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Abstract
An optimal control problem motivated by a portfolio and consumption choice problem in the

financial market where the expected utility of the investor is assumed to be the Constant Relative

Risk Aversion (CRRA) case is discussed. A local stochastic maximum principle is obtained in the

jump-diffusion setting using classical variational method. The result is applied to make optimal

portfolio and consumption choice strategy for the problem and the explicit optimal solution in the

state feedback form is given.
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§1. Introduction

Maximum principle for optimal control of stochastic systems has been studied for a

long period, see [1]-[4]. But one of their former assumptions is that the functions in the

cost functional satisfy the usual linear or quadratic growth conditions. Unfortunately,

this requirement excludes at least one important case which arises from the portfolio and

consumption choice problem in the financial market — the constant relative risk aversion

(CRRA for short) case (see [5] for example).

Stochastic processes with random jumps have become increasing popular for modelling

fluctuations in financial market, both for risk management and option pricing purposes

(see [6]). The stochastic control problem with jump diffusions is encountered naturally in
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the financial market. For example, the analysis of price evolution does reveal sudden and

rare breaks logically accounted for exogenous events on information. Such a behavior from

probabilistic point of view is naturally modeled by jump-diffusion processes, that is, the

processes governed by both Brownian motion and Poisson random measure. Stochastic

maximum principles for optimal control of jump diffusions and their applications to finance

are seen in [7], [8].

In this paper we discuss an optimal control problem motivated by a portfolio and

consumption choice problem in the financial market with CRRA utility functional. A

local stochastic maximum principle is obtained in the jump-diffusion setting using classical

variational method. The result is applied to obtain the optimal portfolio and consumption

choice strategy in the state feedback form explicitly.

§2. Stochastic Control Problem and Maximum Principle

Let (Ω,F , {Ft}t≥0,P) be a complete stochastic basis with the filtration {Ft}t≥0 which

is generated by the following two mutually independent processes:

(i) A one-dimensional standard Brownian motion {B(t)}t≥0;

(ii) A Poisson random measure N on E×[0,∞), where E ⊂ R/{0} is a nonempty open

set equipped with its Borel field B(E), with compensator N̂(dedt) = π(de)dt, such that

Ñ(A×[0, t]) = (N−N̂)(A×[0, t])t≥0 is a martingale for all A ∈ B(E) satisfying π(A) < ∞.

π is assumed to be a σ-finite measure on (E,B(E)) and is called the characteristic measure.

Let H be a finite-dimensional vector space and T > 0 a fixed real number which is

called time horizon. We denote by L2(Ω,FT ;H) the space of H-valued square-integrable

FT -measurable random variables, by L2
F ([0, T ];H) the space of H-valued square-integrable

Ft-adapted processes, by L2
F ,p([0, T ];H) the space of H-valued square-integrable Ft-pre-

dictable processes, and by F2
p([0, T ];H) the space of H-valued Ft-predictable processes

f(·, ·, ·) defined on Ω× [0, T ]×E such that E

∫

E

∫ T

0
|f(·, t, e)|2π(de)dt < ∞.

Suppose we have a financial market consisting of two investment possibilities:

(i) A risk-free security (e.g. a bond), whose price S0(t) at time t is given by

dS0(t) = ρtS0(t)dt, S0(0) > 0, (2.1)

where ρt is a bounded deterministic function;

(ii) A risky security (e.g. a stock), whose price S1(t) at time t is given by

dS1(t) = S1(t−)
[
µtdt + σtdB(t) +

∫

E
ηt(e)Ñ(dedt)

]
, S1(0) > 0, (2.2)

《
应

用
概

率
统

计
》

版
权

所
用



第二期 史敬涛 吴臻: 跳扩散最优控制的随机最大值原理及在金融中的应用 129

where µt, σt 6= 0, ηt(e) are bounded deterministic functions and µt > ρt. To ensure that

S1(t) > 0 for all t we assume that ηt(e) > −1, ∀ e ∈ E and in addition we assume that∫

E
η2

. (e)π(de) is a bounded function.

Let v(t) .= θ1(t)S1(t) denote the amount invested in the risky security at time t which

we called portfolio. We shall also allow the investor to withdraw consumption from his

or her wealth with a consumption rate process c(t) at time t. Given the initial wealth

x(0) = x0 > 0, combining (2.1) and (2.2) we can get the wealth dynamics




dx(t) = [ρtx(t) + (µt − ρt)v(t)− c(t)]dt + σtv(t)dB(t)

+
∫

E
ηt(e)v(t−)Ñ(dedt),

x(0) = x0.

(2.3)

The investor wants to maximize his/her expected utility

J(v(·), c(·)) .= E
[ ∫ T

0
g(c(t), t)dt + h(x(T ), T )

]
(2.4)

with

g(c, t) .= Le−βt c1−R

1−R
, h(x, T ) .= K

x1−R

1−R
, (2.5)

by choosing an appropriate portfolio-consumption pair (v∗(·), c∗(·)) over some admissible

portfolio-consumption pairs set Uad. In the above L,K, β > 0 and R ∈ (0, 1) which is

called the Arrow-Pratt measure of risk aversion (see [9]).

In this paper we study the following optimal control problem which is a generalization

of the above problem




dx(t) = b(t, x(t), v(t), c(t))dt + σ(t, x(t), v(t), c(t))dB(t)

+
∫

E
γ(t, x(t−), v(t), c(t), e)Ñ(dedt),

x(0) = x0,

(2.6)

where b : [0, T ]×R×R×R → R, σ : [0, T ]×R×R×R → R, γ : [0, T ]×R×R×R×E → R.

We notice that the functions g and h in the expected utility (2.4) do not satisfy

the linear or quadratic growth conditions. We treat such a case using classical variational

method and obtain a local maximum principle. We apply the maximum principle obtained

to problem (2.3)-(2.4) to get the explicit optimal portfolio and consumption choice strategy

in the state feedback form.

For convenience we rewrite the CRRA type cost functional as

J(v(·), c(·)) .= E
[ ∫ T

0
Le−βt c(t)

1−R

1−R
dt + K

x(T )1−R

1−R

]
. (2.7)
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We assume that




b, σ, γ are continuously differentiable with respcet to (x, v, c)

and their derivatives are bounded.
(H2.1)

Let U = U1 × U2 be a nonempty convex subset of R2. We define the admissible

control (portfolio and consumption choice strategy) set

Uad =
{
(v(·), c(·)) ∈ L2

F ,p([0, T ];U1)× L2
F ,p([0, T ];U2); (v(t), c(t)) ∈ U, a.e., a.s.

}
.

An admissible control (v∗(·), c∗(·)) is called optimal if it attains the maximum of

J(v(·), c(·)) in (2.7). Under assumption (H2.1), we know equation (2.6) admits a unique

solution x(·) ∈ L2
F ([0, T ];R) for the given (x0, (v(·), c(·))) ∈ R ×Uad (see [10]). We call

such x(·) the corresponding trajectory.

In order to derive the variational inequality, we need

c(t) > 0, a.e., a.s.; x(T ) > 0, a.s.; E
[ ∫ T

0
c(t)−2Rdt

]
< ∞; E[x(T )−2R] < ∞. (H2.2)

Let (v∗(·), c∗(·)) be an optimal control for (2.6)-(2.7), and x∗(·) the corresponding

optimal trajectory. Let (v(·), c(·)) ∈ L2
F ,p([0, T ];U1)× L2

F ,p([0, T ];U2) be given such that

(v∗(·)+v(·), c∗(·)+c(·)) ∈ Uad. We take vρ(·) = v∗(·)+ρv(·), cρ(·) = c∗(·)+ρc(·), 0 ≤ ρ ≤ 1.

Since Uad is convex, then (vρ(·), cρ(·)) ∈ Uad. We denote by xρ(·) the trajectory of the

control system (2.6) corresponding to (vρ(·), cρ(·)).
We introduce the following variational equation




dx1,ρ(t) = [bx(t, x∗(t), v∗(t), c∗(t))x1,ρ(t) + bv(t, x∗(t), v∗(t), c∗(t))v(t)

+ bc(t, x∗(t), v∗(t), c∗(t))c(t)]dt

+ [σx(t, x∗(t), v∗(t), c∗(t))x1,ρ(t) + σv(t, x∗(t), v∗(t), c∗(t))v(t)

+σc(t, x∗(t), v∗(t), c∗(t))c(t)]dB(t)

+
∫

E
[γx(t, x∗(t), v∗(t), c∗(t), e)x1,ρ(t−) + γv(t, x∗(t), v∗(t),

c∗(t), e)v(t) + γc(t, x∗(t), v∗(t), c∗(t), e)c(t)]Ñ(dedt),

x1,ρ(0) = 0.

(2.8)

Let x̃ρ(t) = ρ−1(xρ(t) − x∗(t)) − x1,ρ(t). Under (H2.1) we can derive the following

estimate

lim
ρ→0

sup
0≤t≤T

E|x̃ρ(t)|2 = 0, (2.9)

whose proof is similar to [11] and omitted here. Consequently we have
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Lemma 2.1 We assume (H2.1), (H2.2) hold. Then we have the following varia-

tional inequality

E
[ ∫ T

0
Le−βtc∗(t)1−Rc(t)dt + Kx∗(T )−Rx(T )

]
≤ 0. (2.10)

Proof Because J(vρ(·), cρ(·))− J(v∗(·), c∗(·)) ≤ 0, we have

E
{∫ T

0

L

1−R
e−βt[cρ(t)1−R − c∗(t)1−R]dt +

K

1−R
[xρ(T )−R − x∗(T )−R]

}
≤ 0. (2.11)

We first manipulate the first term of (2.11). Denoting At
.= {(t, ω) : c(t) ≥ 0} and IA

the characteristic function of set A we have

E

∫ T

0

L

1−R
e−βt[cρ(t)1−R − c∗(t)1−R]dt = I1 + I2, (2.12)

with

I1 = E

∫ T

0
IAt

L

1−R
e−βt[cρ(t)1−R − c∗(t)1−R]dt,

I2 = E

∫ T

0
IAc

t

L

1−R
e−βt[cρ(t)1−R − c∗(t)1−R]dt.

For I1, by the Taylor formula, we have

I1 = ρE

∫ T

0
IAtLe−βtc∗(t)−Rc(t)dt

+ ρE

∫ T

0
IAtLe−βt[(c∗(t) + θρc(t))−R − c∗(t)−R]c(t)dt (2.13)

with some θ ∈ (0, 1). Since

lim
ρ→0

IAtL
2e−2βt[(c∗(t) + θρc(t))−R − c∗(t)−R]2 = 0,

|IAtL
2e−2βt[(c∗(t) + θρc(t))−R − c∗(t)−R]2| ≤ 4L2c∗(t)−2R,

it follows from the Lebesgue controlled convergence theorem that

lim
ρ→0

E

∫ T

0
IAtLe−βt[(c∗(t) + θρc(t))−R − c∗(t)−R]c(t)dt = 0.

Thus from (2.13), we have that

I1 = ρE

∫ T

0
IAtLe−βtc∗(t)−Rc(t)dt + o(ρ). (2.14)
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For I2, we can derive that

I2 = E

∫ T

0
IAc

t

L

1−R
e−βtc∗(t)1−R

[(
1 + ρ

c(t)
c∗(t)

)1−R
− 1

]
dt

= ρE

∫ T

0
IAc

t
Le−βtc∗(t)−Rc(t)dt + ρ2I(ρ), (2.15)

with

I(ρ) = E

∫ T

0
IAc

t

L

1−R
e−βtc∗(t)1−R

[α(α− 1)
2!

( c(t)
c∗(t)

)2
+

α(α− 1)(α− 2)
3!

( c(t)
c∗(t)

)3
ρ + · · ·+ α(α− 1) · · · (α− n + 1)

n!

( c(t)
c∗(t)

)n
ρn−2

]
dt

and α
.= 1−R > 0. Since

E

∫ T

0
|c∗(t)|1−Rdt ≤ C

[
E

∫ T

0
|c∗(t)|2dt

](1−R)/2
< +∞,

E

∫ T

0
|c1(t)|1−Rdt ≤ C

[
E

∫ T

0
|c1(t)|2dt

](1−R)/2
< +∞,

and noticing that

IAc
t

α(α− 1) · · · (α− n + 1)
n!

( c(t)
c∗(t)

)n
ρn−2 ≤ 0, n = 2, 3, · · · ,

we have that for small ρ,

0 ≤ −I(ρ) ≤ −I(1) = E

∫ T

0
IAc

t
Le−βtc∗(t)−Rc(t)dt

+E

∫ T

0
IAc

t

L

1−R
e−βt[c∗(t)1−R − c1(t)1−R]dt < +∞.

Thus, it follows from (2.15) that

I2 = ρE

∫ T

0
IAc

t
Le−βtc∗(t)−Rc(t)dt + o(ρ). (2.16)

Integrating (2.12), (2.14) with (2.16), it follows that

E

∫ T

0

L

1−R
e−βt[cρ(t)1−R − c∗(t)1−R]dt = ρE

∫ T

0
Le−βtc∗(t)−Rc(t)dt + o(ρ). (2.17)

Thanks to (2.9), similarly we can manipulate the second term of (2.10) and have

K

1−R
E[xρ(T )1−R − x∗(T )1−R] = ρE[Kx∗(T )−Rx(T )] + o(ρ). (2.18)

Therefore, (2.11), (2.17) and (2.18) yield

ρE
[ ∫ T

0
Le−βtc∗(t)−Rc(t)dt + Kx∗(T )−Rx(T )

]
+ o(ρ) ≤ 0. (2.19)
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Taking ρ → 0 in (2.19), then (2.10) holds. ¤

We introduce the following adjoint equation




−dp∗(t) =
[
bx(t, x∗(t), v∗(t), c∗(t))p∗(t) + σx(t, x∗(t), v∗(t), c∗(t))q∗(t)

+
∫

E
γx(t, x∗(t), v∗(t), c∗(t), e)k∗(t, e)π(de)

]
dt

− q∗(t)dB(t)−
∫

E
k∗(t, e)Ñ(dedt),

p∗(T ) = Kx∗(T )−R.

(2.20)

Under (H2.1), (H2.2) we know that there exists a unique triple (p∗(·), q∗(·), k∗(·, ·)) ∈
L2
F ([0, T ];R)× L2

F ,p([0, T ];R)× L2
F ,p([0, T ];R) which satisfies (2.20) (see [7]).

Applying Itô’s formula to 〈p∗(t), x1,ρ(t)〉, it can be checked from Lemma 2.1 that

E

∫ T

0
[Hv(t, x∗(t), v∗(t), c∗(t), p∗(t), q∗(t), k∗(t, ·))v(t)

+Hc(t, x∗(t), v∗(t), c∗(t), p∗(t), q∗(t), k∗(t, ·))c(t)]dt ≤ 0,

where the Hamiltonian function H : [0, T ]×R×R×R×R×R×R → R is defined as

H(t, x, v, c, p, q, k(·)) .= 〈p, b(t, x, v, c)〉+ 〈q, σ(t, x, v, c)〉

+
∫

E
〈k(e), γ(t, x, v, c, e)〉π(de) + Le−βt c1−R

1−R
. (2.21)

So for any (v(·), c(·)) ∈ U, we have



〈Hv(t, x∗(t), v∗(t), c∗(t), p∗(t), q∗(t), k∗(t, ·)), v(t)− v∗(t)〉 ≤ 0, a.e., a.s.,

〈Hc(t, x∗(t), v∗(t), c∗(t), p∗(t), q∗(t), k∗(t, ·)), c(t)− c∗(t)〉 ≤ 0, a.e., a.s..
(2.22)

We have proved the following result.

Theorem 2.1 Supposed that (H2.1), (H2.2) hold. Let (v∗(t), c∗(t)) be an optimal

control for the optimal control problem (2.6)-(2.7), x∗(·) the corresponding optimal tra-

jectory and (p∗(·), q∗(·), k∗(·, ·)) be the solution of adjoint equation (2.20). Then for any

(v(·), c(·)) ∈ U, the maximum condition (2.22) holds.

§3. Application to Portfolio/Consumption Choice Problem

In this section, we discuss the optimal portfolio and consumption choice problem

(2.3)-(2.4) using the local maximum principle obtained in Section 2. Our target is to

obtain the explicit solution for the optimal portfolio and consumption choice strategy in
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the state feedback form. Finally we can verify that the optimal solution satisfies condition

(H2.2) indeed.

Noting in this case U1 = R, U2 = [0,∞). The Hamiltonian function (2.21) gets the

form

H(t, x, v, c, p, q, k(·)) = 〈p, ρtx + (µt − ρt)v − c〉+ 〈q, σtv〉

+
∫

E
〈k(e), ηt(e)v〉π(de) + Le−βt c1−R

1−R
, (3.1)

and the adjoint equation (2.20) becomes




−dp∗(t) = ρtp

∗(t)dt− q∗(t)dB(t)−
∫

E
k∗(t, e)Ñ(dedt),

p∗(T ) = Kx∗(T )−R.

(3.2)

Let (v∗(·), c∗(·)) be an optimal control, x∗(·) the corresponding optimal trajectory and

(p∗(·), q∗(·), k∗(·, ·)) the solution of adjoint equation (3.2). Since the expression involving

v and c are both linear, the maximum conditions (2.22) suggest that

(µt − ρt)p∗(t) + σtq
∗(t) +

∫

E
ηt(e)k∗(t, e)π(de) = 0, (3.3)

and

c∗(t) =
( 1

L
eβtp∗(t)

)−1/R
. (3.4)

In order to get the optimal portfolio and consumption choice strategy (v∗(·), c∗(·)) ex-

plicitly, the usual method is to give an interpretation to p∗(t) via the nonlinear Feynman-

Kac formula then solve the corresponding partial differential equation using the maximum

condition and the relationship between the maximum principle and the dynamic program-

ming principle (see [12]). However, it is difficult to obtain the explicit solution of such

PDE. It is reasonable to believe that it is more difficult to obtain the desired result in our

jump-diffusion setting.

In fact, it is convenient to guess that it is optimal to consume at a rate proportional

to the current wealth x∗(t). By (3.4) this suggests that

p∗(t) = f(t)x∗(t)−R (3.5)

for some deterministic differentiable function f to be determined. Applying Itô’s formula

《
应

用
概

率
统

计
》

版
权

所
用



第二期 史敬涛 吴臻: 跳扩散最优控制的随机最大值原理及在金融中的应用 135

to (3.5) we get

dp∗(t) =
{

ḟ(t)x∗(t)−R −Rf(t)ḟ(t)x∗(t)
−R−1

[ρtx
∗(t) + (µt − ρt)v∗(t)− c∗(t)]

+
1
2
R(R + 1)f(t)x∗(t)−R−2σ2

t v
∗(t)2

+
∫

E
f(t)[(x∗(t)+ηt(e)v∗(t))−R−x∗(t)−R+Rx∗(t)−R−1ηt(e)v∗(t)]π(de)

}
dt

−Rf(t)x∗(t)−R−1σtv
∗(t)dB(t)

+
∫

E
f(t)[(x∗(t−) + ηt(e)v∗(t−))−R − x∗(t−)−R]Ñ(dedt). (3.6)

Comparing (3.2) with (3.6), using (3.3) we get

q∗(t) = −Rf(t)σtv
∗(t)x∗(t)−R−1, (3.7)

k∗(t, e) = f(t)x∗(t)−R[(1 + v∗(t)ηt(e)x∗(t)−1)−R − 1], (3.8)

and 



ḟ(t) + αtf(t) + R(Le−βt)1/Rf(t)1−1/R = 0,

f(T ) = K,
(3.9)

where

αt = (1−R)ρt + R(µt − ρt)v∗(t)x∗(t)−1 +
1
2
R(R + 1)σ2

t v
∗(t)2x∗(t)−2

+
∫

E
[(1 + ηt(e)v∗(t)x∗(t)−1)−R − 1 + Rηt(e)v∗(t)x∗(t)−1)]π(de). (3.10)

Substituting (3.5), (3.7), 3.8 into (3.3), we get F (v∗(t)x∗(t)−1) = 0, where

F (χ) .= µt − ρt −Rσ2
t χ +

∫

E
ηt(e)[(1 + ηt(e)χ)−R − 1]π(de),

which is easily seen to have a zero χ∗(t) > 0, i.e.:

F (χ∗(t)) = 0. (3.11)

With the choice of v∗(t)x∗(t)−1 = χ∗(t) and αt given by (3.10), we can obtain that

f(t) = Le−βte
∫ T

t (β−αs)ds
( ∫ T

t
− 1

L
eβse

∫ T
s (αr−β)/Rdrds + (Le−βT )−1/RK1/R

)R
. (3.12)

Using (3.4) and (3.5) we get that

c∗(t) = (Le−βt)1/Rf(t)−1/Rx∗(t). (3.13)
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The corresponding wealth equation (2.3) for x∗(t) becomes




dx∗(t) = x∗(t−)
{

(ρt + (µt − ρt)χ∗(t)− (Le−βt)1/Rf(t)−1/R)dt

+σtχ
∗(t)dB(t) +

∫

E
ηt(e)χ∗(t)Ñ(dedt)

}
,

x∗(0) = x∗0 > 0.

(3.14)

The solution of this equation is

x∗(t) = x∗0 exp
{∫ t

0

[
ρs + (µs − ρs)χ∗(s)− (Le−βs)1/Rf(s)−1/R − 1

2
σ2

sχ
∗(s)2

]
ds

+
∫ t

0
σsχ

∗(s)dB(s) +
∫ t

0

[ ∫

E
ln(1 + χ∗(s−)ηs(e))N(deds)

− ln(χ∗(s)ηs(e))π(de)ds
]}

. (3.15)

Finally, we can check that ∀ t ∈ [0, T ], x∗(t) > 0 and E[x∗(T )−2R] < ∞. So ∀ t ∈ [0, T ],

c∗(t) > 0 and E
[ ∫ T

0
c∗(t)−2Rdt

]
< ∞. Therefore, assumption (H2.2) holds indeed. There-

fore we have the following theorem.

Theorem 3.1 The optimal solution (v∗(·), c∗(·)) to the portfolio and consumption

choice problem (2.3)-(2.4) is given in state feedback form by




v∗(t, x) = χ∗(t)x,

c∗(t, x) = (Le−βt)1/Rf(t)−1/Rx,
(3.16)

where χ∗(t) given by (3.11) and f(t) given by (3.12).
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跳扩散最优控制的随机最大值原理及在金融中的应用

史敬涛 吴 臻

(山东大学数学学院, 济南, 250100)

讨论了由金融市场中投资组合和消费选择问题引出的一类最优控制问题, 投资者的期望效用是常数相对

风险厌恶(CRRA)情形. 在跳扩散框架下, 利用古典变分法得到了一个局部随机最大值原理. 结果应用到最优

投资组合和消费选择策略问题, 得到了状态反馈形式的显式最优解.

关键词: 随机最大值原理, 最优控制, 跳扩散, 投资组合和消费选择, CRRA效用.
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