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Abstract

Based on the estimates of bivariate hazard functions, for right censored data, we give an
estimator of association parameter in Clayton model in the paper. The consistency and asymptotic
distribution are derived for the estimator. Simulation studies show that this procedure is effective.
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81. Introduction

Bivariate survival time data arises when a sample consists of two variables. The
analysis of bivariate survival time must reflect the non-independence of failures between
the two variables. Let 77 and T5 be survival times with continuous probability density
f(t1,t2). For (t1,ta) such that f(¢1,t2) > 0, Clayton model defined by

o0

flente) [ [ fwodudo =0 [ e [ pen oo

t1 to

is an appealing representation for such data. The parameter 6, called association param-
eter, measures the degree of association between 77 and T5. Independence of T7 and T5
is implied by # = 1 and positive association is implied by # > 1. Inverse association is
implied by 6 < 1, but this case seems to have little practical importance (see Clayton
(1978)).

 *The work was supported by National Natural Science Foundation of China (11171230, 11231010) and the

Fundamental Research Funds for the Central Universities (65011481).
Received September 12, 2012. Revised January 3, 2013.



298 N FHME 2 4801 BTG

Define the following bivariate hazard functions:

o) o
t f(t1,v)dv ) f(u,ta)du flt1,t2)
Mo(ti,te) = "2 A1t t2) = 2o Aty te) = ——1
10( 1 2) F(tl_,tQ) ’ 01( L 2) F(tlth_) ’ 11( b 2) F(tl_;tQ_)’

where F(t1,t2) = P(T1 > t1,T> > t2) is the joint survival function of (77,73). Using the
functions, we have an equivalent form of the Clayton model,

A1 (t1,t2)
Ao(t1,t2) o1 (t1, t2)

= 0. (1.1)

Many authors considered the inference of 6. Clayton (1978) gave an estimator of
0 for uncensored data. Oakes (1986) derived the asymptotic variance of Clayton’s es-
timator and obtained a simple explicit formula for uncensored data. He indicated that
a modification is necessary for random censored data. Genest et al. (1995) estimated 6
from a pseudo likelihood with nonparametric estimation of the marginal survival func-
tions for complete data. Shih and Louis (1995) investigated two-stage parametric and
two-stage semi-parametric estimation procedure in copula model where censoring was al-
lowed. Glidden (2000) extended the above approach and proposed a two-stage estimator
of 6, the estimator is consistent and asymptotically normal under mild regularity condi-
tions. Nan et al. (2006) used Clayton model to describe association of age at a marker
event and age at menopause. Ghosh (2008) used the model to solve problem of surrogate
endpoints in clinical research. Emura et al. (2010) extended an existing method suitable
for the Clayton model to general Archimedean copula models and derived the asymptotic
properties of the proposed test statistics.

This paper is organized as follows. In Section 2, we give a new estimator of 6 by
the ratio of hazard functions. In Section 3, we present the asymptotic properties of the

estimator. In Section 4, we present simulation studies.

§2. The Estimation of Association

Let T = (T1,T2) be a 2-vector of failure times with continuous survival function

F(t1,t2). Let C = (C1,C2) be the censoring time independent of T with survival function
G(tl,tz) = P(Cl > t1,02 > tz).

Under right censorship, the data consist of n realizations of (Xi, X2, d1,02), where X; =
min(7;, C;), 0; = I{T; < C;}. Note that the survival function of (X1, X2) is H = F - G.
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The observation
(X1j, X2j, 015, 025), Jj=1...,n

are i.i.d. copies of (X1, X2, d1,02).

Define bivariate cumulative functions:

bt t *F(du tz)
A1o(tq,t :/ Ao(u,t du:/ 7’,
10(t1, t2) ; 10(u, t2) . Flu—t)
t2 2 _P(t;,dv
Ao1(t1,t2) = Aot (t1, )dv_/ M,
0 tla
t2 t1 t2 751 d d
A11 tl,tQ / / )\11 u Q} dudv _/ / i U
U— v—
Let
. 1 n
H(tl,tg) = E E I{le > tl,XQJ > tQ}
7=1
. 1 n
Kl(tl,tg) = E Z I{le > t]_,XQJ > t2,513 = 1,52]' = 1},
7=1
~ 1 n
Kz(tl,tg) = g Z I{le > tl,ng > tg,(slj = 1},
7j=1
. 1 n
Kg(tl,tg) = E Z {le > t]_,XQJ > t2,(52] = 1}
7=1
and

H=E(H), K =EK)), Ky=EKy), Ks=E(Ks).

It can be checked that

K. du,t
Ao(t1,t2) = —/ 2( 2)7
0 ( 7t2)
2 K. Ks(t1,dv)
Aot (t1, 1) = —/ A SR
o1(t1,t2)  Hh,oo)
otz | (du, do
A11(ti,t2) = / Hlu— = ;

Thus, the estimates of the bivariate cumulative hazard functions can be defined as follows,

Klo(t17t2) = —/tl K2(du t2) i I{Xy; < t1A, Xoj > t2,015 = 1}’
o H(u—t) =1 nH (X1, ta)

7\01(t1,t2) = _/t2 K3(t1, dv) 2": I{Xy; > t}\, Xoj < ty, 005 = 1}’
0 (t1, =) =1 nH (t1, Xo;—)

() /tl 2 Ky (du, dv) Z HXyy Sty Xpj St2,015 = 1,095 =1}
17 2 =
0 Hu— v—) =1 nH(le , X2j—)
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Fermanian (1997) proposed the following kernel estimators of A1g, A1, A11,

Ao(ty,t) = /K,Sl)(tl—U)Klo(du,tQ)

n {6, =1,X9; >t
= ZK}(LI)(tl—XU) { 1/\ 2 2}
=1 nH(Xli—,tg)

:\\01(751,152) = /K}(Ll)(tQ —v)K01(t1,dv)

I{(Sgi =1,Xy > tl}
nH(tl,Xgi—)

I

)

= > KWty — X))
=1

T{61i= 1,60 = 1
h)(tl_Xli;tQ_XQi) {Al : },

INGRD) zl//kan—%m—vﬂnm%mo
> Ky

= nH (X1;—, Xoi—)
where we use / for / and
KD ) = LK O@m), KD o) = 15K ufh,o/h),

Let KU be a bounded Lebesgue-integrable kernel function with integral 1 defined on
the real line R andK? be a bounded Lebesgue-integrable kernel function with integral 1
defined on the plane R2.

In view of (1.1), for any (¢1,t2) such that Xlo(tl,tg)xm(tl,tg) > 0, we can define an

estimator of 6 by
~ t
Ao(t1,t2)Mo1(t, t2)

(2.1)

§3. Asymptotic Theory

Consider the subset 7 = [0,71] x [0,72] of R? and a positive € such that H(m + €,
7o 4+ €) > 0. Select the bandwidth (h;,)n—o0 such that h, — 0.

General assumptions on the kernel functions K1, K2 are:

(K1) KM is compactly supported with support [—A, A], K is compactly supported
with support [—Aj, A1] X [—Ag, A2];

(K2) K®is symmetric.

In the following, by saying a function is C? in a set, we mean it is twice continuous
differentiable in the set.

Theorem 3.1 Suppose K1, K(2) satisfy conditions (K1) and (K2), f is continu-
ous on 7, for all (t1,t2) € 7, A1g(+,t2) is C? in a neighborhood of t1, Ag1(t1,-) is C? in a
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neighborhood of t3 and A11(+,-) is C? in a neighborhood of (t1,t2). If Ao1(t1,t2) o1 (t1, t2)
> 0 for (t1,12) € 7 and nh2/Inn — oo, then 6(t1,t2) — 6 in probability for all (t1, ;) € 7,
where 8(t1,t5) is defined in (2.1).

Proof From Proposition 2.5 of Fermanian (1997), we can derive for (¢1,t2) € T,

Alo(tl,tg) — )\10(751, tQ), in pI“Ob7
No1(t1, ta) — Aor(t1,t2), in prob,
A11(t1, t2) — At t2), in prob.

It follows that

(t1,t2) = 0, in prob. O

Theorem 3.2 Under the conditions of Theorem 3.1, if H(t1,%2) is continuous on
7, and nhd = o(1), nh2/Inn — oo, then for any (t1,t2) € 7,

(nh2)2(8(t1,t2) — 0) = N(0,0%(t1, t2)),

where 9A(t1, t2) is defined in (2.1), “=" denotes convergence in distribution and

o2(tr, 1) = i / / (K@ (u, v)2dudv, (3.1)

H(t1,t2)A11(t1, t2)

Proof Firstly, we have
W(A(tl,h) —0)
Ni1(t, t A1 (ty,t
_ m( 11( 1 2) B 11(t1, t2) )

/)\\ (tl,tg))\()l(tl,tg) AlO(tl,tQ))\Ol(tlatQ)

10
(A du o A dn
AModor Aodor  Aodor Atodor Aodor  Atodor

1 N
= = [V/nhZ (A1 (ty, t2) = Aia(t, t2))]

Ao(t1, t2)hon (t1, t2)

S/ )\11(t1,t2) [\/ﬁ( 1 _ 1 )}

t1, Ao(ty, ) Ato(t1,t2)

Aot (t1,t2)
+\ﬁ)\11Et1,t2§ [M( 1 B 1 ))} (3.2)

Ao(t1, t2 Not(ti,ta)  Aoi(ti,ta

Using Proposition 2.6 of Fermanian (1997), for any (¢1,t2) € 7 we have

\ nh%()\\u(tl,tg) — /\11(t1,t2)) = N(O, @(tl,tQ)),

where

A t t
D (tq,t2) = 1 2N, 72) //K(Q) u, v)]2dudv.
H(ty,t2)
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Proposition 2.6 of Fermanian (1997) also gives the asymptotic property of Xlo(tl, t2) and
X()l (tl, tg), that is

Vnhao(ty, t2) — Ao(ty, t2)) and Vnha o1 (1, t2) — Aro(ty, t2))

are asymptotically normal and hence they are bounded in probability.

Using Theorem 3.1, we can derive both

M(A ! — 1 ) and nhn<,\ L — 1 >

>\10(t1at2) )\10(t17t2) AOl(tlatQ) >\10(t17t2)

are bounded in probability. Using the fact that h, = o(1), we get that the last two terms
of (3.2) are both op(1).

At last, using the consistency of Xlo(tl,tg) and /)\\01(151,252), we know that the first
term of (3.2) converges in distribution to a normal random variable with mean zero and
variance

D11 (t1,12)

Afo(t1,t2)AG (t1, t2)

1 A t t
= 13 5 ult, s // (u,v) 2dudv
)‘10(t17t2))\01(t1,t2 (t1,12)

— (K (u,v)]2dudw. O
H(t1,t2) >\11 (t1,t2) //

Note that o2(t1,t2) can be estimated by

t t
G2(t1,t0) = (1, t2) //K(Q) u, v)]2dudv.
H(t1,t2 )\11 (t1,t2)

o2 (ty,ts) =

The consistency of 52(t1, ) is proved by Theorem 3.1 and the consistency of H (t1, ).
So to find a more efficient estimator, we only need to use(1, £2) such that ﬁ(tb tz)Xn (t1,12)

hits its maximum value. In this case, the asymptotic variance of 5(151, t3) may be smaller.

§4. Simulation Study

Simulation studies are conducted to examine the properties of the estimator g(tl, t2).
We choose n=100 and n=200 to conduct 2000 simulations at each of 6 = 1.2, 1.4, 1.6, 1.8

and 2.0 with data generated from
Ft1,ts) = (@700 4 o002 1)~/

In addition, three types of censoring are explored:

1) No censoring.
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2) Both survival variables are independently censored at the fixed time C' = 2, that
is we set C; = Cy = 2 and this yields approximately 13.53% marginal censoring;

3) Two censoring variables are independently and identically distributed uniformly
over [0,2.3], and this giving approximately 39.12% censorship on each marginal random
variable.

The probability of both survival variables being censored increases with 6 varying
from 1.2 to 2.0. For example, for the first type of censoring, when 6 = 1.2, P(T} > C1,
Ty > C3) = 16.84%, for 6 = 2.0, the probability is 20.68%.

In the simulation study, the bandwidth is h, = n~1/%, the kernel is selected to be the

Epanechnikov’s kernel which was used in Fermanian (1997),

3 u?
KW () = m(1 — g)l{u € [-Vv5,V5]},
2 2

3 \2 u v
K® (u,v) = (—) (1——)(1——) - I{u € [-V5,V5|} {v € [-V5,V5]}.
)= (15) (1=%5) (1= %) - Hue =V Val{v & [V5.V3)

From the formula of 02(t1,t2), we know that to find an estimator with smaller vari-
ance, one only need to find (¢1,t2) which maximize H (t1,t2)\(t1,t2). However, H(t;,t2)
- A(t1,t2) is unknown, we use (f1,{2) such that ﬁ(tl, t2)/)\\11(t1, t2) hits its maximum value.

Since
H{(t1,t2)A(t1,t2) = G(t1,t2) f(t1, t2),

in our example, G(t1,2)f(t1, t2) is a decreasing function, so ¢2(0, 0) is the maximum value,
and (f1,%2) is closing to (0,0). The kernel function is symmetrical, so for b, 2 0(i1,t2),
there is little observation since the left side of the point, and now only 60% of the sample
can be used to compute the kernel estimates. Here we also estimate the association
parameter at (t],t5) = (median{X1;}, median{X5;}) and the estimator is denoted by b
The simulation results are displayed in Table 1.

In Table 1, “(51 + 672) /2" refers the average of 6, and 52, “0” stands for the two-stage
estimator of Glidden (2000). “Mean” denotes the mean of relating estimator from the
2000 simulations. “SD” is the standard error, for 61, “SD” equals (nh2)=1/25 (i1, ty), for
05, “SD” is equal to (nh2)~125(t;,t5). However, there isn’t the theoretical formula for
the variance of (51 + 9\2) /2, we use sample standard deviation to compute its “SD”.

It can be seen from Table 1 that the standard error is decreasing with n increasing, all
estimators perform worse with the level of association increasing or the larger censoring
proportion. The bias of §1 is a little bit larger than 52 and 5, the reason is 51 using
less sample as (f1,%2) approaches (0,0). However, the sample standard deviation of b, is

noticeably smaller than the others, especially when @ is relatively large. The estimators @2
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and 6 performs quite similar, when 6 is small, their sample stand deviations differ little,

it seems 0 performs a little better. However with 6 increasing, especially when 6 = 2, the

“SD” of 52 is smaller than 6. So the table indicates that our estimator performs robustly.

Table 1 Summary of simulation results

~

0 n Cens. b1 §2 (51 * 52)/2 0
Mean SD Mean SD Mean SD Mean SD
0.0% 1.25  0.10 119 0.18 1.22 0.12 1.21 0.14
100 13.53% 1.26 0.12 122 019 122 013 121 0.14
190 39.12% 1.15 0.15 1.22 020 1.23 0.15 1.22 0.18
0.0% 1.23  0.08 121 0.11 121 0.08 1.20 0.10
200 13.53% 122 0.10 1.21 0.13 1.21 0.10 1.21 0.10
39.12% 1.18 0.15 1.19 0.15 122 0.13 1.21 0.13
0.0% 1.37  0.07 142 0.16 1.41 0.10 1.42 0.16
100 13.53% 145 0.13 143 0.18 1.43 0.14 1.44 0.16
140 39.12% 133  0.17 145 023 143 0.18 146 0.20
0.0% 142 006 139 0.14 141 0.09 140 0.14
200 13.53% 142 0.11 1.41 0.17 141 012 141 0.15
39.12% 1.43 0.15 141 0.18 141 012 141 0.16
0.0% 1.57 0.08 1.58 0.18 1.58 0.12 1.62 0.20
100 13.53% 163 0.15 162 023 1.62 0.17 1.63 0.22
160 39.12% 1.66 0.17 164 026 164 020 1.65 0.27
0.0% 1.62 006 160 0.14 161 009 1.60 0.15
200 13.53% 1.8 0.13 1.61 0.18 1.61 0.14 161 0.17
39.12% 164 0.16 159 021 161 017 1.61 0.19
0.0% 1.77  0.08 1.8 020 1.78 0.13 1.82 0.22
100 13.53% 1.85 0.16 1.78 023 1.82 0.18 1.84 0.26
150 39.12% 1.87 0.18 1.85 0.25 1.83 0.20 1.83 0.29
0.0% 1.78 0.07 180 0.16 179 0.12 181 0.18
200 13.53% 1.82 0.15 1.79 0.19 1.81 0.15 1.81 0.20
39.12% 1.83 0.16 1.78 023 181 0.18 1.82 0.24
0.0% 2.05 012 197 022 202 016 197 0.24
100 13.53% 2.05 0.17 203 025 203 019 2.04 027
500 39.12% 2.07 020 204 031 204 024 204 0.32
0.0% 2.05 014 202 018 201 014 198 0.19
200 13.53% 2.04 0.16 1.97 023 203 0.18 203 0.24
39.12% 2.04 0.18 2.03 0.25 2.03 0.20 203 0.26
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~

The estimator 6(t1,t2) is a function of (t1,t2), so if we want, we can estimate the
association parameter in many points. Considering the more information we use, perhaps

~

the estimator will be more accurate, thus a weighted estimator > w(t1,t2)0(t1,t2) is a
(t1,t2)
better choice. In Table 1, “(6; +602)/2” is a simple weighted estimator, comparing the bias

and standard error with 5, we can see that the simple weighted estimator performs better
than 5, especially the difference between their “SD” becomes larger with 6 increasing.

However, the choice of weight w(t1,t2) needs further investigation.

85. Conclusion

This paper applies the results of Fermanian (1997) and derives a ratio estimator of
the association parameter ¢ in Clayton model, then the new estimator is shown to be
consistent and asymptotically normal. Simulation studies indicate that our estimator is
effective.

Since é\(tl, t9) is a function of (¢1,t2), we need to choose an appropriate point to give
a good estimator. Simulation results tell us the appropriate point can be (f1,2), however
if (f1,19) is closing to (0,0), the bias of estimator is large, in the situation, one need to
choose other points to estimate parameter in terms of the balance between bias and stand
deviation. Simulation results tell us that a weighted estimator is a good choice, thought
the weight needs further study.

Oakes (1989) introduced a local association parameter
[t t2) F'(th, t2)
= .
f(u7 t?)du f(th ’l))d’U

t1 to

0% (t1,t2) = —5

-~

Since 6*(t1,t2) is a function of (¢1,¢2) rather than a constant, so our 6(t¢1,t2) can also be
used to estimate 0*(t1,t2).

In addition, as we know, the problem of estimating of bivariate survivor function
F(ty,t2) = P(T1 > t1,Ty > to) when the data are subject to censoring in either or both
components is surprisingly difficult. Various proposals for the estimation have been made.
However, the estimators suffer the drawback that the estimates are not survival functions

because they are not monotone. But if the Clayton model holds, then we can use

F(ty,ts) = [( 1] —1/[0(t1,t2)—1]

1 )9(7517752)—1 n ( 1 )9(t1¢2)—1
Fi(t1) Fi(t2)
as an estimator of F'(t1,t2), where o (t1), ﬁg(tg) are the Kaplan-Meier estimators of the

marginal survival functions Fj(t1) and Fa(t2).
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