)

Finally, we have ¢4(0) = 0, since P(T' < oo, U(T') < 0|U(0) =0) = 0.
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To verify the equation for ¢4(u), we define
qbd,j(u) = E(e_é(T_t)I(T<oo,U(T):O)|Sj =1, U(O) = U), ] = 1a 27 = 1a

with ¢g0(u) = ¢4(u). Similar to the arguments above, we get

5+ p c oz U
ir1(u) =11+ I- D — D* — P i(u),
b1 (w) = [( AM) P Ajﬂ}qbd,]()

for j=1,2,---,n—2,and for j =n — 1,

/Ou San(u — ) fy (2)dz = [(1 Lo “)I _Cp T pe ﬂp} Gdn1(w).

An An 2\ An
Then . .
(gl (i(D) - %P))qﬁd(u) - /0 Salu — ) fy (x)dz.
We also have ¢4(0) = 1, since P(T' < 0o, U(T) = 0|U(0) =0) = 1. O

Remark 1 (1) If X; =0, i =1,2,--- ,n, the equation (2.1) and (2.2) yield (2)
and (3) of Li and Garrido (2005).
(2) If o =0, the equation (2.4) yields (6) of Li and Lu (2004).

§3. Renewal Equation

We first study the roots of the generalized Lundberg’s fundamental equation.

Theorem 3.1 For § > 0 and n € N, the equation

(1T () = - £x() ) = (s =0 (3.1)

has exactly n roots, say p1(0), p2(d),- -, pn(d) with positive real parts (p;) > 0.

Proof Since

S+ p c o?
1 )_7 - ~0
<+ N NS TNt

has exactly two solutions

c \/02+(A¢+M+J) c \/02 N+ p+o0)

— =\ <0 and sy=-——5+1/— +
2 ot o2 o2 ol o2

§1 = — > 0.

On the half circle in the complex plane given by |z| = r (for r > 0 fixed) and R(z) > 0,
we have |y;(s)| > p/A; if r is sufficiently large. While for s on the imaginary axis we
have that |v;(s)| > 1+ (0 +p)/A; > p/A; which is on the contour boundary of the

half circle and the imaginary axis, |y;(s)| > |[(©#/Ai)fx(s)]. Then we conclude that on
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the right half plane the number of the roots to v;(s) — (u/Ai) fx(s)) = 0 equals to that of

~i(s) = 0. So on the right half plane the number of the roots to [ (vi(s)— (/X)) fx(s)) =0
i=1

equals to that of [ 7i(s) = 0, similar to the proof above, the number of the roots to
i=1
(T1Gils) = (/A0 5x(5))) = fr(s) = 0 eauals to that of TT (3(s) — (#/A0)fx (5)) = 0.

=1
n
Because the latter has exactly the same number of positive roots as that of [] 7i(s) =0
i=1
and the result follows. O

We are now ready to solve the integro-differential equations (2.1) and (2.2). We only
consider Ks(t) is the generalized Erlang(2) process. In the following of the paper, we
assume that 1 (u),s(u), a(u) are 4th differentiable. As in Gerber and Shiu (2005), we
first use the concept of divided differences. For distinct numbers r1,79, -+ ,7,, the k-th

divided difference h[ry,ro,- -« , 1y, s] of a function h is defined recursively as follows:

h(s) = h(r1) + (s — r1)hlry, s],
hlr1,s] = hlr1,re] + (s — ro)h[ri, 2, ],

h[?"l,'I"Q,‘ c 7Tk—175] — h[?"l,’I“Q, e ,Tk‘] + (5 - ’I"k)h[Tl,’l"Q, e ,Tk,S].

Note that h(s) is a polynomial of degree n. The following result also holds:

k h(r)
hlri,ro, -+ 7] = J
Ira, 2, /i) g; T;Q(Tj;ﬁﬂ“% J"k:)’
where 7/ (rj;r1,72, -+ ,7%) = [ (s — ;) is a polynomial.

i=1
Next, as in Dickson (2001), we define the operator 7, of a real-valued function f, with

respect to a complex number r by

T.f(z) = /OO e_r(y_m)f(y)dy, x> 0.

Properties of this operator can be found in Gerber and Shiu (2005),
(a) (Tr)(0) = @(r), and

[(112,)¢]©) = (-1 gl ra.-- ol (3.2)
]:
(b) By interchanging the order of integration, we have

Tr(pxn) = px* (Trn) + (Trn)(0)(Trp). (3.3)
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Now we consider the generalized Erlang(2) case, then equation (2.1) changes to

2 " o
z’l;ll (%(D) - /\71P> Ps(u) = /0 ¢s(u—z) fy (z)dx + w(u), (3.4)
where
w(u) = wa(u) = Fwi(u) = 1 (0 (D) ~ P Jwi(u)
Since

(DP)s.(w) = D /0 " 6u(u - @) fx (@)el)
_ /0 " 0w — @) fx(@)da + 65(0) fx (u) = (PD)s(u).

From the definition of P, (3.4) yields the equation

2
(D)) = (52 + 22D ) 6 ) )+ ) = 6 )+ (), (35)

where h(D) = v1(D)v2(D).
For the first step, we write h(s) = h(p1) + (s — p1)h[p1, s] then

T, M(D)¢s(u) = h(p1) Ty, ¢s(u) — hlpr, D]gs(u), (3.6)

since (BI 4+ D)(p(u) * e=P*) = p(u). By (3.3) and (3.6),

7, (B2 5 205, ¢ o))
G i))ws*( S+ (2 4+ 2PN g 017,040
- (D) 220D g, gy, (3.7
Tor (s JX) (W) = s # (Tp, ) () + Ty FX(0) Ty B (w), (3.8)
Ty (60 % ) () = 6% (Tyy ) ) + T, Fr (O)Ty, ) (39)

By (3.5), (3.6), (3.7), (3.8) and (3.9), applying the operator 7}, on both sides of (3.5), we

obtain

¢s * (Lo, fy)(u) + )

e
p
= —hlpn Dioutu) — (2 2PN (5 (7, ) )

+M(%[p)\12’D] + 22 [p)\ ]>(¢s*fx)( )+

2

Tt T, (3.10)
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Because

2

o) = (52 + 2PN () + LT 53 0) = T fr (0),

i.e.
2

h(p1) — M(%)(\zl) + 72)(\T1))J?)((/71) + )\i\Qﬁ(ﬂl) = fy(p1).

For the second step, we write

hlp1,s] = hlp1,r2] + (s — p2)hlp1, p2, 5],
Ty, h(p1, D)ds(u) = hip1, pa]Tp, ¢s(w) — hlp1, p2, D]ps(u), (3.11)

TpQ((%[i’ D] n 72[[/)\11, D]))(¢S £ Fx) ()

_ (’yl [/;\12, p2] n ’}’2[/;117 PQ]><¢S (T fx))(u)

Ylp1, p2] | y2lp1, pol
(TR PR T, (0T 04 (u)

_ (’yl[pl/,\,;)QaD] + 72[p1;\f2’D]>(¢s * fX)(u)

Ty () 200) 5, (7, 1)) )
p1)

+
_ (%im) n 72/(\ )[qss & (T, Ty, fx) (1) — (Tpy T, £x)(0) Ty s(w)],
2 1

Ty (05 % (Tpu SR (1) = s % (Tp Tpy [X) (1) = (Tpu Ty [E)(0) Ty 05 (),
Ty, (¢s * (Tm Jy))(u) = ¢s * (TP2TPI Jy)(u) — (szTm fY)(O)sz¢s(U)~

We now obtain

v, pa. DJo(u) + (20124 2202y o ) ()

A9 A1
Ylp1, p2, D] | 72lp1, pa, D]
(T B (6,4 ) ()

2

- u<71)(\21) + 72/(\/1)1)>¢8 # (T, T, fx)(u) + ﬁ% * (Tp2Tp1 f%*)(u) + AT, ¢s(u)

= ¢s* (szTm Jy)(u) + TP2TP1w(u)7

where

A = —h[pl,p2]+u(%/(\zl)+72/(\f1))(Tpnglfx)(0)
2

+p(2lorel 20N g (0) = (0T PO + (T T 1)),
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Next we prove A = 0. Since h(s)fx(s) = h(p1)fx(s) + (s — p1)h[p1, 5] fx (s), we have

~

(T,h(s) fx (s) = h(p1)(T,fx (s) — hlpy, 5] fx(s). (3.12)
By (3.11) and (3.12)
h(p2) — h(p1)

hlp1,p2] = o — p1
(71(p1)+72(p1)>T Fx(0) (71(p1)+72<p1))T fx(0)
— K Ao A nIx a A2 A1 e
P2 — p1
12

T £3)(0) + (T, 1)(0)

_ n(“ﬁﬁl) + Vzifl))(szTm 1x)(0) + (2 [[;12, = 72[/;117 21,100

12

DS

From discussion above we can get the result:

(T Tpy JX)(0) + (Tpy Ty fy)(0)

Theorem 3.2 For u > 0, ¢,(u) satisfies the following equation

v, pa, Do) + (L2 20120 (7 ) )

Ao A1
e [mf, D], [m;\f% PN 60 1))
= ¢sxn(u) + W(u), .

where p1, ps are the roots of the generalized Lundberg equation with positive real parts,

h(D) = v1(D)v2(D),
2

1) =TTy ) + (52 + 20Y 7 ) = S (T )

and W(u) =T,,T, w(u).
Next, as in Geber and Shiu (2005), taking Laplace transform of (3.13) gives

[hp1, p2, 8] + M(%[phpg] + 72[p17p2])TsTp2fX(0)

A2 Al
(o] 22l B iae)
= W(s)+qals) + nar(s) fx(s),
(hlp1, pa, ] + T2(s))bs(5) = W(s) + qa(s) + pn (s) Fx (), (3.14)
where
P(s) = M(’Yl [0;27 P2l 72 [p;l, p2] )Tssz Fx(0) u(% [mA,zpz, s] | ;2 [mA,lpza 5] ) Fe(s) —7i(s).
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q1(s), q2(s) are polynomial of degree 1 or less respectively, with coefficients in term of
0,¢,\, p; for i =1,2,--- ,n and the derivatives of ¢4 at 0, gbgk)(O), for k=0,1,2.

Since h[p1, p2,- -+ , pn, S| is a polynomial of degree n and the coefficient of s™ is equal to
that of 52" in h(s), which is (—1)" 2”/( Ai)), then h[py, p2,- -, pn, s] can be factored
" (s + a1)(s + az) -~ (s + )

st+ay)(s+az) --(s+a
h[p1,p2,--~ ,pn,S] :(_1)n n . ’
IT(2))
i=1
where the ay,as,- - ,a, come in pairs of conjugate complex numbers.

Thus equation (3.14) can be rewritten as

~ 4)\1)\27/7\2(8) . 4>\1)\2(W(5) + /LQ1(S)}:X(S))
¢S(S)<1+ 04(s+a1)(s+a2)> B ot(s+a1)(s+ a2) =18+ a;

2
where the coefficients b; are given by b; = 4\ Aaga(—a;)/[0* [I (a; —a)].
j=1#i
Thus ¢4(u) satisfies the following renewal equations

/¢Su—x x)dz + H( )—l—Zbeai“, u > 0.

Where g(z) = —hyxhgxna(x), H(u) = hixhgx (W (u) 4 pgr* fx (w)) with b;(x) = (2Xi/0?)
-e~%* and * denotes the convolution product.

¢s(u) is uniquely determined by the 4-th order integro-differential equation (3.4), if
initial conditions ¢§’“) (0) are given for k = 0,1,2,3. Taking Laplace transforms on both

sides of the integro-differential equation (3.4) yields

2 7
( [T (vi(s) — Efx(ﬁ)) - fy(S))¢s(8) =W(s) +q(s),

i=1

since ¢s(u) is finite for all complex number s such that R(s) > 0, we have that
W(pi) = =a(pi),  i=12.
Another two conditions are needed. Setting u =0 in (2.4) yields

{(02(D0) = £ P)outw) + L) f] =0,

u=0

together with ¢5(0) = 0 yield a system of 2 x 2 linear equations that can be solved for the
unknowns gbgk)(()), k=0,1,2,3.

DP¢q(u) = PDtﬁd( )+ fx(u
2

1 (w(D) - & /<mu—xfy>

1=1
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2
) Gax fx () +5=ax £ = dax fr(w) +ws(u), (3.16)
1A2

02 c
M(@(%(O)ch(u) + fh(u) + /\ij(u) L 5;\2#)
A1

ws(u) =
Similarly, taking Laplace transforms on both sides of equation (3.16) yields

[Blp1, p2, 8]+ T2(5)]0a(s) = Wa(s) + Qa2(s) + uQi(s) fx (s),

where
o mlpip2] | 2lprs pol ~mlepassl | vlpnpesN e
a(s) = p( TR BERPENTT,, i (0) — (AR 4 R Fe(s) —i(s)
e (p1) . 22(p1) 2
Y(p1) . v2(p1 I i
n(y) = Tp, Ty fr + M( + )(TmefX) - 7(T02Tp1f)2( ),
/\2 )\1 )\1)\2

Q1(s), Q2(s) are polynomial of degree 1 or less respectively.

(20)*n2(s)
Pas) (1 + o4(s+a1)(s+ (],2))
(A2 (Ws(s) + uQu(s)fx(s) (20)*Qa(s)
ot(s+a1)(s + a2) ot(s+a1)(s+ az)

(20)*(Wa(s) + nQ1(s) fx(5)) +i 2

ot(s+a1)(s + az) Ss+a;

(3.17)

2
where the coefficients ¢; are given by ¢; = 4\ XoQ2(—a;)/[0* [ (a; — ai)].
J=Liti
These can be solved for ¢s(u) and ¢4(u) by inverting Laplace transforms. Then we

have the following theorem.

Theorem 3.3  ¢4(u), pq(u) and ¢(u) satisfy the following renewal equations

os(u) = /u ¢s(u —x)g(z)dx + Hy(u) + i bie” %", u > 0; (3.18)
0 =1
pa(u) = / ¢a(u — x)g(x)dz + Ha(u) + i cie” v, u > 0; (3.19)
0 i=1
o) = [ olu— @)+ H@ + S+ e)e™ uz0. (3:20)
0 i=1

where g(z) = hy * he * na(z), Hi(u) = hy * he x (W(u) + pq1 * fx(u)), Ha(u) = hy * hy *
(W (u) + uQr * fx(u), H(u) = Hy(u) + Ho(u) with h;(x) = (2)\;/0?)e %,
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Proof Inverting the Laplace transforms (3.15) and (3.17) gives the renewal equa-
tions (3.18) and (3.19). Since ¢(u) = ¢s(u) + ¢q(u), adding (3.18) to (3.19), we obtain
(3.20). O

Remark 2 (1) If X; =0,i=1,2,--- ,n, equations (3.18), (3.19) and (3.20) yield
(23), (24) and (25) of Li and Garrido (2005) when n = 2.

(2) fY; =0,i=1,2,--- ,n, equation (3.20) yields (17) of Gerber and Landry (1998),
while equation (3.19) gives (2.10) of Tsai and Willmot (2002).
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