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Abstract
In this paper, we derive a central limit theorem for Y an;&, where {&;} is a strong mixing
i=1

sequences, and {an;} is a triangular array of real numbers.l "To show the application of the central
limit theorem, we establish a central limit theorem for a partial sum of a linear process.
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§1. Introduction

Suppose {&; : i € Z} is a real-valued random variable sequence on a probability space

(Q,B,P). Let F) denote the o-field generated by (& : m <i <n), and
a(n) =sup{|P(AB) — P(A)P(B)|: Ac F'\ /B € FpX..}-

The sequence {¢;} is said to be a-mixing or strong mixing if a(n) — 0 as n — oo.

The a-mixing sequence was introduced by Rosenblatt (1956) and has been commonly
employed in establishing limiting results for time series and random fields. For example,
Doukhan et al. (1994), Billingsley (1995), Merlevade and Peligrad (2000) studied some
sufficient conditions for the central limit theorem (CLT) of strong mixing sequence.

It is well known that the CLT and functional central limit theorem (FCLT) for linear
process have been extensively studied in the literature. Such as, Wang et al. (2002), Lee
(1997), Kim and Baek (2001), Kim and Ko (2003), Ko et al. (2006), Ko and Kim (2008),
Moon (2008), Haydn (2009).
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In this paper, let {{;} be a sequence of zero-mean strong mixing random variables,
and {an;, 1 <i < n} be a triangular array of real numbers. Many statistical procedures

produce estimators of the type

Sp = i anigi' (11)
=1

Set {ax} be a sequence of real numbers. We define a linear process by
X = Z Umt-j€j- (1.2)

In time-series analysis, this process is of great importance. Many important time-series
models, such as the causal ARMA process (Brockwell and Davis, 1987, p.89), have type
(1.2).
Peligrad and Utev (1997) obtained the CLT for the model (1.1), and the conditions
of Theorem 2.2 (c) in Peligrad and Utev (1997) are that:
(A1) For a certain § > 0, {|&[>7} is an uniformly integrable family, ilgf Var (&) > 0,
n

Var( am&) =1,and 3 n?%a(n) < cc.
n=1

1 =

)

(A2) 5171Zp Zé a2, < oo, and ax. lani| — 0 as n — oo.
However, they are restrictive for some cases. So it’s the main purpose of our paper to
establish a CLT for the sum of (1.1) with e-mixing innovations under weaker conditions,
and also get the CLT for the linear process (1.2).
Throughout this paper, it is supposed that all limits are taken as n — oo, unless

specified otherwise. The paper is organized as follows. Section 2 contains our main

results. Proofs of the main results are provided in Section 3.

§2. The Main Results

We will prove the following results.

Theorem 2.1 (A3) Let {&; : i > 1} be an a-mixing sequence of random variables
with E& = 0, iIZ}fVar(fi) > 0, Var(iam&> =1, and E|§,~]2+5 < o0o. Suppose that
0 > (24 6)/5 and a(n) < Cn~? for sorzrj(; C>0.

(A4) Let {ani, 1 <i < n} be a triangular array of real numbers, such that

n
7 |ani| < oo, and max |ap;| = O(n*ﬁ),
i=1 1<i<n
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where 8 > 0. Then
ani&; 2 N(0,1).
=1

2

As a corollary the above theorem we obtain the following:

Corollary 2.1 Let {&} be a centered sequence of a-mixing random variables
satisfying condition (A3) in Theorem 2.1, and {a,i,1 < i < n} be a triangular array of

real numbers such that

n . . n
> Janil < oo and max Jni] =0(n™"), where o2 = Var < .Zlamfi)’ B> 0.
1=

i=1 On 1<i<n oy,

Then
1 n
— S ani€; 2 N(0, 1).

On i=1
Theorem 2.2  Let {a;,j € Z} be a sequence of real numbers such that ) |a;| < oo,
J

and {&;,j € Z} be a centered sequence of strong mixing random variables satisfying

n o0
condition (A3) in Theorem 2.1. Set S;; = > X,,, where X;,, = > am;§;. Moreover,

m=1 j=—00
assume
inf n~ 0% > 0, where 0% = Var (S}).
n>1
Then
S*
2 BON(0,1).

*2
Op

Remark 1 (i) In Theorem 2.1, a(n) = O(n~%), § > (2 +6)/5. By it, we can
get 3 a?/+9)(n) < co. In addition, in Theorem 2.2 (c) of Peligrad and Utev (1997),
n=1

=
S n?a(n) < oo implies a(n) = O(n=?%, § > (2 + 6)/5. Then, the mixing rate in
n=1

Theorem 2.1 is almost the same as the one in Theorem 2.2 (c) of Peligrad and Utev

(1997), but, the operation of the former is more easy and convenient than the latter.
n
(ii) In Theorem 2.2 (c) of Peligrad and Utev (1997), sup > a2, < oo. It is obviously
n =1

n
stronger than the corresponding form ) |an;| < oo in our Theorem 2.1. But Jmax |an:| =
=1 <i<n

O(n=?) in Theorem 2.1 is a special case of max |ani| — 0 in Theorem 2.2 (c) of Peligrad
<n

1<s
and Utev (1997).

Hence, in certain senses, our result improves on Theorem 2.2 (c) of Peligrad and Utev

(1997).
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Remark 2 The proof method of our Theorem 2.1 differs from that of Theorem
2.2(c) in Peligrad and Utev (1997). In this paper, we use the small-block and large-
block argument which is used to show limit theorems for mixing random variables. But,

Theorem 2.2 (c) in Peligrad and Utev (1997) was proofed by truncating the variables.

§3. Proofs of Main Results

To prove our theorems, we first give the following lemmas.

Lemma 3.1 (Xing et al. (2009)) Let 1 <r < 2,6 > 0 and {§ : ¢ > 1} be an
a-mixing sequence of random variables with E¢; = 0 and E|&|"™ < oco. Assume 6 >
(r —1)(r +6)/6 and a(n) < Cn~? for some C' > 0. Then, for any ¢ > 0, there exists a
positive constant K = K(e,r,d,60,C) such that

n n r
E <K{ El&|" ( 112 )}
lrgcg(n\S]! < Kin Z; & + Z;H@HTH

Lemma 3.2 (Volkonskii and Rozanov (1959)) Let {Z1,..., Z;} be a-mixing ran-
dom variables measurable with respect to the o-algebras .7-";?, . ,]-"f: respectively, with

1<y <ji<---<jr<n,iyy1—f>w<land |Z;| <1for j=1,...,k. Then
k k
E(I1) - ITE(Z)| < 16(k — Da(w).
j=1 j=1

Proof of Theorem 2.1  We use the small-block and large-block argument. We
can choose p = p,, ¢ = qn, k = ky, as follows:
Let k ~ n?% p ~ n'=% q ~ n° where max{l — 3,(2 +§)/(4 + )} < a < min{l —

ec, 3 —ec} and a,c,e > 0. Then, we can show that

k¢t | —0, p° | —0, kp° : k—1 1) — 0. (3.1
q magl!amlﬁ , D lréliagl\cmz!H , kp g%\amkoo, (k—1)a(g+1) — 0. (3.1)

1<t
Denote by
(i—1)(p+q)+p i i(p+q)
Y, = > ani&, Yy = > anj&;-
J=(i-1)(p+q)+1 Jj=(i—=1)(p+q)+p+1

For k(¢+q)+1<n<(k+1)(p+q), S, may be split as

n

k k
Sn=20Yi+ Y+ X ans (3-2)
i=1 i=1 i=k(p+q)+1
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Hence, we need only to prove that

k 2 n 2
E(x ) =0 E( X aw&) —0, (3.3)
i=1 i=k(p+q)+1
k 2
qZE)HL (3.4)
=1
k k
‘Eem)GtEZYO-—IIEeXp@ﬂQ)—eO, (3.5)
=1 i=1
k
An(e) = L EYVAI()Yi[ >7) =0, Vv >0. (3.6)
=1

We first establish (3.3). Using the C,-inequality, Lemma 3.1, the condition of (A4),

and the first two terms of (3.1), we obtain

IN

E( i Yi*)2 " i E( i(ziq) am{j)z

i=1 =1 *j=(i—1)(p+q)+p+1
LA i(p+4q) ) i(p+q) )
< KkY (¢ Y B+ 2 el
i=1 " j=(i—-1)(p+9)+p+1 j=(i=1)(p+q)+p+1
k i(p+q)
< CkZ(qE > aij)
=1~ j=(i-D(p+a)+p+1
(S fangl) max o
< q anj|) max |an;
i=1j=(i-1)(p+a)+p+1 T st
g .
< Ckq 1I£Ja§xn|am\—>0, (3.7)
and
n 2
E( > anifi)
i=k(p+q)+1
S 2 - 2
< K(n-ka+p) =17 3 B+ X llawtil3s)
i=k(p+q)+1 i=k(p+q)+1
< C’pelrgagc |ani| — 0. (3.8)

Therefore, (3.7) and (3.8) imply that the last two terms on the right-hand side of (3.2)
are asymptotically negligible, and (3.3) holds.
Now, we consider (3.4). Following the method of (3.7) and by the third term of (3.1),

we can conclude that

k 2
. < S . . .
q;E>_ng%ﬁm<m (3.9)
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Note that

k k n 2
1= ES=E(SYE X S aut)

=1 = i=k(p+q)+1

n n

+2Cov ( i AN am@-) +2Cov ( Sy, ani&). (310
i=1 i=k(p+q)+1 =1 i=k(pt+q)+1
Therefore, by the Cauchy-Schwarz inequality, (3.4) follows from (3.7), (3.8) and (3.10).
As to (3.5), let Z; = exp(itY;), which is F’-measurable, where a = (i — 1)(p + q) + 1
and b= (1 —1)(p+ q) + p, then |Z;| = 1. Therefore, applying Lemma 3.2 to {Z;}, and the
last term of relation (3.1), we obtain

k k
‘Eexp (it > Y,) — J] Eexp(itY;)
i=1

=1

<16(k —1)a(g+1) — 0.

Next, we prove (3.6).

(i—=1(p+a9)+p

M < yEez-ve( Y )

i=1 J=(i-1)(p+q)+1
k (i-1)(p+a)+p (i—1)(p+a)+p
< X X B+ Y i)
i=1 j=(=1)(p+9)+1 j=(=1)(p+a)+1
k (i—1)(p+a)+p
< CZ(pE ai)
i=1 J=(i=1)(p+q)+1

k (i=1)(p+g)+p

< (% anj|) max |an,|
i=1j=(i=1)(ptq)+1 t=ysn
< & i . .
< Cp 1I£Jagxn|am‘ —0 O (3.11)

Proof of Corollary 2.1 Let a), = ani/oyn, then the conditions in Theorem 2.1
hold true for {a’,}. Hence, the proof is complete by Theorem 2.1. O

Proof of Theorem 2.2  We first note that

= ZéXi = f ( i ai+j>5j

j=—o0 Vi=1

In order to apply Theorem 2.1, we choose W), such that > a? < n73, and take [, =
71>Wn
W,, +n. Then

SE;Q: > (Zaz—&-])fj/a + > <Zaz+3>§]/a =T, +U,.

In l7|<Wy Ni= l7|>Wy ~i=
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Similarly to the arguments as in (3.8) in Peligrad and Utev (1997) or (3.9) in Ko et
al. (2006), we also have the following estimate

Varw) < © (% akﬂ/a) > 3y

l3]>kn k= 5|>kn k=1

< nPop? Y ai<n 2 0. (3.12)
|7]>kn—n

Thus, we obtain U,, — 0 in probability.
n
Next, we have to prove that T;, A N(0,1). Put an; = ) aiyj/o;,. By Theorem 2.1,
j=1

it is suffices to show that

sup Y, ajtj/o, — 0. (3.13)
—oo<i<oo j=1
As the proof of Corollary 2.1 in Peligrad and Utev (1997, p.448-449), (3.13) holds. This
establishes the result of Theorem 2.2. U
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