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Abstract

In this paper, the empirical likelihood method is extended to partial linear models with fixed
designs under m-dependent errors. We show that not the usual empirical likelihood but the block-
wise empirical likelihood works in this situation, and the blockwise empirical log-likelihood ratio is
asymptotically chi-squared distributed. A simulation study is reported to show its efficiency.
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81. Introduction

Consider the following partial linear model:

where y; is the scalar response, the p-vector x; is the ith fixed design point and ¢; is the
ith fixed scalar design point, [ is a vector of unknown parameters to be estimated, g(-) is
an unknown function defined on the closed interval I of R, and the prime (') denotes the

transpose operator.
Model (1.1) with independent identically distributed (i.i.d.) errors was first intro-
duced by Engle et al. (1986), and further studied by Heckman (1986), Speckman (1988),
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Chen (1988), Hamilton and Truong (1997) and Mammen and Van de Geer (1997), amongst
others.

On the other hand, the empirical likelihood method is one of the important methods
for constructing confidence regions in nonparametric setting, and its general property was
subsequently studied by Owen (1990). The empirical likelihood ratio statistic has much
in common with its conventional parametric counterpart. In particular, its logarithm has
a chi-squared limiting distribution. The empirical likelihood method has been studied
extensively because of its generality and efficiency (see Owen (1991), Chen (1993, 1994)
and Qin and Lawless (1994), amongst others). It should be noted that the above work
seems to focus on independent data and the usual empirical likelihood can not be used
properly for dependent data. Recently, Kitamura (1997) and Zhang, et al. (1999) use the
blockwise empirical likelihood to deal with strong dependent data.

In this paper, we shall attempt to apply the blockwise empirical likelihood method to
the above partial linear model (1.1) under the condition that the random errors {e;, 1 <
i < n} are stationary m-dependent variables of mean zero (refer to Yu and Tu (1993) for
the definition of m-dependent random variables).

The paper is organized as follows. In Section 2, we introduce the empirical likelihood
and blockwise empirical likelihood methods, and study their large sample properties. Some
simulation results will be presented in Section 3 to evaluate the performance of the pro-

posed method. Proofs are given Section 4.

§2. Main Results

We now discuss how to apply the empirical likelihood method to model (1.1) and
construct an empirical log-likelihood confidence region for the regression coefficient (.
Here, we assume that the random errors {e;,1 < ¢ < n} are stationary m-dependent
variables, Ee; = 0, Ee? = 02, E|e;[ = py < o0, for j = 3,4.

For model (1.1), if § is known to be the true parameter, then by Ee; = 0, we have

g(t;) =E(yi —2iB), i=1,2,...,n.

Hence a natural nonparametric estimator of g(-) given [ is
o~ n /
gn(t) = 22 Wai(t)(yi — i),
=1

where W,,;(-) (1 <7 < n) are some weight functions defined on 1.

At first, we consider the ordinary empirical likelihood ratio statistic for 8. Let z; =
n n
zi — 3 Wai(tizs, i = yi — 22 Waj(ti)yj, wi = Zi(yi — 238 — Gn(ti)) = Zi(y; — T}B), the
=1 j=1
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(log) empirical likelihood ratio statistic is defined as
1(B) =2 Zl log{1 + X' (B)wi}, (2.1)
1=

where A\(3) € RP is determined by

S 1+ N (B)ws =0 22)

We need the following assumption.
Assumption A
n
(1) 0 < W,;(t) <1lforVteland ) K Wy;(t)=1for Vt e I.

j=1
(2) max [Wo;(ti)] = O(n~"(logn) ™).
<i,j<
= _ —-1/2
(3) max z|Wm<tz>\ O(1), max ZWm t) — 1 =o(n"112)

(4) max Z Wi (t)|ti — ;| I(|t: — t;] > (nlogn)~1/2) = o(n=1/2).

1<z<n
Z zj,|| < oo, where

(5) max ||Z;]| = O(n'/?(logn)~1), limsup 1/(y/nlogn) max

1<i<n n—s00 1<m<n
(J1,J25 -+ Jn) 18 any permutation of (1,2,...,n) and || - || denotes the Euchdean norm.
(©) g | 3 Wy ()] = o(0).

(7) (1/n?) ; |Z:]|* — 0 as n — +oo.

(8) As n — 400, there exist Ag > 0 and A > 0 such that

-

=1

Sl 3+

n
n=3/2 3" ’fﬁi’fﬁ; =o(1).
=1

(9) Let o1 and o, denote the largest and smallest eigenvalues of Ay, respectively.
There exist positive constants 'y and Cy such that ¢ < o), < 01 < Ch.

(10) g(-) satisfies the first-order Lipschitz condition on I.

Remark 1 A commonly used weight function W,,;(t) is given by

w1 R(5 e wde=x(EO[E (T

J

where s; = (t; +t;—1)/2,i=1,...,n—1, s =0, s, = 1, K(-) is the Parzen-Rosenblatt
kernel function (cf. Parzen (1962)), and h,, is a bandwidth parameter verifying suitable

conditions.
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Remark 2 A(5) is assumed in Gao et al. (1994), Chen et al. (1998) and Hardle et
al. (2000). A(6)-A(7) are assumed in Wang and Jing (1999). The conditions are common
conditions that the design points satisfy to discuss the properties of the empirical likelihood

ratio statistic in partially linear models.

Remark 3  The first condition in A(8) is very common. Since {e;} are m-dependent

random variables, it can be shown that

n n / n m—1n—
E( 252'61'( 251‘62') ) = Zl«%z o? + Zl Z (2] Tiy; + Tig @ DE(eieirs).
i= i= i= j =

It is reasonable to assume that there exists A > 0 such that the second condition in A(8)
holds. If Jnax |Z|| = o(n~'/2), then the third condition in A(8) holds.
<i<n

The first result in this paper is as follow.

Theorem 2.1 Let By be the true value of 8. Suppose that Assumption A is true,
then

1(Bo) —p ZTAalZ, as nm — 0o,

where Z ~ Np(0, A) and “—p” denotes convergence in distribution.

As we do not know Ay and A, the above result could not be used in practice. We
will use the blockwise empirical likelihood to overcome this shortcoming of the ordinary
empirical likelihood.

Let h = (logn)?>™", 0 <r < 1, g = [n/h] and put

h
Zw(z Dhaje i=1,2,..0.

b\*—‘

We consider the following blockwise empirical likelihood ratio:

g

BO@)= sw {1](m)

=1

i=1 i=1
It is easy to obtain the (log) blockwise empirical likelihood ratio statistic

1D (5) =2 3" log{1 + (B!}, (2.3)

i=1

where t(3) € RP is determined by

i 7(1) =0. (2.4)

This method to obtain the likelihood ratio statistic is called the blockwise empirical
likelihood. The intuitive background of the blockwise empirical likelihood is understand-

able. As the sample size increased, the proportion of each sample became smaller and
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smaller, when the difference between them is not too large, you can increase the sample
group length, and determine the right configuration of the each group according to the
average contribution that the each group made to the overall. To obtain the large sample
distribution of 1(V)(3;), we also need another assumption.

Assumptlon B
(11) [1/(gh)] Zx — T, [1/(g%h)] Zx” —0,forl=1,2,...,p as n — 400, where

z;; denotes the [- th component of Z;.
(12) As n — 400, there exists A > 0 such that

1 ( gh —1gh—j
g—h{zlxx + 21 Z (ZiTiy j + TigyT )E(eieHj)}:A—i-o(l),
i= j
1 m—1g—1 j
gh .Zl P Zl(ﬂckh —j+iTkhti T ThhiThn— i) E(€rnriehn—j+i) = o(1).
j=1 k=1li=

The second result in this paper is as follows.

Theorem 2.2  Under the conditions of Theorem 2.1 and suppose that Assumption

B is true, then

l(l) (ﬂo) —D XZ27’ as n — o0.

§3. Simulation Study

We report results from a simulation study designed to evaluate the performance of
the proposed empirical likelihood method.

We now describe how to carry out the empirical likelihood method. The design points
z;’s in our simulation studies are taken to be z; = ®1(i/(n+1)). On the other hand, the
design points t;’s are generated from a uniform distribution UJ0, 1] with a fixed seed 10
and so they will remain fixed in the simulation. The function g(-) is chosen to be g(t) = t.

The kernel function k(t) is biweight kernel function

15

k(z) = T

—(1—2%)?2 lx] < 1.

Also, we have selected the bandwidth h, to be n=*/2(logn)~!. It is easy to check that all
conditions A(1)-A(4) in the paper are satisfied with the above choices. In our simulation
studies, we generate €;’s i.i.d. from the standard normal distribution N(0,1).
Model 1  ¢;=¢;+0.5¢;_1—0.3¢;,_2, so ¢;’s are 2-dependent random series.
Model 2 ¢;=¢;40.6;_1—0.4e;,_2—0.2¢;_3, so ¢;’s are 3-dependent random series.

The samples sizes are choosen to be 500 and 1000, respectively. We use the blockwise

2-1/2

empirical likelihood method and choose h = (logn) The nominal levels are taken
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to be a = 0.10 and 0.05, respectively. The coverage probabilities are calculated for the
blockwise empirical likelihood method based on 500 simulated data. The results presented
in Table 1 and Table 2.

From Table 1 and Table 2, we see that the blockwise empirical likelihood method
performs well. The coverage probabilities do not vary greatly for different values of 3. It
is interesting to note that the coverage accuracies tend to increase as the sample size n
gets larger. However, this may not be the case all the time. The reason is that the design

points (x;,t;)’s are different for each different sample size n.

Table 1 Coverage probabilities for g in Model 1

=-35 g=-15 =-05 =0 =05 =15 =35
n=>500 |a=0.10| 0.870 0.854 0.856 0.886 0.886 0.874  0.882
a=0.05| 0.936 0.936 0.934 0954 0954 0.940 0.942
n = 1000 | o =0.10| 0.900 0.890 0.860  0.910 0.900 0.890  0.910
a=0.06| 0.954 0.960 0.950  0.950 0.956  0.960  0.950

Table 2 Coverage probabilities for 3 in Model 2

f=-35 f=-15 g=-05 =0 =05 =15 =35
n=>500 |a=0.10| 0.880 0.890 0.890  0.910 0.860  0.830  0.900
a=0.05| 0.940 0.950 0.944  0.950 0.950  0.940  0.950
n =1000 |« =0.10| 0.900 0.910 0.910 0.930 0.890 0.910 0.910
a=0.05| 0.960 0.960 0.956  0.970 0.956  0.950  0.960

84. Proof of the Main Results

To prove the theorems, we first give two Lemmas.

Lemma 4.1 Let X1, Xo,..., X, be univariate m-dependent r.v. series with EX; =
0, E|X;|" < oo fori=1,2,...,n and some r > 2, then
n r n
E| S X;| <Cn™?71 ST EX,
i=1 i=1

where the constant C). only depends upon r and m.
The proof can be found in Qin et al. (2005).

Lemma 4.2 Let X1, Xo,..., X,, be univariate m-dependent r.v.s., EX; = 0, E| X; |3
<o (1=1,2,...,n). Then

n
5 X,
P i=1
5

n

C(m+1)* 37 E[X,P
i=1

3 I
BTL

sup
X

<

< x) — ®O(x)
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n 2
where B,, = E( > XZ-) and ®(z) is the distribution function of standard normal ran-

=1

dom variable.
The proof can be found in Shergin (1979).

Proof of Theorem 2.1  First of all, we will show the following results:

_ — o (nl/2
o= i il = op(n"”), (41)
1 n
— S wi —p N(0, A), 42
\/ﬁl;w —p N(0,A) (4.2)
1
a' wl> 0,(n~1?), Vae RP, (4.3)
1 n
EZ wiw; = Ag + 0p(1), (4.4)

=1
where —p denotes the convergence in distribution.

It is clear, for any € > 0, that

P(\/lﬁwn>€> ép(uzn(‘g(t Jzi;lwm ‘+Iez|+‘ZWm( )egD>\fs)

IN

oz 2 101 (ot —35 W[ +Elet'+E] 5 Wy t)es| ).

Jj=

IN

where C is a const not depending on n.
Let g(t;) = g(ti) — >_ Why;(ti)g(t;). Using A(1), A(4) and A(10), it is easy to prove
j=1

_ -1/2
max [gi(ti)] = o(n™"%).

By applying Lemma 4.1 and condition A(2), we obtain
n 4 n 4
E| 22 Waj(ti)ej| = Cn 32 Wij(ti)pa = o(1).
j=1 j=1

Hence, from the assumptions of the model and A(7), we have (4.1).
Note that
n n 1 n n
T ; Z Ti€; + \/>Z zig(ti) — T > iy, Whj(ti)e;

=1 7j=1
By A(5) and using Abel’s inequality, we have

Z zig(t:)

< 7 e 9] max

|~ N Zx] | = o(n=2(10g ) = o(1),

where (j1,j2,...,Jn) is any permutation of (1,2,...,n). For any a € RP, a # 0, obviously,

1 n n
*E(CLI Z 51 z an(ti)ej) =0.
n i=1 j=1
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By applying Lemma 4.1 and condition A(6), we have
n n 2 1 n no_ 2
—E(a’ SE Y, an(ti)ej> < C=> E(a’ >oxiWh(t )) €;
i=1  j=1 n i ]
1 2
< C—|alf*o® (t:)Zs|| = o(1).
n j=1 nJ
That is
Z Zi Z Whj(ti)ej = op(1).
To prove (4.2), it suffices to show that
1 2
—= > Tie; —p N(0, A).
ni=1
For any a € RP, a # 0, by applying Lemma 4.2, we have
n
Zawzez C(m +1)3 3 Ela'Z;e)?
sup [P E—— <z | —d(2)| < =1 ,
J:p ( Bln ) ( ) o B%n
n 2
where By, = E( > a’?ﬁiei> )
i=1
By A(8), we have
1 1 noo 2
EB%” = EE<1; a'xiei)
, 1 S m—1n—j
= a (ﬁ{ Z Talot 4+ Y Z(az:z Titj + TigiT; )E(eieiﬂ-)})a
= 7j=1 =
= dAa+o(1).
Noticing that
E‘aliieﬂg = d(@7, )a\a xz,E‘QZ‘S <d'(7 NI)‘:‘”%HHGHE‘@F)
= lallpsa’(y/17:(7:7}))a.
Hence, by A(8), we obtain
n n
Clm+1) Y EldTie*  Clm+1)|allps(1/n=37?) Y o' (\/Ti7:(%:7))a
i=1 i=1
< =o(1).
B, . OREREE o
Thus, we get
n
> d'Te;
=1 —p N(0,1) (4.5)
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That is )
= Z fiei —7D N(O, A)
ni=1

Therefore, (4.2) is proved. From (4.5), we also get (4.3).

Note that
1 n , 1o, 10 2 2 18,
— Y wiw; = — > TiZe; +— Y, ﬂfzx,( > an(ti)ej) + = > 7Tg7 ()
n,—1 n;—1 n ;=1 j=1 n =1
2 — n 22 .,
-—=> mZxZeZ'( an<tz)e]) + = > TiTieig(t)
n ;= j=1 n =1
_gnN.N/ nW tes Va(t
> Tz 0 Whaj(ti)es )g(t:)
n =1 j=1

= Rp1+ Ru2+ Rps — Rpg + Rus — R
For any a € RP, a # 0, by A(8), we have
Ed'Ry1a = a’ Aga + o(1),
by applying Lemma 4.1 and condition A(7), we obtain

12, 2
E(a'Ry1a — E(a'Rnla))2 < E(— > a':ni:r?ae?>

n;=1
n

< =X E(d'%3] ae?)?
n®i=1
C noo

< Sllalltpa X2 11" = o(1).
n =1

That is
R, = Ag + Op(l). (46)

By applying Lemma 4.1, condition A(2) and A(8), for any a € RP, a # 0, we have
! /1 NS ~/ 2 2 2
Ela'Ry2a| < a - > zizzaC Y Wai(ti)o® = o(1).
i=1 j=1
That is
Rp2 = op(1). (4.7)
By applying Lemma 4.1, conditions A(4), A(8) and A(10), for any a € RP, a # 0, we have
'Rysal < ( max [(t:)]) o'~ 3 Fidfa = o()
|a' Ryzal < 121%%1 g(t; a-— P> Z;x;a = o(1).

That is
Rng = 0(1). (4.8)
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By using Swartz inequality, Lemma 4.1 and A(2), for any a € RP, a # 0, we have
2 n n 2\ 1/2
Eld'Rpsa] < o= #dla(Ee?)Y/? (E( an(ti)ej> )
=1 j=1

< dZY %7 2 1:9Ee2) " = o(1).
< a- i:zl x,:cwaC(izzl Wy, (tZ)Eej) o(1)
That is
Rn4 = Op(l). (4.9)

Similarly, from the conditions A(4) and A(10), for any a € RP, a # 0, we can show that
Rz = op(1). (4.10)
Now observe that, for any p-dimensional constant vector a,
la' Rpgal < |a’ Rpaal + |’ Rysal.
This together with (4.7) and (4.8) yields
Ry = 0p(1). (4.11)

(4.4) then follows from Equations (4.6)-(4.11).
Combining the results (4.1)-(4.4), similar to the proof of Theorem 1 in Owen (1990),

we have
n

1(B) = (\}ﬁiilwiy(:”nzlwiw;) - (\}ﬁlzlwz) +0p(1).

In addition to (4.2) and (4.4), the proof of Theorem 2.1 is completed. O

Proof of Theorem 2.2 At first, we will show the following results:

wy = max [wiV ]| = 0,(v/g/h), (4.12)
1<i<g
h g
; > wz(l) —p N(0, A), (4.13)
i=1
1 9
(2 L ol") = 0u(ah) ), Vacr, (4.14)
g ’
OIS S ON O (4.15)
g i=1
Noticing that
h g 1 &
9; ‘ gh El

So with the same reason as in proof of Theorem 2.1, (4.13) and (4.14) hold. So we only
need to prove (4.12) and (4.15) in the following.
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It is clear, for any € > 0, that

P> ) < 3 P(VATal[f 3 wio-unes]| > <)

h
< v 55 o]
= (95254 1; lgl E<J§1w S )4
= <9h();'264 kil zzi:l {( Xi: (=0petgk- 1)h+])>4
ho 4
+ E(]‘Z1 w(ifl)h+j,ke(i*1)h+j>
+E<]§1x (- D)htik (Z Whi(ti-1 h+j)€l)>4}

By applying B(11) and max 3(t:)| = o(n=1/?), we have
<i<n

5 (5 Foomeaadltivne) ' < {001} g 85t = 001/57).
(gh)Q (i=Dh+j, kI (i=1)h+j iis 2h =k

By applying Lemma 4.1 and condition B(11), we obtain

g 4 1 g,
Z: ( Z (i—1)h+3,k€(i— 1)h+J) < gQih ;xi,kﬂél = o(1),

7j=1

gh)

Similarly, from the conditions A(2), B(11) and Lemma 4.1 we can show that

h 4
(gh)2 Z E{]Zl (i—1)h+j,k (Z Wnl( (i—1 h+j)el)} = 0(1)
Thus we have (4.12).
It can be seen that
g h
1 - = ! Tt ,
S p ; (; i nss(ti-ones)) ( 5 FooomrBlt-mes)
1 9 h h -
97”2 (321 (i—1)h+5€(i— 1)h+a>(JE1 (ifl)h+j€(i—1)h+j>
1 49 h
ﬁl; (ngw (i—1 h+](z Wnl( (i—-1 thJ)el))
h n
<J§1.’E,(Z 1)h+]<l§1Wnl( (i— 1)h—|—j)€l>>
1 9 h h
+ g7L ; [( Z:: (i—1 h+]9( (i—1 h+])) <]Z::1x (i—1)h+5€(i— 1)h+g)
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+ ( i T(i—1)h+5C(i— 1)h+j> ( i x (i—1 h+]g(t(i71)h+j)>}

J=1 j=1
—hZszl K]zi:l% (i—1 h+jg(t(z 1 h+g)) (ng 1/'/(1 1)h+j (é ( (i— 1)h+j)€l>>
+ (é:l T(i—1 hﬂ(Z Wi (ti—1)h+j)e )) (JZZ:IUC (i—1)h+79(E(i— 1)h+j))}
- 1}”%1 [(]il T(i—1)h4j€(i-1 h+j> (]ilw (i-1 hﬂ(Z Wi (ti—1 h+J)el))

g
+ (é (i-1 w(Z Wi (t(i-1)n+5) el» ( 2 Tty - Uhﬂﬂ

7j=1
= Li+ Lo+ L3+ Ly— Ls— Lg.
By B(11), we have
1 9 & - h .
{971 > ( > x(z_l)h+jg(t(z—1)h+j)> ( > T 1)h+jg(t(i—1)h+j)>}

2

kl

=1 “j=1 Jj=1
< g(;:z{ g@lﬁ(tz)l}ié (é 5<z—1)h+a,k>2(é 5<z—1)h+a,l>2
< gChQ{ f?zéi‘g( )I}iil \/h6<jzh:1 T 1>h+j,k> (]il‘jf?il)hﬂ,l)
= C;h{ max [9(t )I}ié é 1) ht g +§31 5?z—1>h+avl>
= cort{ o il (g Syt g £iat) ot

That is L1 = o(1).
By B(12), we have ELy = A+ o(1). By applying Lemma 4.1 and condition B(11), we

obtain

1 49 h _ 9
E|:gih Z; (];11:2 1)h+] i— 1)h-|—j> (];:L'Z 1h+] (’L 1)h+j):|kl

C 9 h . 2 h 2

C g h 4 h 4
<
> g2h2 Z; \/E<]Zl L(i—1)h+4,kC(i—1 h+J) E(j;fl? i—1)h+4,1€(i— 1)h+j>

c J ho ho
< 2h2 ; \/h2( Z x?ifl)h+j,klu’4> < 2 xl(li,l)hH’lM)

1= 7=1 j=1

c 4 h 4 C
< o4 . . e —
~— g%h ; (ng L(i—1)h+j,kH4 + ]; x(z—l)h+],lﬂ4) 7h ( Z a:z rt Z x; )
= 0(1).
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That is Ly =

A+ op(1).

By applying Lemma 4.1 and condition B(11), we know

IN

IN

IN

IN

’ iﬂf(z Vhtjm (Zan( (i 1h+])el)‘

g h 2
Z {h 2T 33(1 1 h+j,kE(l; Wnl(t(z’fl)hﬂ)@l)

j=1

T him (léwnl(t(i—l)h+j)el)2}

g h n
> { 2T x(z htjk ; ng(t(i—l)h—i-j)EelQ

J=1

h
+ Zx%—l)h—l-jmzw ( (i— 1)h+j)Eel2}

E{ max Wy, (t )\} {;i:l (]Zi:l 5?i—1>h+j,k+é §(2i—1)h+j7m)}

qg 1<,57<n

o(1).

That is Ls = op(1).
Let Ly = L41 + L4o. Note that EL4y; = 0, by applying Lemma 4.1 and condition
B(11), we have

IN

IN

<

1 9 b _ h ?

E{—h El (]; T(i-1)h+9(t i1 h+])> (Elx (i—1)h+5 € (i~ Uh”) }kz,l

C & [ . e !
7h2 ;1 \/<J§1$(i_1)h+j,k9(t(i—1)h+j)) E(;x(i—l)hﬂ,le(i—l)hﬂ)

c g t &k L

4 (¢ 74 T}

2 El \/h { [nax. |g(tz)|} j; L(i=1)htjik El T i) htj M4
<

B 2 gh 4 gh 4
5{ max ()|} (2 74+ X 7)) = o(1/9).
<isn i=1 i=1

Therefore, L4; = 0p,(1), and we also can have Lyo = o,(1). Similarly, by applying Lemma
4.1 and condition B(11), we can show that Ls = o,(1).
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Let Lg = Lg1 + Lg2. By applying Lemma 4.1 and condition B(11), we have

EH > (sz 1)h+;5€(i— 1)h+]>(i1 (i— 1h+](ZWnl( (i— 1h+J)€l))}km‘

g i=1 “j=1

1 g h ~
< > E) > $(i—1)h+j,k€(z'—1)h+jH Z ﬂf(z‘—1)h+j,m( > Wnl(t(z‘—1)h+j)€l>‘

gh 21 j=1 j=1 =1

1 9 h _ 9 h " n 2
< - > \/E( > T(i-1)ht k(- 1)hts) E( > x(i—l)h—l—j,m( > Wnl(t(i—l)h+j)el>)

agn i=1 J=1 7j=1 =1

C g h 2
< gihzgl \/h(]; (z 1)h+j,k E (z 1)h+]) (]glx (i—1)h+j,m (Z Wnl( (i-1 h+J)el> )
= S P @ (DT S WA ES)

gVh =t = (i—1)h+j,k = (i—1)h+j,m = AN J l

002 g h = h — 2
< A \/ 2 T §m<i71>h+j,m”{1§3?§n’w’”( )

Co?\/n g h h
< .
= g\/ﬁ {123;(”’Wn]( )|}12< —~ (z 1)h+7,k z:: (i— 1)h+ym>

1ok

= Co?Vnh{ max [W(t >|}gh(z T+ 2 ) = ol1).

Therefore, Lg; = 0p(1). Similarly, we know Lgz = op(1).

(4.15) then follows from above.

We now start the proof of Theorem 2.2. Write ¢(3) = pf, where p > 0 and ||6| = 1.
From (2.4), similar to the proof of Theorem 1 in Qwen (1990), we have

. pt'SHe  h g

2 4.16
1+pw g'lji=1 zg ( )

where e; is the unit vector in the jth coordinate direction. From (4.14), the second term
in (4.16) is O,(y/h/g). Easily, we can see that ¢’S(V0 > mineig(A) +o0,(1). Tt follows that

P _
o = (VA7)

by (4.12), we have p = O,(y/h/g), that is

1E(8)] = Op(v/R/g). (4.17)
Let v; = t’(ﬁ)wi(l), then
max |5l = [[£(8)[lwy, = Op(v/h/g)0p(v/g/h) = 0,(1). (4.18)

1<i<g
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From (2.4),
st e (4.19)
—_ w: — — .
9i=1 ! 9i=1 1+
Note that the final term in (4.19)
I @, 1
HMH% = |5 S el s i+ i
< 1B 1Pwr sV +%‘\71=0p( h/g)-
Therefore, we may write
hJy
18) = SO (2 Swi”) + 50, where [5V) = op(v//g) (4.20)

By (4.18) we may expand log(1 + ;) = v — 7?/2 + n;, where, for some finite B > 0,
P(lni| < Blyi’,1<i<g)—1 as n — oo.
Therefore,
h g N g 1y g
10 (5) = 9 (1~ Y g1 (1~ Y 950750500 495k, 491
(5)=4 (5 n ) s (G n ) - 55D 425 (4.21)

Since (g/h)BM SM BN = o,(1), and

3 (31w BV lw* S (43w D)2
2m| < BB " < BlE(B)llwn 2 (F(B)wr )
g *
= 3 Blt(®)wnt (8)SVt(5)
< I BB Pugmaxcis(4) + 0,(1) = 0,(1).
Therefore, from (4.21), (4.13) and (4.15) we obtain Theorem 2.2. O
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