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Abstract

The future lifetimes of involved insured persons in the multiple-life model are always assumed
to be independent in almost all actuarial textbooks. In this paper we consider the two-life model
and assume that the future lifetimes are positively dependent. We use PQD (positively quadrant
dependent) to describe such dependence, and give a easy method to construct the joint-life status
life table.

Keywords: Future lifetime, comonotonicity, PQD.

AMS Subject Classification: 60K10.

§1. Introduction

Consider two lives: (x) with initial age x and (y) with initial age y, we denote their
future lifetimes by T'(x) and T'(y) respectively. In the two-life model, any status (u) can
be defined by defining its future lifetime T'(u) based on T'(x) and T'(y).

We denote by ¢py,+s the conditional probability that the status (u) is still intact at
time t + s, give that the status existed at time 0 and was intact at time s, i.e. (Pyts =
P{T(u) >t + s|T(u) > s}. Most other symbols in individual life model can be similarly
defined in two-life model. For example, 1qy+s = 1 —¢ py+s is the mortality probability of
status (u); fre)(t)=(d/dt)iqy is the pdf of status u; pu(t) = frew)(t)/tpu=—(d/dt) In¢p,

is mortality force function of status (u).
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The most commonly used statuses are the joint-life status, denoted by (u) or (x : y),

and the last-survivor status, denoted by (v) or (= y). They are defined as follows:

T(u) = min{T(z), T(y)}, (1.1)
T(v) = max{T(x),T(y)}. (1.2)

It is easy to see that the joint-life status (u) is still intact if and only if () and (y) are
both alive. While the last-survivor status is still alive as long as one of (z) and (y) is
still alive. In spite of the dependence structure between T'(z) and T'(y), there are several

equalities, such as

T(u) +T(v) =T(x) +T(y), (1.3)
tDu + tPo = tPx + Py, (1.4)
frey @) + frew) () = fr@) @) + fre) () (1.5)

But be careful that such equality on the force of mortality functions does not hold.

In most actuarial textbooks, such as Gerber (1997), T'(x) and T'(y) are assumed to

be independent. Under this assumption, ¢p,, and p,(t) can be expressed explicitly:

tPu =t Pz * tDy; (1.6)
fu(t) = pa(t) + py(t). (L.7)

So if the life tables of (z) and (y) are given, the life table of status (u) can be easily derived
by (1.6), and so does status (v) by (1.4).

But actually, the future lifetimes of the two insured persons who buy a two-life insur-
ance or a two-life annuity are deemed to be dependent more or less. For example, most
insured persons are a couple, and it is obvious that husband and wife’s future lifetimes are
usually positive dependent. So it is meaningful to construct life table of statuses without
the independence assumption.

This paper use correlation order to compare random variable pairs dependence. In
Section 2 we introduce some concepts of correlation order, comonotonicity and PQD. In
Section 3 we derive the distribution of the joint-life status future lifetime when 7'(x) and
T(y) are comonotonic. In Section 4 we derive the stochastic bound of the joint-life status
future lifetime when 7'(z) and T'(y) are PQD. In Section 5 we introduce a easy method to
construct the life table of the joint-life status (u).
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§2. Comonotonicity, PQD and Stochastic Order

Since the marginal distributions of T'(x) and T'(y) are definite, the dependence struc-
ture between them determines the distribution of the status (u). We first introduce a spe-
cial dependence structure called comonotonicity, and we will prove that it is the strongest
positive dependence structure later in a certain sense.

Definition 2.1 Two random variables X and Y are said to be comonotonic if
(X(w1) — X(w2))(Y(w1) — Y(w2)) > 0 holds almost sure.

It is known that any random variable is a function of event w, so random variable X
is also written as X (w). The comonotonicity between X and Y means that if w change
from w; to wg, the value of X(w) and Y (w) change in the same direction. This is the
intuitive meaning of comonotonicity.

There are some equivalent statements on comonotonicity, here are some.

Theorem 2.1 (Dhaene et al. (2002)) X and Y are comonotonic if and only if one
of the following holds:

(1) (X(w1) = X(w2))(Y(w1) — Y(w2)) > 0 holds almost sure;

(2) For all z,y, we have

Fxy(z,y) = min{Fx(x), Fy(y)}, (2.1)

where Fx y(z,y) is the joint cdf of (X,Y), Fx(z) and Fy(y) are the marginal cdf of X
and Y respectively;
(3) For U ~ Uniform(0, 1), we have

(X,Y) L (FL(U), By (U)), (2.2)

where ‘%’ means having the same distribution, Fy;'(p) £ inf{x|Fx(z) > p} is called the
inverse distribution function of X;

(4) There exists a random variable Z and non-decreasing function f, g, such that
d
(X,Y) = (f(2),9(2)). (2.3)

We denote by R(F'x, Fy) the set of random variable pairs of which the marginal cdf’s

are same as the cdf’s of X and Y, i.e.
R(Fx, Fy) ={(UV)|Fy = Fx, Fy = Fy}.

Now we introduce a partial order called correlation order to compare the dependence

between the components of each element in R(Fx, Fy).



238 N FHME 2 4801 o )\G

Definition 2.2 (Dhaene et al. (1996)) For any elements (X1,Y1) and (X2, Y2) in
R(Fx, Fy), (X1,Y1) is said to be less correlated than (X, Ys), written as (X1,Y1) <cor
(Xo,Ys), if

Cov (f(X1),9(Y1)) < Cov (f(X2),9(Y2)) (2.4)
holds for any non-decreasing functions f and g for which the covariances exist.

There is a feasible criterion to judge the correlation order between two pairs of random

variables which have the same marginal cdf’s.

Theorem 2.2 (Dhaene et al. (1996)) For any elements (X1,Y7) and (X»,Y2) in
R(Fx, Fy), (X1,Y1) <cor (X2,Y2) if and only if

FX17Y1 (3;‘, y) < FX27Y2 (xa y) (2'5)

holds for any =z, y.

Theorem 2.3 X and Y are comonotonic, then
(X Y) <cor (X,Y) (2.6)

holds for all (X', Y’) € R(Fx, Fy).
Proof From Theorem 2.1, we find that

Fxry(z,y) = P{X' <2, Y <y}
< min{P{X' < z},P{Y’ < y})
= min{Fx(z), Fy(y)}
— FX,Y(xa y)
From Theorem 2.2 we can say that (X', Y’) € R(Fx, Fy). O

From Theorem 2.3, we find that if we use correlation order to gauge the dependence
between the components of random variable pairs which have the same marginal cdf’s,
then comonotonicity is the most ‘positively dependent’ or most ‘positively correlated’.

Denote by (X*,Y ") the independent version of (X,Y), i.e. X+ and Y+ are inde-
pendent, X+ 4 X, Y+t ly.

Definition 2.3 (Dhaene et al. (1996)) X and Y are said to be positively quadrant
dependent (PQD) if (X4, Y1) <or (X,Y).

We can see that if X and Y are PQD, then the dependence between X and Y is more
positively dependent than independence. From Theorem 2.2, it is obvious that X and Y
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are PQD if and only if
Fxy(z,y) > Fx(x)Fy(y), for all x,y. (2.7)

Now we introduce a tool to compare random variables.
Definition 2.4 (Shaked et al. (1994)) X is said to be stochastically smaller than
Y, written as X <y Y, if
EF(X) < Ef(Y) (2.8)
holds for any non-decreasing function f.

Theorem 2.4 (Shaked et al. (1994)) X < Y if and only if

Fx(z) < Fy(x), for all x, (2.9)

where Fy(x) =1— Fx(z).

§3. The Distribution of 7'(u) under Comonotonicity

Now suppose T'(z) and T'(y) are comonotonic and we are to derive the expression of
tPu and i, (t).
Theorem 3.1 If T(z) and T'(y) are comonotonic then

tPu = min{tpxa tpy}' (3'1)

Proof Let U ~ Uniform(0, 1), then from Theorem 2.1 we find that

tru = P{T(u) >t}
= P{min{T'(z),T(y)} > t}
= P{E;,(U) > t,Fp,(U) > t}
= P{U > FT(x)(t),U > FT(y)(t)}
= P{U > max{Fp(;)(t), Fry)(t)}}
= 1-P{U <max{iqz,19y}}
= 1 —max{¢qs,qy}

= min{sps,py}- O

From (3.1) we can easily find that

tqu = maX{thy to}y (32)
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It can be explained intuitively. We know that the joint-life status will be no longer intact
as long as one of the two insured persons dies. And both of the insured persons are
exposed to the risk of death at the same time, which force the mortality probability of
(u) to be no less than that of any individual insured. More positively dependent between
T(x) and T(y), the difference between ;q, and max{;qs,:qy} will be smaller. But from
Theorem 2.3 we know that comonotonicity is the strongest positive dependence in the
sense of correlation order, so the difference is smallest. From Theorem 3.1, the smallest

difference happen to be zero.

Theorem 3.2 If T(z) and T'(y) are comonotonic, then

:uu(t) = Mx(t)l{tqutqy} + My(t)l{tl]z<to}’ (3'3)
where I 4 is the indicator function of A.

Proof From Theorem 3.1 we find that

d

Uu(t) = _a Inpy,

d .
= T In(min{;p, tpy})
d
=~ 0Pelg 200, + Pulig<ia)

= Lge>iq,) <_ %lntpx) + (I{tqz<tqy} ' (_ %lntpy»
= pa() I q,0q,1 T 1y (D {q,<q,}- 0
We know that the probability that (u) ‘dies’ in the instance (¢,t + dt] is
P{t < T(u) <t+dt} = pup(t)dt. (3.4)
From Theorem 3.1 and Theorem 3.2 we find that
P{t <T(u) <t+dt} = tpu(pa(t) {4,500, + Py q0<ig,y)dE (3.5)

So we can say that, if T'(x) and T'(y) are comonotonic, only one individual insured risk
exposure to death adds such exposure of (u) in any instance (¢,t + dt], and the insured
which adds the exposure of (u) is the one that has the bigger mortality probability in time
period (0,¢].

§4. The Stochastic Bounds for T'(u)

Suppose T'(z) and T'(y) are PQD, symbols (T (z), T+ (y)) and (T(z), T¢(y)) stand for

the independent and comonotonic versions of (T'(z),T(y)) respectively. All other symbols
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with ‘1L’ or ‘¢’ are defined similarly.

Theorem 4.1  Let (T1(z),T1(y)) and (T2(z), T2(y)) are two elements of R(Frp (),
Fr(,)), their corresponding joint-statuses future life are 71 (u) and Ta(u). If (T1(x), T1(y))
<cor (TZ (.1‘), Ty (y)) then T3 (U) <st TQ(U)

Proof From Theorem 2.2 we have
Fry ()1, ()(@,0) < Fry(2) 1) (@, D), for all a,b.
It is equivalent to
P{Ti(x) > a,Ti(y) > b} < P{Ts(z) > a,T>(y) > b}, for all a,b.
Let a =b=1t, we get
P{T1(u) >t} < P{Ta(u) > t}, for all t.
From Theorem 2.4 we can say that T (u) <g Ta(u). O

Corollary 4.1 If T'(z) and T'(y) are PQD, then
T+ (u) <g T(u) < T(u). (4.1)
Proof From Theorem 2.1 and Theorem 2.2 and Definition 2.3, we find that
(T (2), T+ () <cor (T(2), T(y)) cor (T°(x), T(y)).

Then it is obvious that T (u) <g T(u) <g T¢(u) from Theorem 4.1. O

§5. Construct the Life Table of (u)

Recall that pg (t) = p(t) + py(t) when T(z) and T'(y) are independent, and pé(t) =
() g qo> 10,y T Hy(E) {0 <1,y When T'(z) and T'(y) are comonotonic. It is obvious that
pé (t) < ps(t) for all t. Now consider the weight average function of uS(t) and g (t)

(1) = wp(t) + (1= whp (), 0<w <1, (5.1)
For any w € [0, 1], u(¢) is still a force of mortality of status (u). Since
ipu = e Joru(ds g > (5.2)
Py and pu,,(t) are determined by each other, and we can find that

= (5)" (ep) (5.3)
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It is obvious that ;pp < ;p¥ < ¢pC.

If T(z) and T(y) are PQD, then from Corollary 4.1 we see that ;p; < ip, < pS. So
our idea is to replace ¢p, with ¢p¥ by adjusting the weight w to a likely value.

In practice, what we have are the life tables of () and (y), in other words the
distributions of T'(z) and T'(y) are discrete and we have troubles in dealing with force
of mortality. Most textbooks, such as Gerber (1997) and Bowers et al. (1999), give three
interpolation methods to solve this fractional age problem. Anyway, in this paper, what
we are interested in is to construct the life table of (u), and we just concentrate in the
integer ages. Fortunately, all interpolation methods don’t change survival probability at
integer point, So we can use (5.3) to construct the life table of (u) directly.

So in order to construct the life table of (u), we should first estimate the dependence
of T'(z) and T'(y) and determine the value of w, then calculate ;p¥ following the formulas
(1.6), (3.1) and (5.3).

To end this paper, we give a simple example to illustrate the method. Suppose the

mortality rates of (z) and (y) are

Mortality rates of (z) and (y)

n 0 1 2 3 4 5 6 7 8 9
qn | (z) | 0.10 0.05 0.08 0.10 0.15 0.20 0.30 0.40 0.70 1.00
(y) | 0.12 0.04 0.09 0.10 0.12 0.21 0.25 0.50 0.75 1.00

We consider the joint-life status of (u) = (3 : 2), we can construct the life table of (u) with

w = 0.4 as following:

Example: Life table of (3:2) with w = 0.4

Qoin | Qy+n | nDa nPy D | b S S e

0.10 | 0.09 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.1495
0.15 | 0.10 | 0.9000 | 0.9100 | 0.8190 | 0.9000 | 0.8505 | 0.2021
0.20 | 0.12 | 0.7650 | 0.8190 | 0.6265 | 0.7650 | 0.6786 | 0.2591
0.30 | 0.21 | 0.6120 | 0.7207 | 0.4411 | 0.6120 | 0.5028 | 0.3923
0.40 | 0.25 | 0.4284 | 0.5694 | 0.2439 | 0.4284 | 0.3056 | 0.4951
0.70 | 0.50 | 0.2570 | 0.4270 | 0.1098 | 0.2570 | 0.1543 | 0.8021
1.00 | 0.75 | 0.0771 | 0.2135 | 0.0165 | 0.0771 | 0.0305 | 1.0000

S U R W NN =R O3

Where the values of each fields are calculated as following:
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1. Gz4n and gyin are from the life tables of (z) and (y), the maximum n is the one
that makes either g,, or g,, equals to 1;

2. 0pz = 0Py = 1, nPa = n—1P2 - (1 = Gatn—1), nPy = n—1Py - (1 = Qy4n—-1);

3. nPu = nPo Py, nPy = min{npa, npy}

4 npl) = )" )Y G = (P — na ) /Py

References

[1] Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A. and Nesbitt, C.J., Actuarial Mathematics,
2nd ed. Schaumburg, Ill.: Society of Actuaries, 1997.

[2] Dhaene, J. and Goovaerts, M.J., Dependency of risks and stop-loss order, Astin Bulletin, 26(2)(1996),
201-212.

[3] Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R. and Vyncke, D., The concept of comonotonicity

in actuarial science and finance: theory, Insurance: Mathematics and Economics, 31(2002), 3-33.
[4] Gerber, H.U., Life Insurance Mathematics, Third Edition, Springer-Verlag, 1997.
[5] Shaked, M. and Shanthikumar, J.G., Stochastic Orders and Their Applications, New York: Academic
Press, 1994.

—MEEERSERERNEREZTAZE: 77EMER
T7I&E AR

(BIEBCE SR, SIE, 230601) (BRI Sl G542k, i, 200241)
% I A
(&K (D Al A B A =R SR, 13, 200120)
L E R JLT BT RS 5 2R 1 AR B A ORI N (K03 4 75 iy 2 [ AH L. AR SO RATIAF T
HE TR, ?ﬂdllﬁdﬁJ%%uu%E*ﬁﬁEﬂ’ﬂ, HHIEZ BRI IRARMNE, 25 T — PRl 7 R IE A A v .

KR PR FHdar, FRIE, EZ R
FR S ES: 02125





