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Abstract
In this paper we consider a risk model with two correlated classes of insurance business.

Asymptotic results for the deficit at ruin caused by different classes of insurance business are

obtained. Explicit expression for the deficit at ruin caused by different classes of insurance business

are given when the original claim size random variables are exponentially distributed. In addition

we also give a brief discussion on the classical risk model perturbed by the Gamma process.
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§1. Introduction

In this paper we consider a risk model with two correlated classes of insurance busi-
ness. Let X

(j)
i (j = 1, 2) be claim size random variables for the j-th class with common

distribution function Fj(x) and µj , j = 1, 2 be their means. Then the risk model generated
from the two correlated classes of business is given by

S̃(t) = u + ct−
K1(t)∑
i=1

X
(1)
i −

K2(t)∑
i=1

X
(2)
i , (1.1)

where Kj(t) is the claim number process for class j (j = 1, 2). Assume that {X(1)
i , i =

1, 2, . . . , } and {X(2)
i , i = 1, 2, . . . , } are independent claim size random variables, and they

are independent of claim number processes Kj(t). The two claim number processes are
correlated as follows

K1(t) = N1(t) + N3(t) and K2(t) = N2(t) + N3(t). (1.2)
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Obviously the correlation in (1.1) is caused by the common component N3(t). In re-
cent years, various kinds of correlations among claim amounts and claim numbers have
been studied by many authors. Goovaerts and Dhaene (1996) gave a compound Poisson
approximation for a portfolio of dependent risks; Ambagaspitiya (1999) considered two
classes of correlated aggregate claims distributions; A more general correlated aggregate
claims risk model has been studied by Wang and Yuen (2005), in their model, not only
the continuous-time Poisson model with common shock was studied, but also the so-called
thinning-dependence structure was investigated. For some recent references, one can see
Yuen (2006), Cai (2006) and Zhang (2007) and Li (2007).

Yuen et al. (2002) also considered the same model (1.1) and derived ruin probabilities
for the risk process of the sum of correlated aggregate claims with Erlang common shock
in continuous time. However in our paper we will study the ruin probability and the
deficit at ruin caused by the jump of Nj(t) respectively. These are useful variables if the
insurer wants to known the impact of different classes of claims caused by different classes
of Nj(t).

We assume that N1(t), N2(t), N3(t) are three independent Poisson processes with
intensity λ1, λ2, λ3. It can be shown that S(t) becomes a compound Poisson process with
parameter λ = λ1 + λ2 + λ3 (see Yuen and Wang (2002)). In order to depict clearly, we
can rewrite the model (1.1) as the following one

S(t) = u + ct−
( N1(t)∑

i=1
X

(1)
i +

N2(t)∑
i=1

X
(2)
i +

N3(t)∑
i=1

X
(3)
i

)
, (1.3)

where X
(3)
i = X

(1)
i + X

(2)
i and we denote F3(x) = F1 ∗ F2(x). It is obvious that S̃(t) and

S(t) have the same distribution. As usual, we assume c > λ1µ1 +λ2µ2 +λ3(µ1 +µ2), that
is the insurance company has the positive safety loading.

The paper is organized as follows. In Section 2, we consider the distributions of deficit
at ruin caused by the jump of Nj(t) (j = 1, 2, 3). Asymptotic results for these distributions
are given. Section 3 is devoted to studying the deficit at ruin caused by the jump of Nj(t)
when the original claim size random variables are exponential. Explicit expressions for
these distributions are obtained. The classic risk model perturbed by the Gamma process
is studied in Section 4. Asymptotic results for the ruin probability due to the Gamma
process and compound Poisson process are also given respectively in this section.

§2. The Distribution of the Deficit at Ruin

Let Tj be the ruin time caused by the jump of Nj(t). What we are concerned with in
this section is not the distribution of the deficit at ruin G(u, y) = P(T < ∞, |S(T )| > y)
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but the following three ones.

G1(u, y) = P(T = T1 < ∞, |S(T )| > y),

G2(u, y) = P(T = T2 < ∞, |S(T )| > y),

G3(u, y) = P(T = T3 < ∞, |S(T )| > y).

That is Gi(u, y) (j = 1, 2, 3) are the deficit distribution that due to the arrival of claim
X(i). Note that with probability λ1/λ, λ2/λ and λ3/λ the first jump of S(t) comes from
N1(t), N2(t) and N3(t) respectively. Thus by conditioning on whether there is a claim in
the small time interval (0, t) and the type of the claim we obtain, for i = 1, 2, 3,

Gi(u, y) = (1− λt)Gi(u + ct, y) +
3∑

j=1
λj

∫ u+ct

0
Gi(u + ct− x, y)dFj(x)

+λiF i(u + ct + y).

Let t → 0 gives

cG′
i(u, y) = λGi(u, y)−

3∑
j=1

λj

∫ u

0
Gi(u− x, y)dFj(x)− λiF i(u + y). (2.1)

Note that
ψi(u) := P(T = Ti < ∞) = Gi(u, 0). (2.2)

Therefore, let y = 0 in (2.1), we have

cψ′i(u) = λψi(u)−
3∑

j=1
λj

∫ u

0
ψi(u− x)dFj(x)− λiF i(u). (2.3)

By integrating with respect to u in (2.1), we obtain,

c(Gi(u, y)−Gi(0, y)) = λ

∫ u

0
Gi(s, y)ds− λi

∫ u

0
F i(s + y)ds

−
3∑

j=1
λj

∫ u

0

∫ s

0
Gi(s− x, y)dFj(x)ds.

From this we can verify that

cGi(u, y) = cGi(0, y)− λi

∫ u

0
F i(s + y)ds +

3∑
j=1

λj

∫ u

0
Gi(u− x, y)F j(x)dx. (2.4)

Letting u →∞ yields

cGi(0, y) = λi

∫ ∞

0
F i(s + y)ds, (2.5)

which in turn implies

cGi(u, y) = λi

∫ ∞

u
F i(s + y)ds +

3∑
j=1

λj

∫ u

0
Gi(u− x, y)F j(x)dx, (2.6)

which is a defective renewal equation. By renewal theorem, we can get the following
theorem.
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Theorem 2.1 Let R be a constant such that
∫ ∞

0
eRx

3∑
j=1

λjF j(x)dx = c. (2.7)

Then, as u →∞,

Gi(u, y) ∼
λi

∫ ∞

0
(eRx − 1)F i(x + y)dx

3∑
j=1

λjEX(j)eRX(j) − c

e−Ru, (2.8)

where X(j) is a generic random variable which is the same distributed as X
(j)
i .

Proof Multiply both side of (2.6) by eRu to obtain a renewal equation

ceRuGi(u, y) = λie
Ru

∫ ∞

u
F i(s + y)ds +

∫ u

0
Gi(u− x, y)

3∑
j=1

λje
RuF j(x)dx. (2.9)

By renewal theorem we have

lim
u→∞ eRuG(u, y) =

λi

∫ ∞

0

∫ ∞

u
F i(x + y)dxeRudu

∫ ∞

0
yeRy

3∑
j=1

λjF j(y)dy

=
λi

∫ ∞

0
(eRx − 1)F i(x + y)dx

3∑
j=1

λjEX(j)eRX(j) − c

. ¤ (2.10)

Let y = 0 in Theorem 2.1, we get the following corollary.

Corollary 2.1 Let R be the constant defined in the Theorem 2.1, then, as u →∞,

ψi(u) ∼
λi

∫ ∞

0
eRxF i(x)dx− λiµi

3∑
j=1

λjEX(j)eRX(j) − c

e−Ru. (2.11)

§3. Exponential Claims

In this section, we will consider the case of exponential claims. Suppose X
(1)
i and X

(2)
i

are exponentially distributed with means µ1 and µ2. Then it is easy to get the distribution
of X

(3)
i = X

(1)
i + X

(2)
i ,

F3(x) = 1− µ2

µ2 − µ1
e−x/µ2 − µ1

µ1 − µ2
e−x/µ1 . (3.1)
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By equation (2.1), it is seen that

cG′
i(u, y) = λGi(u, y)−K1

∫ u

0
Gi(x, y)e−(u−x)/µ1dx

−K2

∫ u

0
Gi(x, y)e−(u−x)/µ2dx− λiF i(u + y), (3.2)

where

K1 =
λ1

µ1
− λ3

µ2 − µ1
, K2 =

λ2

µ2
− λ3

µ1 − µ2
.

In order to get rid of the integral term, differentiate the above equation twice to get

cG′′′
i (u, y) +

( c

µ1
+

c

µ2
− λ

)
G′′

i (u, y) +
( c

µ1µ2
− λ2 + λ3

µ1
− λ1 + λ3

µ2

)
G′

i(u, y) = 0. (3.3)

Its characteristic equation

cx2 +
( c

µ1
+

c

µ2
− λ

)
x +

( c

µ1µ2
− λ2 + λ3

µ1
− λ1 + λ3

µ2

)
= 0 (3.4)

has two negative roots say R1, R2. Since lim
u→∞Gi(u, y) = 0, the general solutions of

equation (3.3) takes the form

Gi(u, y) = gi1(y)eR1u + gi2e
R2u. (3.5)

To determine gi1(y), gi2(y), it is suffice to substitute (3.5) in (3.2). We thus get

gi1(y)h(R1)eR1u + gi1(y)h(R2)eR2u

=
[ K1

R1 + 1/µ1
gi1(y) +

K1

R2 + 1/µ1
gi2(y)

]
e−u/µ1

+
[ K2

R1 + 1/µ2
gi1(y) +

K2

R2 + 1/µ2
gi2(y)

]
e−u/µ2 − λiF i(u + y),

where

h(x) = cx +
K1

x + 1/µ1
+

K2

x + 1/µ2
− λ.

Since R1, R2 are the roots of equation (3.4), it is easy to verify that h(R1) = h(R2) = 0.
Therefore we get following equations for gi1(y) and gi2(y).

[ K1

R1 + 1/µ1
gi1(y) +

K1

R2 + 1/µ1
gi2(y)

]
e−u/µ1

+
[ K2

R1 + 1/µ2
gi1(y) +

K2

R2 + 1/µ2
gi2(y)

]
e−u/µ2 = λiF i(u + y). (3.6)

Solve above equations yield the following theorem.
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Theorem 3.1 Let K1,K2 be defined as above and

hi(R1, R2) =
(R1 + 1/µ1)(R1 + 1/µ2)(R2 + 1/µ1)(R2 + 1/µ2)

Ki(R1 −R2)(1/µ1 − 1/µ2)
.

Then for i = 1, 2, 3,

Gi(u, y) = gi1(y)eR1u + gi2(y)eR2u, (3.7)

where gij(y) are given by

gij(y) = (−1)j+1λie
−y/µi

hi(R1, R2)∏
k 6=j,l 6=i

(Rk + 1/µl)
, i, j = 1, 2, (3.8)

and

g3j(y) =
λ3

µ1 − µ2

[µ1

λ1
g1j(y) +

µ2

λ2
g2j(y)

]
, j = 1, 2. (3.9)

Proof We only prove the case of i = 1, the other cases can be proved similarly. In
the case of i = 1, F 1(u+ y) = e−(u+y)/µ1 . Substituting this into equation (3.6) yields that

[ K1

R1 + 1/µ1
g11(y) +

K1

R2 + 1/µ1
g12(y)− λ1e

y/µ1

]
e−u/µ1

+
[ K2

R1 + 1/µ2
g11(y) +

K2

R2 + 1/µ2
g12(y)

]
e−u/µ2 = 0. (3.10)

Since above equation is satisfied for all u > 0, thus we must have




K1

R1 + 1/µ1
g11(y) +

K1

R2 + 1/µ1
g12(y) = λ1e

y/µ1

K2

R1 + 1/µ2
g11(y) +

K2

R2 + 1/µ2
g12(y) = 0.

(3.11)

Solve the above equations we get

g11(y) = λ1e
−y/µ1

(R1 + 1/µ1)(R1 + 1/µ2)(R2 + 1/µ1)
K1(R1 −R2)(1/µ1 − 1/µ2)

,

g12(y) = −λ1e
−y/µ1

(R1 + 1/µ1)(R2 + 1/µ1)(R2 + 1/µ2)
K1(R1 −R2)(1/µ1 − 1/µ2)

. ¤

From equation (2.2), we have the following corollary.

Corollary 3.1 Let K1,K2 be defined as above and

hi(R1, R2) =
(R1 + 1/µ1)(R1 + 1/µ2)(R2 + 1/µ1)(R2 + 1/µ2)

Ki(R1 −R2)(1/µ1 − 1/µ2)
.

Then for i = 1, 2, 3,

ψi(u) = gi1e
R1u + gi2e

R2u, (3.12)
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where gij are given by

gij = (−1)j+1 λihi(R1, R2)∏
k 6=j,l 6=i

(Rk + 1/µl)
, i, j = 1, 2, (3.13)

and
g3j =

λ3

µ1 − µ2

[µ1

λ1
g1j +

µ2

λ2
g2j

]
, j = 1, 2. (3.14)

§4. Other Extensions

In this section, we will give a brief discussion on the classical risk model perturbed
by the Gamma process. First we give a brief introduction on the Gamma process. The
Gamma process is a subordinator with Laplace exponent given by

l(s) = −a ln
(
1 +

s

b

)
=

∫ ∞

0
(e−sx − 1)ax−1e−bxdx, s > 0, (4.1)

where a, b > 0. Easy to see that the Lévy measure of gamma process is given by ν(dx) =
ax−1e−bxdx, x > 0 and the mean of this process at time one is µG = a/b. By Dufresne
et al. (1991), we know that Gamma process has nonnegative increment and the number of
claims in any time interval is infinite with probability one. However, G(t) is finite, because
the majority of the claims are very small in some sense.

Now we give the risk model perturbed by the Gamma process,

U(t) = u + ct−
N(t)∑
i=1

Xi −G(t), (4.2)

where u ≥ 0, c = (1 + θ)(λµ + EG(1)), N(t) is a Poisson claim number process with
intensity λ and is independent of i.i.d. claim size random variables Xi with distribution
P (x) and mean µ, G(t) is a Gamma process and is independent of N(t) and Xi.

Let Y (t) =̂U(t)− u, note that Y (t) has no positive jumps, it is a spectrally negative
Lévy process with an initial value of zero. Easy to see that EesYt = etφ(s), s ≥ 0, where
φ(s) = cs− λ(F̂ (s)− 1) + l(s). We now give a useful result in risk theory which is due to
Zolotarev (1964).

Lemma 4.1 Let {Y (t) : t ≥ 0} is a spectrally negative Lévy process with initial
value of zero, and γ = EY (1) ≥ 0. Define

ψ(x) = P
(

inf
t≥0

Y (t) < −x
)

for x ≥ 0.

Then the function ψ(x) can be defined from the Laplace exponent φ(λ) by the equation

s

∫ ∞

0
e−sxψ(x)dx = 1− γs

φ(s)
, s ≥ 0.
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Following the method used in Furrer (1998), we obtain

Theorem 4.1 Consider the risk process (4.2), the ruin probability ψ(u) satisfies

1− ψ(u) = (1− ρ)
∞∑

n=0
ρnH∗n(u), (4.3)

where H(x) = pPI(x) + qF (x),

p =
λµ

λµ + EG(1)
, ρ =

1
1 + θ

,

PI(x) =
1
µ

∫ x

0
(1− P (y))dy, F (x) =

∫ x

0

∫ ∞

y

b

z
e−bzdzdy

is the exponential integral distribution function with density function

Q(x) =
∫ ∞

x

b

z
e−bzdz.

Proof {R(t)− u : t ≥ 0} is a spectrally negative Lévy process with an initial value
of zero. Applying Lemma 4.1, we know that the ruin probability ψ(u) satisfies

s

∫ ∞

0
e−sxψ(x)dx = 1− γs

φ(s)
, s ≥ 0, (4.4)

where γ = EY (1) = c−λµ−EG(1), φ(s) = cs−λ(F̂ (s)−1)+ l(s). Using a similar method
to that in Furrer (1998), we have
∫ ∞

0
e−sud(1− ψ(u)) = 1− s

∫ ∞

0
e−suψ(u)du

=
γs

cs− λ(1− P̂ (s)) + l(s)

=
γ

c

c

cs +
λ(1− P̂ (s))

s
+

l(s)
s

= (1− ρ)
1

1− ρ
[ λµ

λµ+EG(1)
· P̂I(s)− EG(1)

λµ+EG(1)
· 1
EG(1)

· l(s)
s

]

= (1− ρ)
1

1− ρ[pP̂I(s) + qF̂ (s)]

= (1− ρ)
∞∑

n=0
(ρĤ(s))n. (4.5)

Inverting the expression (4.5) yields (4.3). Thus we complete the proof of the theorem.
¤

What we will discuss next is the ruin probabilities caused by compound Poisson
process and Gamma process respectively. To solve this problem we can refer to the topic
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discussed in Dufresne et al. (1991). Noting that Gamma process is the limit of compound
Poisson processes. In order to explain clearly we replace N(t) by N1(t) and the correspond
parameter is λ1. Thus we can get the corresponding results for the model (4.2) from the
following risk process,

U(t) = u + ct−
N1(t)∑
i=1

Xi −
N2(t)∑
i=1

Yi, t ≥ 0 (4.6)

in which we substitute G(t) by
N2(t)∑
i=1

Yi, where N1(t) and N2(t) are two independent Poisson

processes with intensity λ1, λ2, claims size Xi, Yi, are independent with distributions P1(x),
P2(x) and means µ1, µ2 respectively. Let

ψ1(u) = P(T < ∞, T is some jump time of N1(t)),

ψ2(u) = P(T < ∞, T is some jump time of N2(t)).

By a similar argument as in Section 2 we can obtain the following theorem for the model
(4.6).

Theorem 4.2 Let R be a constant such that
∫ ∞

0
eRx

2∑
j=1

λjP j(x)dx = c. (4.7)

Then, as u →∞,

lim
u→∞ eRuψi(u) =

λi

c

∫ ∞

0
eRx

∫ ∞

x
(1− Pi(y))dydx

1
R

(
h′(R)

λ1 + λ2

c
− 1

) ,

where

h(r) =
λ1

λ1 + λ2

∫ ∞

0
erzdP1(z) +

λ2

λ1 + λ2

∫ ∞

0
erzdP2(z)− 1.

The proof of this theorem is similar as that of Corollary 2.1.

Remark 1 Note that
∫ ∞

0
eRxλiP i(x)dx =

1
R

∫ ∞

0
(eRx − 1)λiPi(dx) =

λi(P̂i(−R)− 1)
R

. (4.8)

Then equation (4.7) is equivalent to the following equation

λ1(P̂1(−R)− 1)) + λ2(P̂2(−R)− 1)) = cR, (4.9)

which is often called the Lunderberg equation.
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Theorem 4.3 Let R be the root of equation

λ(P̂ (−r)− 1) + a ln
b

b− r
= cr (4.10)

and denote by ψ1(u) and ψ2(u) the ruin probabilities of risk model (4.2) caused by com-
pound Poisson process and Gamma process respectively. Then,

lim
u→∞ eRuψ1(u) =

λ

∫ ∞

0
eRx

∫ ∞

x
(1− P1(y))dydx

λ

∫ ∞

0
xeRx(1− P1(x))dx +

1
R

( a

b−R
− a

R
ln

b

b−R

) , (4.11)

lim
u→∞ eRuψ2(u) =

1
R

( a

R
ln

b

b−R
− a

b

)

λ

∫ ∞

0
xeRx(1− P (x))dx +

1
R

( a

b−R
− a

R
ln

b

b−R

) . (4.12)

Proof Since
θ(r) = λ(P̂1(−r)− 1) + a ln

b

b− r
− cr

is convex, it is easy to see that equation (4.10) indeed has a unique positive root R in
(0, b).

From the method used in Dufresne et al. (1991), we only need to substitute ν(dy)
for λ2P2(dy) to obtain the corresponding results for the model (4.2). Note that equation
(4.7) and (4.9) are equivalent, then by Theorem 4.2 we complete the proof of the theorem.
¤
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二元复合Poisson风险模型的几个结果

吕同玲

(中国农业大学数学系, 北京, 100083)

郭军义 张 鑫

(南开大学数学科学学院, 天津, 300071)

本文研究具有相依关系的一类风险模型. 得到了由不同类别的索赔产生的破产时赤字分布的渐近结果以

及指数索赔下的精确结果. 同时研究了带伽玛过程干扰的古典风险过程.

关键词: 破产时赤字, 相依索赔, 破产概率, 复合Poisson过程, Gamma过程.

学科分类号: O211.6.

《
应
用
概
率
统
计
》
版
权
所
用




