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Abstract
In this paper, we derive a central limit theorem for

n∑
i=1

aniξi, where {ξi} is a strong mixing

sequences, and {ani} is a triangular array of real numbers. To show the application of the central

limit theorem, we establish a central limit theorem for a partial sum of a linear process.

Keywords: Central limit theorem, strong mixing, linear process.

AMS Subject Classification: 60F05, 60G10.

§1. Introduction

Suppose {ξi : i ∈ Z} is a real-valued random variable sequence on a probability space

(Ω,B,P). Let Fm
n denote the σ-field generated by (ξi : m ≤ i ≤ n), and

α(n) = sup{|P (AB)− P (A)P (B)| : A ∈ Fm
−∞, B ∈ F∞m+n}.

The sequence {ξi} is said to be α-mixing or strong mixing if α(n) → 0 as n →∞.

The α-mixing sequence was introduced by Rosenblatt (1956) and has been commonly

employed in establishing limiting results for time series and random fields. For example,

Doukhan et al. (1994), Billingsley (1995), Merlevàde and Peligrad (2000) studied some

sufficient conditions for the central limit theorem (CLT) of strong mixing sequence.

It is well known that the CLT and functional central limit theorem (FCLT) for linear

process have been extensively studied in the literature. Such as, Wang et al. (2002), Lee

(1997), Kim and Baek (2001), Kim and Ko (2003), Ko et al. (2006), Ko and Kim (2008),

Moon (2008), Haydn (2009).
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In this paper, let {ξi} be a sequence of zero-mean strong mixing random variables,

and {ani, 1 ≤ i ≤ n} be a triangular array of real numbers. Many statistical procedures

produce estimators of the type

Sn =
n∑

i=1
aniξi. (1.1)

Set {ak} be a sequence of real numbers. We define a linear process by

Xm =
∞∑

j=−∞
am+jξj . (1.2)

In time-series analysis, this process is of great importance. Many important time-series

models, such as the causal ARMA process (Brockwell and Davis, 1987, p.89), have type

(1.2).

Peligrad and Utev (1997) obtained the CLT for the model (1.1), and the conditions

of Theorem 2.2 (c) in Peligrad and Utev (1997) are that:

(A1) For a certain δ > 0, {|ξi|2+δ} is an uniformly integrable family, inf
i

Var (ξi) > 0,

Var
( n∑

i=1
aniξi

)
= 1, and

∞∑
n=1

n2/δα(n) < ∞.

(A2) sup
n

n∑
i=1

a2
ni < ∞, and max

1≤i≤n
|ani| → 0 as n →∞.

However, they are restrictive for some cases. So it’s the main purpose of our paper to

establish a CLT for the sum of (1.1) with α-mixing innovations under weaker conditions,

and also get the CLT for the linear process (1.2).

Throughout this paper, it is supposed that all limits are taken as n → ∞, unless

specified otherwise. The paper is organized as follows. Section 2 contains our main

results. Proofs of the main results are provided in Section 3.

§2. The Main Results

We will prove the following results.

Theorem 2.1 (A3) Let {ξi : i ≥ 1} be an α-mixing sequence of random variables

with Eξi = 0, inf
i

Var (ξi) > 0, Var
( n∑

i=1
aniξi

)
= 1, and E|ξi|2+δ < ∞. Suppose that

θ > (2 + δ)/δ and α(n) ≤ Cn−θ for some C > 0.

(A4) Let {ani, 1 ≤ i ≤ n} be a triangular array of real numbers, such that

n∑
i=1

|ani| < ∞, and max
1≤i≤n

|ani| = O(n−β),
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where β > 0. Then
n∑

i=1
aniξi

D→ N(0, 1).

As a corollary the above theorem we obtain the following:

Corollary 2.1 Let {ξi} be a centered sequence of α-mixing random variables

satisfying condition (A3) in Theorem 2.1, and {ani, 1 ≤ i ≤ n} be a triangular array of

real numbers such that

n∑
i=1

|ani|
σn

< ∞ and max
1≤i≤n

|ani|
σn

= O(n−β), where σ2
n = Var

( n∑
i=1

aniξi

)
, β > 0.

Then
1
σn

n∑
i=1

aniξi
D→ N(0, 1).

Theorem 2.2 Let {aj , j ∈ Z} be a sequence of real numbers such that
∑
j
|aj | < ∞,

and {ξj , j ∈ Z} be a centered sequence of strong mixing random variables satisfying

condition (A3) in Theorem 2.1. Set S∗n =
n∑

m=1
Xm, where Xm =

∞∑
j=−∞

am+jξj . Moreover,

assume

inf
n≥1

n−1σ∗2n > 0, where σ∗2n = Var (S∗n).

Then
S∗n
σ∗2n

D→ N(0, 1).

Remark 1 (i) In Theorem 2.1, α(n) = O(n−θ), θ > (2 + δ)/δ. By it, we can

get
∞∑

n=1
α2/(2+δ)(n) < ∞. In addition, in Theorem 2.2 (c) of Peligrad and Utev (1997),

∞∑
n=1

n2/δα(n) < ∞ implies α(n) = O(n−θ), θ > (2 + δ)/δ. Then, the mixing rate in

Theorem 2.1 is almost the same as the one in Theorem 2.2 (c) of Peligrad and Utev

(1997), but, the operation of the former is more easy and convenient than the latter.

(ii) In Theorem 2.2 (c) of Peligrad and Utev (1997), sup
n

n∑
i=1

a2
ni < ∞. It is obviously

stronger than the corresponding form
n∑

i=1
|ani| < ∞ in our Theorem 2.1. But max

1≤i≤n
|ani| =

O(n−β) in Theorem 2.1 is a special case of max
1≤i≤n

|ani| → 0 in Theorem 2.2 (c) of Peligrad

and Utev (1997).

Hence, in certain senses, our result improves on Theorem 2.2 (c) of Peligrad and Utev

(1997).
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Remark 2 The proof method of our Theorem 2.1 differs from that of Theorem

2.2 (c) in Peligrad and Utev (1997). In this paper, we use the small-block and large-

block argument which is used to show limit theorems for mixing random variables. But,

Theorem 2.2 (c) in Peligrad and Utev (1997) was proofed by truncating the variables.

§3. Proofs of Main Results

To prove our theorems, we first give the following lemmas.

Lemma 3.1 (Xing et al. (2009)) Let 1 < r ≤ 2, δ > 0 and {ξi : i ≥ 1} be an

α-mixing sequence of random variables with Eξi = 0 and E|ξi|r+δ < ∞. Assume θ >

(r − 1)(r + δ)/δ and α(n) ≤ Cn−θ for some C > 0. Then, for any ε > 0, there exists a

positive constant K = K(ε, r, δ, θ, C) such that

E max
1≤j≤n

|Sj |r ≤ K
{

nε
n∑

i=1
E|ξi|r +

( n∑
i=1

‖ξi‖2
r+δ

)r}
.

Lemma 3.2 (Volkonskii and Rozanov (1959)) Let {Z1, . . . , Zk} be α-mixing ran-

dom variables measurable with respect to the σ-algebras F j1
i1

, . . . ,F jk
ik

respectively, with

1 ≤ i1 < j1 < · · · < jL < n, il+1 − jl ≥ w ≤ 1 and |Zj | ≤ 1 for j = 1, . . . , k. Then

∣∣∣E
( k∏

j=1

)
−

k∏
j=1

E(Zj)
∣∣∣ ≤ 16(k − 1)α(w).

Proof of Theorem 2.1 We use the small-block and large-block argument. We

can choose p = pn, q = qn, k = kn as follows:

Let k ∼ na, p ∼ n1−a, q ∼ nc, where max{1 − β, (2 + δ)/(4 + δ)} < a < min{1 −
εc, β − εc} and a, c, ε > 0. Then, we can show that

kqε max
1≤i≤n

|ani| → 0, pε max
1≤i≤n

|ani| → 0, kpε max
1≤i≤n

|ani| < ∞, (k−1)α(q+1) → 0. (3.1)

Denote by

Yi =
(i−1)(p+q)+p∑

j=(i−1)(p+q)+1

anjξj , Y ∗
i =

i(p+q)∑
j=(i−1)(p+q)+p+1

anjξj .

For k(q + q) + 1 ≤ n ≤ (k + 1)(p + q), Sn may be split as

Sn =
k∑

i=1
Yi +

k∑
i=1

Y ∗
i +

n∑
i=k(p+q)+1

aniξi. (3.2)

《
应

用
概

率
统

计
》

版
权

所
用



第一期 李永明 李佳: 一个强混合样本中心极限定理的注记 27

Hence, we need only to prove that

E
( k∑

i=1
Y ∗

i

)2
→ 0, E

( n∑
i=k(p+q)+1

aniξi

)2
→ 0, (3.3)

E
( k∑

i=1
Yi

)2
→ 1, (3.4)

∣∣∣E exp
(
it

k∑
i=1

Yi

)
−

k∏
i=1

E exp(itYi)
∣∣∣ → 0, (3.5)

Λn(ε) =
k∑

i=1
EY 2

i I(|Yi| > γ) → 0, ∀ γ > 0. (3.6)

We first establish (3.3). Using the Cr-inequality, Lemma 3.1, the condition of (A4),

and the first two terms of (3.1), we obtain

E
( k∑

i=1
Y ∗

i

)2
≤ k

k∑
i=1

E
( i(p+q)∑

j=(i−1)(p+q)+p+1

aniξj

)2

≤ Kk
k∑

i=1

(
qε

i(p+q)∑
j=(i−1)(p+q)+p+1

E(aniξj)2 +
i(p+q)∑

j=(i−1)(p+q)+p+1

‖aniξj‖2
2+δ

)

≤ Ck
k∑

i=1

(
qε

i(p+q)∑
j=(i−1)(p+q)+p+1

a2
nj

)

≤ Ckqε
( k∑

i=1

i(p+q)∑
j=(i−1)(p+q)+p+1

|anj |
)

max
1≤j≤n

|anj |

≤ Ckqε max
1≤j≤n

|anj | → 0, (3.7)

and

E
( n∑

i=k(p+q)+1

aniξi

)2

≤ K
(
(n− k(q + p)− 1)ε

n∑
i=k(p+q)+1

E(aniξi)2 +
n∑

i=k(p+q)+1

‖aniξi‖2
2+δ

)

≤ Cpε max
1≤i≤n

|ani| → 0. (3.8)

Therefore, (3.7) and (3.8) imply that the last two terms on the right-hand side of (3.2)

are asymptotically negligible, and (3.3) holds.

Now, we consider (3.4). Following the method of (3.7) and by the third term of (3.1),

we can conclude that

E
( k∑

i=1
Yi

)2
≤ Ckpε max

1≤j≤n
|anj | < ∞. (3.9)
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Note that

1 = ESn = E
( k∑

i=1
Yi +

k∑
i=1

Y ∗
i +

n∑
i=k(p+q)+1

aniξi

)2

= E
( k∑

i=1
Yi

)2
+ E

( k∑
i=1

Y ∗
i

)2
+ E

( n∑
i=k(p+q)+1

aniξi

)2
+ 2Cov

( k∑
i=1

Yi,
k∑

i=1
Y ∗

i

)

+2Cov
( k∑

i=1
Y ∗

i ,
n∑

i=k(p+q)+1

aniξi

)
+ 2Cov

( k∑
i=1

Yi,
n∑

i=k(p+q)+1

aniξi

)
. (3.10)

Therefore, by the Cauchy-Schwarz inequality, (3.4) follows from (3.7), (3.8) and (3.10).

As to (3.5), let Zi = exp(itYi), which is Fb
a-measurable, where a = (i− 1)(p + q) + 1

and b = (i− 1)(p + q) + p, then |Zi| = 1. Therefore, applying Lemma 3.2 to {Zi}, and the

last term of relation (3.1), we obtain

∣∣∣E exp
(
it

k∑
i=1

Yi

)
−

k∏
i=1

E exp(itYi)
∣∣∣ ≤ 16(k − 1)α(q + 1) → 0.

Next, we prove (3.6).

Λn(ε) ≤
k∑

i=1
EY 2

i =
k∑

i=1
E
( (i−1)(p+q)+p∑

j=(i−1)(p+q)+1

aniξj

)2

≤
k∑

i=1

(
pε

(i−1)(p+q)+p∑
j=(i−1)(p+q)+1

E(aniξj)2 +
(i−1)(p+q)+p∑

j=(i−1)(p+q)+1

‖aniξj‖2
2+δ

)

≤ C
k∑

i=1

(
pε

(i−1)(p+q)+p∑
j=(i−1)(p+q)+1

a2
nj

)

≤ Cpε
( k∑

i=1

(i−1)(p+q)+p∑
j=(i−1)(p+q)+1

|anj |
)

max
1≤j≤n

|anj |

≤ Cpε max
1≤j≤n

|anj | → 0. ¤ (3.11)

Proof of Corollary 2.1 Let a∗ni = ani/σn, then the conditions in Theorem 2.1

hold true for {a∗ni}. Hence, the proof is complete by Theorem 2.1. ¤

Proof of Theorem 2.2 We first note that

S∗n =
n∑

i=1
Xi =

∞∑
j=−∞

( n∑
i=1

ai+j

)
ξj .

In order to apply Theorem 2.1, we choose Wn such that
∑

|j|>Wn

a2
j < n−3, and take ln =

Wn + n. Then

S∗n
σ∗2n

=
∑

|j|≤Wn

( n∑
i=1

ai+j

)
ξj/σ∗n +

∑
|j|>Wn

( n∑
i=1

ai+j

)
ξj/σ∗n =: Tn + Un.
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Similarly to the arguments as in (3.8) in Peligrad and Utev (1997) or (3.9) in Ko et

al. (2006), we also have the following estimate

Var (Un) ≤ ∑
|j|>kn

( n∑
k=1

ak+j/σ∗n
)2
≤ nσ∗−2

n

∑
|j|>kn

n∑
k=1

a2
k+j

≤ n2σ∗−2
n

∑
|j|>kn−n

a2
j ≤ n−1σ∗−2

n → 0. (3.12)

Thus, we obtain Un → 0 in probability.

Next, we have to prove that Tn
D→ N(0, 1). Put ani =

n∑
j=1

ai+j/σ∗n. By Theorem 2.1,

it is suffices to show that

sup
−∞<i<∞

n∑
j=1

ai+j/σ∗n → 0. (3.13)

As the proof of Corollary 2.1 in Peligrad and Utev (1997, p.448-449), (3.13) holds. This

establishes the result of Theorem 2.2. ¤
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一个强混合样本中心极限定理的注记

李永明1,2 李 佳2

(1上饶师范学院数学与计算机科学学院, 上饶, 334001; 2南昌大学理学院, 南昌, 330031)

本文在{ξi}为强混合样本, {ani}是实三角阵列下, 得到了一个新的关于线性和
n∑

i=1

aniξi的中心极限定理.

并利用该中心极限定理, 进一步建立了线性过程部分和的中心极限定理.

关键词: 中心极限定理, 强混合, 线性过程.

学科分类号: O211.5.
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