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Abstract
In this paper we consider a risk model with two correlated classes of insurance business.
Asymptotic results for the deficit at ruin caused by different classes of insurance business are
obtained. Explicit expression for the deficit at ruin caused by different classes of insurance business
are given when the original claim size random variables are exponentially distributed. In addition
we also give a brief discussion on the classical risk model perturbed by the Gamma process.
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8§1. Introduction

In this paper we consider a risk model with two correlated classes of insurance busi-
ness. Let XZ-(J ) (j = 1,2) be claim size random variables for the j-th class with common
distribution function Fj(z) and p;, j = 1,2 be their means. Then the risk model generated

from the two correlated classes of business is given by

~ Ki(t) ) Ka(t) @)
St)y=u+ct— > X7 — > X7, (1.1)
i=1 i=1

where Kj(t) is the claim number process for class j (j = 1,2). Assume that {Xi(l),i =
1,2,...,}and {X Z.(Q),z' =1,2,...,} are independent claim size random variables, and they
are independent of claim number processes K;(t). The two claim number processes are

correlated as follows

Kl(t) = Nl(t) + Ng(t) and Kg(t) = N2<t) + Ng(t). (1.2)
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Obviously the correlation in (1.1) is caused by the common component N3(t). In re-
cent years, various kinds of correlations among claim amounts and claim numbers have
been studied by many authors. Goovaerts and Dhaene (1996) gave a compound Poisson
approximation for a portfolio of dependent risks; Ambagaspitiya (1999) considered two
classes of correlated aggregate claims distributions; A more general correlated aggregate
claims risk model has been studied by Wang and Yuen (2005), in their model, not only
the continuous-time Poisson model with common shock was studied, but also the so-called
thinning-dependence structure was investigated. For some recent references, one can see
Yuen (2006), Cai (2006) and Zhang (2007) and Li (2007).

Yuen et al. (2002) also considered the same model (1.1) and derived ruin probabilities
for the risk process of the sum of correlated aggregate claims with Erlang common shock
in continuous time. However in our paper we will study the ruin probability and the
deficit at ruin caused by the jump of N;(t) respectively. These are useful variables if the
insurer wants to known the impact of different classes of claims caused by different classes
of N;(t).

We assume that Ni(t), Na(t), N3(t) are three independent Poisson processes with
intensity A1, A2, Az. It can be shown that S(¢) becomes a compound Poisson process with
parameter A = A\; + A2 + A3 (see Yuen and Wang (2002)). In order to depict clearly, we

can rewrite the model (1.1) as the following one

) ) )

Ni(t Na(t Ns(t

S(t) = u+ ct — ( xPe s x@g v Xf”), (1.3)
i=1 i=1 i=1

where Xi(g) = XZ»(l) + XZ-(2) and we denote F3(z) = F} * Fy(z). It is obvious that S(t) and

S(t) have the same distribution. As usual, we assume ¢ > A\jp1 + Agpig + As(pg + p2), that

is the insurance company has the positive safety loading.

The paper is organized as follows. In Section 2, we consider the distributions of deficit
at ruin caused by the jump of N;(t) (j = 1,2,3). Asymptotic results for these distributions
are given. Section 3 is devoted to studying the deficit at ruin caused by the jump of N;(t)
when the original claim size random variables are exponential. Explicit expressions for
these distributions are obtained. The classic risk model perturbed by the Gamma process
is studied in Section 4. Asymptotic results for the ruin probability due to the Gamma

process and compound Poisson process are also given respectively in this section.

§2. The Distribution of the Deficit at Ruin

Let T} be the ruin time caused by the jump of N;(t). What we are concerned with in
this section is not the distribution of the deficit at ruin G(u,y) = P(T < o0, |S(T)| > y)
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but the following three ones.
Gi(u,y) = P(T' =Ty < o0, |S(T)] > ),
Ga(u,y) = P(T =Ty < 00, [S(T)| > ),
Gs(u,y) = P(T' = T3 < o0, |S(T)| > y).
That is Gi(u,y) (j = 1,2,3) are the deficit distribution that due to the arrival of claim
X (). Note that with probability A; /A, A2/A and A3/ the first jump of S(t) comes from

Ni(t), No(t) and N3(t) respectively. Thus by conditioning on whether there is a claim in
the small time interval (0,¢) and the type of the claim we obtain, for i = 1,2, 3,

3 u—+ct
Gi(u,y) = (1=X)Gi(u+ct,y)+ DA\ / Gi(u+ ct — z,y)dF;(z)
j=1 " Jo

+ N Fi(u+ct + ).
Let t — 0 gives
Giluy) = NGiluwg) = Xy [ Glu— B @) - NFitut ). (2)
iz
Note that
Yi(u) == P(T =T; < ) = Gi(u,0). (2.2)

Therefore, let y = 0 in (2.1), we have
W) = Mpi(a) z A / il — 2)dF () — A Fi(w). (2.3)
By integrating with respect to u in (2 1), we obtain,

c(Gi(u,y) — G4(0 / Gi( syds)\/ Fi(s+y)ds

- [ [ Gils - aaras
j=1 0o Jo
From this we can verify that

u 3 u -
cGi(u,y) = cGi(0,y) — )\i/ Fi(s+y)ds+ 3. A / Gi(u—z,y)Fj(z)dz.  (2.4)
0 j=1 0
Letting u — oo yields
i(0,y) =\ / (s+y)d (2.5)
which in turn implies

007 3 u o
cGi(u,y) = )\z‘/ Fi(s+y)ds+ > \j / Gi(u — z,y)Fj(x)de, (2.6)
u j=1 0

which is a defective renewal equation. By renewal theorem, we can get the following

theorem.
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Theorem 2.1 Let R be a constant such that
oo 3 L
/ e S\ Fj(z)de = c. (2.7)
0 =1

Then, as u — oo,
)\i/ (e — D)F(x 4 y)dz
Giwy) ~ —22, o1, (2.9
SNEXWeRXWD ¢
j=1

()

where XU) is a generic random variable which is the same distributed as X ij .
Proof  Multiply both side of (2.6) by ef®* to obtain a renewal equation

(e 9]

ce®™Gi(u,y) = )\ieR“/
j

u

— u 3 —
Fi(s+y)ds+ / Gi(u—2z,y) 3 N;je™F;(z)dz. (2.9)
0 =1

By renewal theorem we have

Ai/ / Fi(x + y)dze™du
lim eR“G(u,y) = 0

/0 ye™ 3 A\ Fj(y)dy

)\i/ (e —1)Fy(z 4+ y)dz
_ 0
- , ‘ . O (2.10)
NEXWeRXD ¢
j=1

Let y = 0 in Theorem 2.1, we get the following corollary.
Corollary 2.1 Let R be the constant defined in the Theorem 2.1, then, as u — oo,

)\2/ eRmﬁz(l‘)dSL‘ - )\dh
Yi(u) ~ 30 e v, (2.11)
STNEXUeRXD ¢
j=1

§3. Exponential Claims

In this section, we will consider the case of exponential claims. Suppose X Z.(l) and X i(2)

are exponentially distributed with means g1 and po. Then it is easy to get the distribution
of X = xM 4 x®)

Fi(z)=1- M2 a1 e/ (3.1)
M2 — 1 M1 — p2



N BRI ¥ jki%: It A Poisson WS L[ JLAN 45 R 453

By equation (2.1), it is seen that

cGi(u,y) = )\Gi(u,y)—Kl/O Gi(m’y)e*(u*v’ﬂ)/mdx

— K5 / Gi(z, y)e_(“_x)/’”dx — XNiFi(u+v), (3.2)
0
where
Klzﬁ— A3 , KQZQ— A3
M1 H2 — H1 K2 fH1 — H2

In order to get rid of the integral term, differentiate the above equation twice to get

c A2+ A3 B AL+ A3
M1 2 H1 K2

G} (u,y) + (i + < - )\) G/ (u,y) + ( >G;(u,y) =0. (3.3)

H1 o 2

Its characteristic equation

A2+ A AL+ A
cx2+(£+£—)\)x—l—< ¢ _tAs AT 3>=0 (3.4)
[ 15 H1pe2 H1 H2
has two negative roots say Ri, Rp. Since lim G;(u,y) = 0, the general solutions of
U—o0

equation (3.3) takes the form
Gi(u,y) = gin(y)e™" + gine™". (3.5)
To determine g;1(y), gi2(y), it is suffice to substitute (3.5) in (3.2). We thus get

9i1 (Y)R(R1)e™ " + gi1 (y)h(Ro)e™"

= [ K i (y)] e/

7191'1(11)
Ri+1/m

TR
Ro+1/m1

gi1(y) + 12 92‘2(1/)] e 2 — \iFyi(u+y),

st
Ry +1/u2

where
Ky Ko

+ Y
r+1/p x+1/p

h(z) = cx +

Since Ri, Ry are the roots of equation (3.4), it is easy to verify that h(R1) = h(R2) = 0.

Therefore we get following equations for g;1(y) and g;2(y).

IS
Ry +1/m

L fe
Ry + 1/

-
Ry + 1//119Z
e

Rl-l-l/ug

1(y) 9i2(y)} e /m

gi1(y) giz(y)] e~ = \Fi(u + ). (3.6)

Solve above equations yield the following theorem.
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Theorem 3.1 Let K7, K5 be defined as above and

hi(Rl,RQ) _ (Rl + 1/:“*1)(R1 + 1//12)(R2 + 1/#1)(R2 + 1/,u2).

Ki(Ry — Ra)(1/p1 — 1/p2)

Then for i =1,2,3,

Gi(u,y) = gin(y)e™" + gi(y)e™", (3.7)
where g;;(y) are given by
; ] 1L hl(Rl RQ) ..
ii(y) = (—1)7 e v/m ’ . ii=1,2 3.8
ke li
and \
3 H1 M2 )

() = —23  Fo )+ 2 =1,2. 3.9
gil) = [ Na) + o), d=1 (3.9)

Proof We only prove the case of i = 1, the other cases can be proved similarly. In
the case of i = 1, Fy(u+y) = e~ (“t¥/m_ Substituting this into equation (3.6) yields that

K;

+7
Ry + 1/

[ K g11(y)

1 _
— \ye¥/m u/p1
Ri+1/m 912(9) 1€ }6

2 Ka —u/p2
_ _ = 0. 3.10
[Rl n 1/#2911(3/) + Ryt 1/#2912@)}6 ( )

Since above equation is satisfied for all u > 0, thus we must have

K, K,
- - 4+ — =\ v/
R1+1/ulgll(y) R2+1/u1912(y) 1€ a1
Ky Ky (3.11)
2 42 —0.
R1+1/p29”(y) R2+1/u2912(y)

Solve the above equations we get

_ ey Bt 1/m)(Ba 41/ 1) (Ry + 1/ 1)
Ki(Ry — Rp)(1/py — 1/ o)
—yun (B 1/ ) (Re + 1/ 1) (Re + 1/ p2)
Ki(By — Ro)(1/pma — 1/ p2)

911(y)

g12(y) = —Aie

From equation (2.2), we have the following corollary.

Corollary 3.1 Let K, K5 be defined as above and

(R1+1/p)(Ry + 1/p2)(Re + 1/p1) (R + 1/ p2)

hi(Ry, Ra) = Ki(Ri — Ro)(1/m — /o)

Then for i = 1,2, 3,
Yi(u) = gine™" + gige, (3.12)
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where g;; are given by

Xihi(R1, R2)

gii = (—1)71! , i,j=1,2, 3.13
0= OV Rer ) (313
kg I
and \
3 [Ml 2 .
J— i . + p— il = ]_’ 2' 3.14
93j [ — s L 914 Ao 92j J ( )

84. Other Extensions

In this section, we will give a brief discussion on the classical risk model perturbed
by the Gamma process. First we give a brief introduction on the Gamma process. The

Gamma process is a subordinator with Laplace exponent given by

I(s) = —aln (1 — %) = / (€7 = Daz~le ¥dz,  5>0, (4.1)
0

where a,b > 0. Easy to see that the Lévy measure of gamma process is given by v(dz) =
az'e7®dx, > 0 and the mean of this process at time one is pug = a/b. By Dufresne
et al. (1991), we know that Gamma process has nonnegative increment and the number of
claims in any time interval is infinite with probability one. However, G(t) is finite, because
the majority of the claims are very small in some sense.

Now we give the risk model perturbed by the Gamma process,

N(t)
Ult) =utct— 3 X; — G(t), (4.2)
=1

where u > 0, ¢ = (1 +0)(Au + EG(1)), N(t) is a Poisson claim number process with
intensity A and is independent of i.i.d. claim size random variables X; with distribution
P(x) and mean p, G(t) is a Gamma process and is independent of N(¢) and X;.

Let Y (t) =U(t) — u, note that Y (¢) has no positive jumps, it is a spectrally negative
Lévy process with an initial value of zero. Easy to see that EesYt = ¢'®(5) g > 0, where

¢(s) = cs — A(F(s) — 1) +1(s). We now give a useful result in risk theory which is due to
Zolotarev (1964).

Lemma 4.1 Let {Y(¢) : t > 0} is a spectrally negative Lévy process with initial
>

value of zZero, and Y= EY(l) 0. Define
=P i — > 0.

Then the function ¥ (z) can be defined from the Laplace exponent ¢(A) by the equation

R s
8/0 e Y(x)dr =1 o) s> 0.
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Following the method used in Furrer (1998), we obtain
Theorem 4.1  Consider the risk process (4.2), the ruin probability ¢ (u) satisfies

1= ¢(u) = (1 - p) ::0 P H (), (4.3)
where H(z) = pPr(x) + ¢F(x),
B AL 1
P= i+ EGQ) P=1xe
B l x B 2y = T Ooée—bz .
P = [T Py P = [ e

is the exponential integral distribution function with density function

Proof {R(t)—w:t> 0} is a spectrally negative Lévy process with an initial value

of zero. Applying Lemma 4.1, we know that the ruin probability 1 (u) satisfies

* s
8/0 e p(r)de =1 2(5) s >0, (4.4)

where v = EY (1) = c— A\u—EG(1), ¢(s) = cs— )\(ﬁ(s) —1)+1(s). Using a similar method
to that in Furrer (1998), we have

/OOO (1 — p(u) = 1-— s/ooo e~y () du

_ s
cs — N1 —=P(s)) +1(s)
_ 7 ¢
ory NP 1
— (1-p) !
v by ~ EG(1) 1 I(s)
L=rlreem 78~ NiFeem e -]
1
= T B + o)
= (1-p) Zzio(pﬁ(S))"- (4.5)

Inverting the expression (4.5) yields (4.3). Thus we complete the proof of the theorem.
O

What we will discuss next is the ruin probabilities caused by compound Poisson

process and Gamma process respectively. To solve this problem we can refer to the topic
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discussed in Dufresne et al. (1991). Noting that Gamma process is the limit of compound
Poisson processes. In order to explain clearly we replace N (t) by Ni(t) and the correspond
parameter is A;. Thus we can get the corresponding results for the model (4.2) from the

following risk process,

N1 (t) No (t)
Ut)y=u+ct— > X;— > Y, t>0 (4.6)
i=1 =1
No (t)
in which we substitute G(¢) by >_ Y;, where Ni(t) and Na(t) are two independent Poisson

i=1
processes with intensity A1, Ao, claims size X, Y;, are independent with distributions P (z),

Py(z) and means p11, po respectively. Let

Y1 (u)
P2(u)

P(T < oo, T is some jump time of Nip(t)),
P

(T < oo, T is some jump time of Na(t)).

By a similar argument as in Section 2 we can obtain the following theorem for the model
(4.6).
Theorem 4.2 Let R be a constant such that

Then, as u — oo,

)\Z o0 . o0
. o) €] (- Pily)dyds
lim e™);(u) = =
U— 00 1 )\1 + >\2 ’
—(n —
(== 1)

where

A1 > A /OO
h = 24P, "2d P —
(T) AL+ Ao /0 € 1(z) + A1+ A2 € 2(2)

The proof of this theorem is similar as that of Corollary 2.1.
Remark 1 Note that

/ e\ Py ( / D\ P(dz) = N(P(=F) - D) (4.8)
0

R

Then equation (4.7) is equivalent to the following equation
M(Pi(=R) = 1)) + Xa(Po(—R) — 1)) = cR, (4.9)

which is often called the Lunderberg equation.
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Theorem 4.3 Let R be the root of equation

~

AMP(=r)—1)+aln

g =T (4.10)

and denote by 1 (u) and 12(u) the ruin probabilities of risk model (4.2) caused by com-

pound Poisson process and Gamma process respectively. Then,

/ / (1 Pi(y))dyds

: Ru _
nggoe )= )\/OO el (1 — Py(z))dz + = ( a % 1n b )7 o
0 ! R\b—R R b—-R

1
(% b )
 Ru _ R\R b—R b
lim e™*“4o(u) = = i " o 5
U—00 R{L’ i A v
A/0 ze™(1 P(x))dx+R(b—R Rlnb—R>

Proof Since

(4.12)

0(r) = A(Pi(=r) —1) + aln

— Cr

b
b—r

is convex, it is easy to see that equation (4.10) indeed has a unique positive root R in
(0,0).

From the method used in Dufresne et al. (1991), we only need to substitute v(dy)

for A2 P2(dy) to obtain the corresponding results for the model (4.2). Note that equation

(4.7) and (4.9) are equivalent, then by Theorem 4.2 we complete the proof of the theorem.

O
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