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Abstract

In this paper, we will further study the complete convergence of pairwise NQD random se-
quences. Some results for pairwise NQD random sequences are obtained under some simple and
weak conditions. The results obtained not only extend and generalize the results of Liu (2004) and
the corresponding result of Gan and Chen (2008), but also improve them.
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§1. Introduction

The concept of complete convergence was introduced by Hsu and Robbins (1947) as
follows. A sequence {X,;n > 1} of random variables is said to converge completely to a
constant 6 if i P(|X, — 0] > ¢) < oo for Ve > 0. In view of the Borel-Cantelli lemma,
this implies tl?azthn — 6 almost surely (a.s., in short). The converse is true if {X,;n > 1}
are independent random variables. Hsu and Robbins (1947) proved that if the sequence
of arithmetic means of independent and identically distributed (i.i.d., in short) random
variables converges completely to the expected value if the variance of the summands is
finite. Since then, many researchers studied the complete convergence for partial sums of
random variables. The main purpose of this paper is to provide the complete convergence
results of pairwise negative quadrant dependent (NQD, in short) random sequences.

The concept of NQD random variables was introduced by Lehmann (1966).
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Definition 1.1 (Lehmann, 1966) Two random variables X and Y are said to be
NQD random variables if for Vz,y € R

P(X <2,Y <y) <P(X <2)P(Y <y). (1.1)

A sequence {X,;n > 1} of random variables is said to be pairwise NQD random variables
if for Vi,j € N, i # j, X; and X; are NQD.

Obviously, a sequence of pairwise NQD random variables is a family of very wide
scope, which includes pairwise independent random variable sequences. Many known
types of negative dependence such as negatively orthant dependent random variables and
negatively associated random variables have developed on the basis of this notion. So, it
is very significant to study probabilistic properties of pairwise NQD random sequences.
Many limit theorems for pairwise NQD random variables have been established by many
scholars. For example, Matula (1992) for the Kolmogorov strong law of large numbers for
pairwise NQD random variable sequences with the same distribution; Wang et al. (1998)
for the Marcinkiewicz type strong law of large numbers under the additional condition;
Wang et al. (2001) for the strong stability for Jamison type weighted product sums; Wu
(2002) for the Three series theorem, the Marcinkiewicz type strong law of large numbers;
Liu (2004), Gan and Chen (2008) for the strong law of large numbers, respectively; Chen
(2008), Li and Yang (2008) for the Kolmogorov-Chung type strong law of large numbers
for the non-identically distributed, and so on. The main purpose of this paper is to further
study the complete convergence of pairwise NQD random sequences. Some strong laws of
large numbers for pairwise NQD random sequences are obtained under some simple and
weak conditions. Our results obtained extend and improve the results of Liu (2004), Gan
and Chen (2008). For this goal, we will give the results of Liu (2004), Gan and Chen
(2008) in the following, respectively.

Theorem 1.1 (Liu, 2004) Let {X,,;n > 1} be a sequence of pairwise NQD random

variables with EX,, = 0. Let {a,;n > 1} be a sequence of positive real numbers such that

0 < a, T oo. If one of the following two statements can be satisfied:

i loanE< [Xa” ) < o0 0<p<1 (1.2)
n=1 (Man)ﬁ + |Xn|/6 ’ 7
| X

[ee]
lo 2nE< ><oo, 1<B8<2, 1.3
2108 B 3 [, T [0 P =0 (13)

where M > 0, then

1 n
— > Xi—0 as, as m — 00. (1.4)

An =1
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Theorem 1.2 (Gan and Chen, 2008) Let {X,;n > 1} be a sequence of pairwise
NQD random variables with EX,, = 0. Let {a,;n > 1} be a sequence of positive real
numbers such that 0 < a, T oo and {¢,(t);n > 1} be a sequence of positive, even

functions such that for each n > 1, ¢, (¢) > 0 for ¢ > 0 and

P (|t P (|t
g P s (15)
i (X))
g Pildi 1.6
ngligl Yi(an) =0 o)
then
ZP(iZXi >5><oo for Ve > 0. (1.7)
n=1 Qn =1

§2. Main Results

Throughout this paper, the symbol C will stand for a generic positive constant which
may differ from one place to another, a, = O(by,) will mean a,, < C(by,).

To prove our main results, we need the following lemmas.

Lemma 2.1 (Lehmann, 1966) Let X and Y be NQD, then

(1) EXY < EXEY;

(2) If f and g are both nondecreasing (or nonincreasing) functions, then f(X) and
g(Y) are NQD.

Lemma 2.2 (Matula, 1992) Let {X,;n > 1} be a sequence of pairwise NQD
random variables with EX,, = 0 and EX2 < oo for all n > 1. Then,

n 2 n
E(;X) < ;EXE for Vn > 1.

Now, we state and prove our main results.

Theorem 2.1 Let {X,;n > 1} be a sequence of pairwise NQD random variables
and {a,;n > 1} be a sequence of positive real numbers such that 0 < a, T oo. Let
{gn(t);n > 1} be a sequence of positive, even functions such that g, (|t|) is an increasing

function of |t| and g, (|t|)/|t| is a decreasing function of |¢| for every n > 1, If

> & _gi(|Xil)
E < 00, 2.1
nzz:l z; gi(an) ( )
then
o0 1 n
ZP(—ZX,->5><OO for Ve > 0. (2.2)
n=1 An =1
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Proof of Theorem 2.1  For all i > 1, define

X = XI(1X| < an) + and (X > an) — anI(X; < —an);

i

T(an) (X(an _ Xi(an))7 k e 1’ 2’ e 7n

\\Mw

It follows from Lemma 2.1 that {Xi(a”);z‘ > 1} is still a sequence of pairwise NQD random
variables. It is easy to check that for Ve > 0,

1 $h ylan)
(anz >C<1r2?<)§t’X|>a”)U<ai;Xi >E), (2.3)
which implies that
1 L & yr(an)
_ < \ n
Ple Bl >e) < Pl il>a) +P(|5 2 x>
1 2 a
< 3 P(X >an)+P( — S EX™) ) (2.4)
i=1 n =1
Firstly, we will prove that
Z EX(a") — 0, as n — oo. (2.5)
ap, (=
By the conditions of g, (|t|) and (2.1), we have that
n a n 1 n
— S EXI") < STP(X > an) + | — o L EXI(X] < ay)
An =1 i=1 ]
- EgilXil)
< EIXGI(| X <a
< 3 EolX) ng X% < an)
" Eg; n Eg (| X 1(1X;] < ap,
> g9i(1Xi D+Z g9i(IX| L(1Xi] < an))
=1 gilan) i=1 gi(an)
n E
< 23 Egi(lX:)) — 0, as n — oo, (2.6)
=1 gZ( )
which implies (2.5). It follows from (2.4) and (2.5) that for n large enough,
< S P(Xi| > ay) + P70 > £, 2.
Pl 2 %[> ) < 2PN > a) +P (7o) > ) (2.7)
Therefore, to prove (2.2), we need only to prove that
>3 P(XG| > an) < oo (2.8)
n=11i=1
= (an) E 2
n;P(\Tn 1> 3) <oc. (2.9)
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The conditions g, (|t]) T as |t| T and (2.1) yield that

< 00, (2.10)

S SP(X > a) <Y S

n=1i=1 n=1i=1 Qz‘(@n)

which implies (2.8).
Actually, by the conditions of g,(|t|)/|t| | as [t| T, (2.1), Lemma 2.2 and Markov’s

inequality, we can see that

o o
> P(IT > 2) < o E(TP)
n=1 2 n=1
oo n an oo 1 n an
< Y SE(LIXP) 0y — Y EXOP
n=10p \i=1 n=1 @y i=1
% n EIX2I(|X:| < an
S L e
2 & Egi(| X)) EIXG[I(1Xi| < an)
< C +C
nzl 121 gz(a ) nzl ZZ an
2 & Egi(|Xil) 2 & Egi(( XD I(1X| < an)
< C +C
ﬁﬁmm> IR
2 & Egi(| X))
< C < 00,
nzlz 1 gl(a )
which implies (2.9). The proof of Theorem 2.1 is completed. ([l

Corollary 2.1 Under the conditions of Theorem 2.1,

L i Xi— 0 as., as m — o0. (2.11)
Gn =1
Theorem 2.2 Let {X,;n > 1} be a sequence of pairwise NQD random variables
and {an;n > 1} be a sequence of positive real numbers such that 0 < a, T oco. Let
{gn(t);n > 1} be a sequence of positive, even functions such that g,(|t|) is an increasing
function of || for all n > 1. Assume that there exists a constant § > 0 such that g, (t) > 6t
for0 <t <1. If

ZZE91<| |) < 00, (2.12)

n=14i=1
then for Ve > 0, (2.2) holds true.
Proof of Theorem 2.2 We use the same notations as that in Theorem 2.1. The

proof is similar to that of Theorem 2.1.

Firstly, we shall show that (2.5) holds true. Actually, by g,(t) > 6t for 0 < ¢ <1 and
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(2.12), we can see that

1 n a n 1 n
o NEX S S POX] > an) 4 | 3 EX (X < an)
n =1 =1 i
1 i) i)
< 5 | <
< ;e s Sen ()i <o
n Xz
< czEgi(’ ')eo, as n — oo, (2.13)
i=1 an

which implies (2.5).

According to the proof of Theorem 2.1, we need only to prove that (2.8) and (2.9)
hold true.

When |X;| > a, > 0, we know that g, (| X;|/an) > gn(1) > 0, which yields that

P(IXi| > an) = EI(|Xi] > ay) < 5E ("i‘) (2.14)
Hence,
> 3 P(Xi| > an) < % > 3 Eg ('f") < o0, (2.15)
n=1i=1 n=11i=1 n

which implies (2.8).
In fact, by gn(t) > ot for 0 < ¢t < 1, (2.12), Lemma 2.2 and Markov’s inequality, we

can obtain that

> (T > 5) < C L ETER <C 5 SE( 3 Ix")
n=1 = =1
S n E|XG[PI(1XG| < an)
< C’le:lP(\X]>an)+Czlz )
x I E|X;|I(| X < an
SCZZE9(| |)+CZZ’ (| Xi] < an)
n=1i=1 n=11i= an
< ozlegi(’ ‘)+021;E (’ |) I(X,| < an)
| Xi|
< C+C Z Z Eg; < 00,
n=1i=1 G
which implies (2.9). The proof of Theorem 2.2 is completed. (I
Corollary 2.2 Under the conditions of Theorem 2.2,
1
a—ZXm—>0 a.s., as n — oo. (2.16)
n (=1

Corollary 2.3 Let {X,;n > 1} be a sequence of pairwise NQD random variables

and {an;n > 1} be a sequence of positive real numbers such that 0 < a,, T oo. If there
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exists some constant 3 € (0, 1] such that

$ 5 e | Xil?
jan|? + X7

n=11=1

) < 0, (2.17)

Then for Ve > 0, (2.2) holds true.

Proof of Corollary 2.3 In Theorem 2.2, we take

t]°

m, 0<ﬂ§1,K>0,TL21

In (t) =

It is easy to show that {g,(t);n > 1} is a sequence of positive, even functions such that

gn(|t]) is an increasing function of |¢| for all n > 1. In addition

it >t 0<t<1,0<pB<1.

N =
l\?\»i

gn(t) >

Then, by the proof of Theorem 2.2, we can easily obtain (2.2). The proof of Corollary 2.3
is completed. O

Theorem 2.3 Let {X,;n > 1} be a sequence of pairwise NQD random variables
with EX; = 0 and {a,;n > 1} be a sequence of positive real numbers such that 0 < a,, T co.
Let {gn(t);n > 1} be a sequence of positive, even functions. Assume that there exists some
constant 3 € (1,2] and a constant & > 0 such that g, (t) > §t° for 0 < ¢ < 1 and there
exists 0 > 0 such that g, (t) > ot for ¢t > 1. If (2.12) satisfies, then for Ve > 0, (2.2) holds

still true.

Proof of Theorem 2.3  The proof is similar to that of Theorem 2.1.

Firstly, we shall show that (2.5) holds true. Actually, by the conditions of EX; = 0,
gn(t) > ot for t > 1 and (2.12), we can have that

1 n a n 1 n
;;EX}( W< 2 P(1Xi| > an) + —ZEXiI(\Xi]>an)
L& | Xii| | X
< = .
< s Ea(50) + 5 L Ea (S I0% > )
2 & | Xi|
< N .
< a0 waew -

which implies (2.5). Hence, to prove (2.2), we need only to prove that (2.8) and (2.9) hold

true.
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The conditions g, (t) > o0t for ¢t > 1 and (2.12) yield that

> ;P(|XZ| >an) = Zl ZlEI(|X il > ap)
X & X
< E I(|X; n
o nglzgl ( Qp (‘ ’ - ¢ )>
1 o© n | z’
< — .
< 5L LE i - JI(Xi] > an)
1 X »n |Xl’
< = Eg; (| —— 2.1
- 5;::1; gz<an><oo, (2.19)

which implies (2.8).
By the conditions of g,(t) > 6t% for 1 < 3 <2, 0 <t <1, (2.12), Lemma 2.2 and

Markov’s inequality, we can see that

> P(ITi)>5) < O X E(TEP)
n=1 2 n=1
x N ® E| X211 X;| < an)
< CzlzlP(\X|>an)+C le | X (c|12 |
< o5 (B v o S sE () rx < e
n=1i= n=1i=
< C+CZZE (' ‘)<oo, (2.20)
n=1i= Gnp,
which implies (2.9). The proof of Theorem 2.3 is completed. O

Corollary 2.4 Let {X,;n > 1} be a sequence of pairwise NQD random variables
with EX; = 0 and {ay,;n > 1} be a sequence of positive real numbers such that 0 < a,, T 0.

If there exists some constant 3 € (1, 2] such that

3y E(’Xi'ﬁﬁ) < 0, (2.21)
n=li=1 “a,|X;[?~! + apn

then for Ve > 0, (2.2) holds true.

Proof of Corollary 2.4 In Theorem 2.3, we take

1<p<2, K>0,n>1.

It is easy to show that {g,(t);n > 1} is a sequence of positive, even functions such that
gn(t) > %|t|ﬂ for 0<t<1,1<pB<2 and  gu(t) > %|t| for ¢ > 1.

Then, by the proof of Theorem 2.3, we can easily obtain (2.2). The proof of Corollary 2.4
is completed. O
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From Corollary 2.3 and Corollary 2.4, we can summarize the following strong law of

large numbers for pairwise NQD random sequences.

Corollary 2.5 Let {X,;n > 1} be a sequence of pairwise NQD random variables
and {an;n > 1} be a sequence of positive real numbers. If there exists some constant

B € (0,2] such that
ElX:|” _

ni:? i) < o0, (2.22)

TL

n
and EX,, =0, n > 1if 8 € (1,2], then (2.2) holds true and (1/a,) > X; — 0 as..

Theorem 2.4 Let {X,;n > 1} be a sequence of pairwise NQD random variables
and {a,;n > 1} be a sequence of positive real numbers such that 0 < a, T oo. Let
{gn(t);n > 1} be a sequence of positive, even functions. Assume that there exists some

constant3 € [2,00) and a constant § > 0 such that g, (t) > 6t° for t > 0. If

£ 5 E(5) < -

then for Ve > 0, (2.2) holds still true.

Proof of Theorem 2.4  We shall use the same notations as that in Theorem 2.1.
The proof is as follows.
It follows from (2.23) that
X;
> 3 Eg(S) < oo (2.24)
n=1:=1 an

and

niié <Egl(an>> Ve (2.25)

Firstly, we shall show that (2.5) holds true. Actually, by the conditions of g, (t) > 6t°
for t > 0, (2.23) and (2.24), we can get that

ZEX“") < iP(|X¢\>an)+ if;EXiI(|Xi|§an)
An =1 i=1 n i=1
o1 X) n |X| /
< RE( 10X > an)) + L E(S 511 < an)
< cxen(2) v o8 (ean(B) <|Xi|<an>)w
< CiéEgOan')—kCZ( (’iﬁ'))weo, as n — oo, (2.26)

which implies (2.5). Hence, to prove (2.2), we need only to prove that (2.8) and (2.9) hold

true.
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The conditions of g, (t) > §tP for t > 0 and (2.24) yield that

2 il PIX)| > an) = ni; il ET(|Xi| > an)
< £ Ee(T > )
S 3, )il
< ;iojf) ( ) (2.27)

3
||

which implies (2.8).
In fact, by the conditions of g, (t) > 6t for t > 0, (2.25), Lemma 2.2 and Markov’s

inequality, we can obtain that

> P(ITe>2) < ¢ X BT
n=1 2

X 2 LS E|X: 21| X;:| < an
< 02121P(|X\>an)+czlz | Xl (C‘LQ’ )

oo n oo n ’ | 2/5
< O 2PNl >a) +C % 3 (BT 511X <an)

| X | n Xz-] 2/
< <
a anlzz E ( ) +Cn2112:1 (Egl( (79} >I(’XZ| - an))
| Xl
< 2.2
< creE E (e (5H)" < 228
which implies (2.9). The proof of Theorem 2.4 is completed. O

Corollary 2.6 Under the conditions of Theorem 2.4,

1
— > Xi—0 as, as m — oo.
an =1
Remark 1 In Theorem 2.1; Theorem 2.2 and Theorem 2.4, if the positive even
functions gy, (|t|) satisfy the corresponding assumptions, then the results are still true for

arbitrary random sequence by using the other method. In deed, by the proof of (2.3) in

Theorem 2.1, we have

(anl >E) < P(lrgi)%|X\>an)+P( 1nii1Xi(a”) >€>
< S P(X| >an)+P< iixi(“”) )
i=1 an =1




H= PO EER R U WPINQDBENLT A 58 st 285

It follows from Markov’s inequality that

P(lzXW>

an =1

>Q < CE|X 5 xtw

an =1

< CZP(|X|>%)+C > E[X|I(1Xi] < an)

=1 An =1

Egi (| Xil)
< ORI

Hence, the result is follows by the condition (2.1).
Remark 2 In Theorem 2.1; Theorem 2.2; Theorem 2.3 and Theorem 2.4, the pos-

itive even function g, (|t|) are different from the condition (1.5) of Theorem 1.2 mentioned
in Section 1. In addition, the conditions of (2.12) and (2.23) differ from the condition

(1.6), respectively. So, the results obtained extend and generalize the corresponding result
of Gan and Chen (2008).

Remark 3 In Corollary 2.3 and Corollary 2.4, the conditions of (2.17) and (2.21)
are weaker than the condition (1.2) and condition (1.3) of Theorem 1.1 mentioned in
Section 1, however, the obtained results are stronger than the corresponding result of Liu
(2004).
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