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Abstract
The future lifetimes of involved insured persons in the multiple-life model are always assumed

to be independent in almost all actuarial textbooks. In this paper we consider the two-life model

and assume that the future lifetimes are positively dependent. We use PQD (positively quadrant

dependent) to describe such dependence, and give a easy method to construct the joint-life status

life table.
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§1. Introduction

Consider two lives: (x) with initial age x and (y) with initial age y, we denote their

future lifetimes by T (x) and T (y) respectively. In the two-life model, any status (u) can

be defined by defining its future lifetime T (u) based on T (x) and T (y).

We denote by tpu+s the conditional probability that the status (u) is still intact at

time t + s, give that the status existed at time 0 and was intact at time s, i.e. tpu+s =

P{T (u) > t + s|T (u) > s}. Most other symbols in individual life model can be similarly

defined in two-life model. For example, tqu+s = 1 −t pu+s is the mortality probability of

status (u); fT (u)(t)=(d/dt)tqu is the pdf of status u; µu(t)=fT (u)(t)/tpu =−(d/dt) ln tpu

is mortality force function of status (u).
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The most commonly used statuses are the joint-life status, denoted by (u) or (x : y),

and the last-survivor status, denoted by (v) or (x : y). They are defined as follows:

T (u) = min{T (x), T (y)}, (1.1)

T (v) = max{T (x), T (y)}. (1.2)

It is easy to see that the joint-life status (u) is still intact if and only if (x) and (y) are

both alive. While the last-survivor status is still alive as long as one of (x) and (y) is

still alive. In spite of the dependence structure between T (x) and T (y), there are several

equalities, such as

T (u) + T (v) = T (x) + T (y), (1.3)

tpu + tpv = tpx + tpy, (1.4)

fT (u)(t) + fT (v)(t) = fT (x)(t) + fT (v)(y). (1.5)

But be careful that such equality on the force of mortality functions does not hold.

In most actuarial textbooks, such as Gerber (1997), T (x) and T (y) are assumed to

be independent. Under this assumption, tpu and µu(t) can be expressed explicitly:

tpu =t px · tpy, (1.6)

µu(t) = µx(t) + µy(t). (1.7)

So if the life tables of (x) and (y) are given, the life table of status (u) can be easily derived

by (1.6), and so does status (v) by (1.4).

But actually, the future lifetimes of the two insured persons who buy a two-life insur-

ance or a two-life annuity are deemed to be dependent more or less. For example, most

insured persons are a couple, and it is obvious that husband and wife’s future lifetimes are

usually positive dependent. So it is meaningful to construct life table of statuses without

the independence assumption.

This paper use correlation order to compare random variable pairs dependence. In

Section 2 we introduce some concepts of correlation order, comonotonicity and PQD. In

Section 3 we derive the distribution of the joint-life status future lifetime when T (x) and

T (y) are comonotonic. In Section 4 we derive the stochastic bound of the joint-life status

future lifetime when T (x) and T (y) are PQD. In Section 5 we introduce a easy method to

construct the life table of the joint-life status (u).

《
应

用
概

率
统

计
》

版
权

所
用



第三期 丁芳清 钱林义 杨亚松: 一种构造连生状态生命表的简单易行方法: 方法和理论 237

§2. Comonotonicity, PQD and Stochastic Order

Since the marginal distributions of T (x) and T (y) are definite, the dependence struc-

ture between them determines the distribution of the status (u). We first introduce a spe-

cial dependence structure called comonotonicity, and we will prove that it is the strongest

positive dependence structure later in a certain sense.

Definition 2.1 Two random variables X and Y are said to be comonotonic if

(X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0 holds almost sure.

It is known that any random variable is a function of event ω, so random variable X

is also written as X(ω). The comonotonicity between X and Y means that if ω change

from ω1 to ω2, the value of X(ω) and Y (ω) change in the same direction. This is the

intuitive meaning of comonotonicity.

There are some equivalent statements on comonotonicity, here are some.

Theorem 2.1 (Dhaene et al. (2002)) X and Y are comonotonic if and only if one

of the following holds:

(1) (X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0 holds almost sure;

(2) For all x, y, we have

FX,Y (x, y) = min{FX(x), FY (y)}, (2.1)

where FX,Y (x, y) is the joint cdf of (X, Y ), FX(x) and FY (y) are the marginal cdf of X

and Y respectively;

(3) For U ∼ Uniform(0, 1), we have

(X, Y ) d= (F−1
X (U), F−1

Y (U)), (2.2)

where ‘ d=’ means having the same distribution, F−1
X (p) , inf{x|FX(x) ≥ p} is called the

inverse distribution function of X;

(4) There exists a random variable Z and non-decreasing function f, g, such that

(X, Y ) d= (f(Z), g(Z)). (2.3)

We denote by R(FX , FY ) the set of random variable pairs of which the marginal cdf’s

are same as the cdf’s of X and Y , i.e.

R(FX , FY ) = {(U, V )|FU = FX , FV = FY }.

Now we introduce a partial order called correlation order to compare the dependence

between the components of each element in R(FX , FY ).
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Definition 2.2 (Dhaene et al. (1996)) For any elements (X1, Y1) and (X2, Y2) in

R(FX , FY ), (X1, Y1) is said to be less correlated than (X2, Y2), written as (X1, Y1) ≤cor

(X2, Y2), if

Cov (f(X1), g(Y1)) ≤ Cov (f(X2), g(Y2)) (2.4)

holds for any non-decreasing functions f and g for which the covariances exist.

There is a feasible criterion to judge the correlation order between two pairs of random

variables which have the same marginal cdf’s.

Theorem 2.2 (Dhaene et al. (1996)) For any elements (X1, Y1) and (X2, Y2) in

R(FX , FY ), (X1, Y1) ≤cor (X2, Y2) if and only if

FX1,Y1(x, y) ≤ FX2,Y2(x, y) (2.5)

holds for any x, y.

Theorem 2.3 X and Y are comonotonic, then

(X ′, Y ′) ≤cor (X, Y ) (2.6)

holds for all (X ′, Y ′) ∈ R(FX , FY ).

Proof From Theorem 2.1, we find that

FX′,Y ′(x, y) = P{X ′ ≤ x, Y ′ ≤ y}
≤ min{P{X ′ ≤ x},P{Y ′ ≤ y}}
= min{FX(x), FY (y)}
= FX,Y (x, y).

From Theorem 2.2 we can say that (X ′, Y ′) ∈ R(FX , FY ). ¤

From Theorem 2.3, we find that if we use correlation order to gauge the dependence

between the components of random variable pairs which have the same marginal cdf’s,

then comonotonicity is the most ‘positively dependent’ or most ‘positively correlated’.

Denote by (X⊥, Y ⊥) the independent version of (X, Y ), i.e. X⊥ and Y ⊥ are inde-

pendent, X⊥ d= X, Y ⊥ d= Y .

Definition 2.3 (Dhaene et al. (1996)) X and Y are said to be positively quadrant

dependent (PQD) if (X⊥, Y ⊥) ≤cor (X, Y ).

We can see that if X and Y are PQD, then the dependence between X and Y is more

positively dependent than independence. From Theorem 2.2, it is obvious that X and Y
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are PQD if and only if

FX,Y (x, y) ≥ FX(x)FY (y), for all x, y. (2.7)

Now we introduce a tool to compare random variables.

Definition 2.4 (Shaked et al. (1994)) X is said to be stochastically smaller than

Y , written as X ≤st Y , if

Ef(X) ≤ Ef(Y ) (2.8)

holds for any non-decreasing function f .

Theorem 2.4 (Shaked et al. (1994)) X ≤st Y if and only if

FX(x) ≤ F Y (x), for all x, (2.9)

where FX(x) = 1− FX(x).

§3. The Distribution of T (u) under Comonotonicity

Now suppose T (x) and T (y) are comonotonic and we are to derive the expression of

tpu and µu(t).

Theorem 3.1 If T (x) and T (y) are comonotonic then

tpu = min{tpx, tpy}. (3.1)

Proof Let U ∼ Uniform(0, 1), then from Theorem 2.1 we find that

tpu = P{T (u) > t}
= P{min{T (x), T (y)} > t}
= P{F−1

T (x)(U) > t, F−1
T (y)(U) > t}

= P{U > FT (x)(t), U > FT (y)(t)}
= P{U > max{FT (x)(t), FT (y)(t)}}
= 1− P{U ≤ max{tqx, tqy}}
= 1−max{tqx, tqy}
= min{tpx, tpy}. ¤

From (3.1) we can easily find that

tqu = max{tqx, tqy}, (3.2)
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It can be explained intuitively. We know that the joint-life status will be no longer intact

as long as one of the two insured persons dies. And both of the insured persons are

exposed to the risk of death at the same time, which force the mortality probability of

(u) to be no less than that of any individual insured. More positively dependent between

T (x) and T (y), the difference between tqu and max{tqx, tqy} will be smaller. But from

Theorem 2.3 we know that comonotonicity is the strongest positive dependence in the

sense of correlation order, so the difference is smallest. From Theorem 3.1, the smallest

difference happen to be zero.

Theorem 3.2 If T (x) and T (y) are comonotonic, then

µu(t) = µx(t)I{tqx≥tqy} + µy(t)I{tqx<tqy}, (3.3)

where IA is the indicator function of A.

Proof From Theorem 3.1 we find that

µu(t) = − d
dt

ln tpu

= − d
dt

ln(min{tpx, tpy})

= − d
dt

ln(tpxI{tqx≥tqy} + tpyI{tqx<tqy})

= I{tqx≥tqy} ·
(
− d

dt
ln tpx

)
+

(
I{tqx<tqy} ·

(
− d

dt
ln tpy

))

= µx(t)I{tqx≥tqy} + µy(t)I{tqx<tqy}. ¤

We know that the probability that (u) ‘dies’ in the instance (t, t + dt] is

P{t < T (u) ≤ t + dt} = tpuµu(t)dt. (3.4)

From Theorem 3.1 and Theorem 3.2 we find that

P{t < T (u) ≤ t + dt} = tpu(µx(t)I{tqx≥tqy} + µy(t)I{tqx<tqy})dt. (3.5)

So we can say that, if T (x) and T (y) are comonotonic, only one individual insured risk

exposure to death adds such exposure of (u) in any instance (t, t + dt], and the insured

which adds the exposure of (u) is the one that has the bigger mortality probability in time

period (0, t].

§4. The Stochastic Bounds for T (u)

Suppose T (x) and T (y) are PQD, symbols (T⊥(x), T⊥(y)) and (T c(x), T c(y)) stand for

the independent and comonotonic versions of (T (x), T (y)) respectively. All other symbols
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with ‘⊥’ or ‘c’ are defined similarly.

Theorem 4.1 Let (T1(x), T1(y)) and (T2(x), T2(y)) are two elements of R(FT (x),

FT (y)), their corresponding joint-statuses future life are T1(u) and T2(u). If (T1(x), T1(y))

≤cor (T2(x), T2(y)) then T1(u) ≤st T2(u).

Proof From Theorem 2.2 we have

FT1(x),T1(y)(a, b) ≤ FT2(x),T2(y)(a, b), for all a, b.

It is equivalent to

P{T1(x) > a, T1(y) > b} ≤ P{T2(x) > a, T2(y) > b}, for all a, b.

Let a = b = t, we get

P{T1(u) > t} ≤ P{T2(u) > t}, for all t.

From Theorem 2.4 we can say that T1(u) ≤st T2(u). ¤

Corollary 4.1 If T (x) and T (y) are PQD, then

T⊥(u) ≤st T (u) ≤st T c(u). (4.1)

Proof From Theorem 2.1 and Theorem 2.2 and Definition 2.3, we find that

(T⊥(x), T⊥(y)) ≤cor (T (x), T (y)) ≤cor (T c(x), T c(y)).

Then it is obvious that T⊥(u) ≤st T (u) ≤st T c(u) from Theorem 4.1. ¤

§5. Construct the Life Table of (u)

Recall that µ⊥u (t) = µx(t) + µy(t) when T (x) and T (y) are independent, and µc
u(t) =

µx(t)I{tqx≥tqy} + µy(t)I{tqx<tqy} when T (x) and T (y) are comonotonic. It is obvious that

µc
u(t) ≤ µ⊥u (t) for all t. Now consider the weight average function of µc

u(t) and µ⊥u (t)

µw
u (t) = wµc

u(t) + (1− w)µ⊥u (t), 0 ≤ w ≤ 1. (5.1)

For any w ∈ [0, 1], µw
u (t) is still a force of mortality of status (u). Since

tpu = e−
∫ t
0 µu(s)ds, t ≥ 0, (5.2)

tpu and µu(t) are determined by each other, and we can find that

tp
w
u = (tp

c
u)w(tp

⊥
u )1−w. (5.3)
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It is obvious that tp
⊥
u ≤ tp

w
u ≤ tp

c
u.

If T (x) and T (y) are PQD, then from Corollary 4.1 we see that tp
⊥
u ≤ tpu ≤ tp

c
u. So

our idea is to replace tpu with tp
w
u by adjusting the weight w to a likely value.

In practice, what we have are the life tables of (x) and (y), in other words the

distributions of T (x) and T (y) are discrete and we have troubles in dealing with force

of mortality. Most textbooks, such as Gerber (1997) and Bowers et al. (1999), give three

interpolation methods to solve this fractional age problem. Anyway, in this paper, what

we are interested in is to construct the life table of (u), and we just concentrate in the

integer ages. Fortunately, all interpolation methods don’t change survival probability at

integer point, So we can use (5.3) to construct the life table of (u) directly.

So in order to construct the life table of (u), we should first estimate the dependence

of T (x) and T (y) and determine the value of w, then calculate tp
w
u following the formulas

(1.6), (3.1) and (5.3).

To end this paper, we give a simple example to illustrate the method. Suppose the

mortality rates of (x) and (y) are

Mortality rates of (x) and (y)

n 0 1 2 3 4 5 6 7 8 9

qn (x) 0.10 0.05 0.08 0.10 0.15 0.20 0.30 0.40 0.70 1.00

(y) 0.12 0.04 0.09 0.10 0.12 0.21 0.25 0.50 0.75 1.00

We consider the joint-life status of (u) = (3 : 2), we can construct the life table of (u) with

w = 0.4 as following:

Example: Life table of (3:2) with w = 0.4

n qx+n qy+n npx npy np⊥u npc
u npw

u qw
u+n

0 0.10 0.09 1.0000 1.0000 1.0000 1.0000 1.0000 0.1495

1 0.15 0.10 0.9000 0.9100 0.8190 0.9000 0.8505 0.2021

2 0.20 0.12 0.7650 0.8190 0.6265 0.7650 0.6786 0.2591

3 0.30 0.21 0.6120 0.7207 0.4411 0.6120 0.5028 0.3923

4 0.40 0.25 0.4284 0.5694 0.2439 0.4284 0.3056 0.4951

5 0.70 0.50 0.2570 0.4270 0.1098 0.2570 0.1543 0.8021

6 1.00 0.75 0.0771 0.2135 0.0165 0.0771 0.0305 1.0000

Where the values of each fields are calculated as following:
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1. qx+n and qy+n are from the life tables of (x) and (y), the maximum n is the one

that makes either qx+n or qy+n equals to 1;

2. 0px = 0py = 1, npx = n−1px · (1− qx+n−1), npy = n−1py · (1− qy+n−1);

3. np⊥u = npx · npy, npc
u = min{npx, npy};

4. npw
u = (npc

u)w · (np⊥u )1−w, qw
u+n = (npw

u − n+1p
w
u )/npw

u .
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在多生命模型中, 几乎所有精算学教科书都假设被保险人的剩余寿命之间相互独立. 本文中我们研究两

生命模型. 我们认为剩余寿命是正相依的, 并用正象限相依描述相依性, 给出了一种简单方法构造联合生命表.
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