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Abstract

In this paper, we consider the optimal joint dividend and capital injection strategy with pro-
portional and fixed costs. It supposes that capitals can be injected whenever they are profitable,
but dividends can only be paid at the arrival times of a Poisson process with intensity v > 0. Our
objective is to determine an optimal strategy of maximizing the expected cumulative discounted
dividends minus the expected discounted costs of capital injections before bankruptcy. By solving
some impulse problems, we get the closed-form solutions depending on the parameters of model.
Some known results in Lgkka and Zervos (2008) can be viewed as limiting cases when v — oo.
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81. Introduction

Dividend payment and capital injection are two common approaches to control the
company’s surplus. The expected cumulative discounted dividends minus the expected
discounted costs of capital injections before bankruptcy can be regarded as the company’s
value, the management seeks the optimal join dividend payment and capital injection
strategies that maximize this value. Lgkka and Zervos (2008) make a good contribution
to this topic, which consider a diffusion model with proportion costs for capital injections.
The optimal strategy happens to be either a dividend barrier strategy without capital
injections, or another dividend barrier strategy with forced injections when surplus is null
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to prevent bankruptcy. The tradeoff between two choices depends on the parameters of the
model. By adopting their technique, some extended results are obtained in other models.
See, He and Liang (2009), Yao et al. (2010) and Meng and Siu (2011).

Note that above all literature assume the dividends can be paid at any time. In
practice, it is more reasonable for the board of the company to check the balance on
a periodic basis and then decide whether to pay dividends to shareholders, resulting in
lump sum dividend payments at such discrete time points rather than continuous payment
streams. So Albrecher et al.(2011a) suppose that the dividends can only be paid to
shareholders at the arrival times of a Poisson process with rate v > 0. A few extended
results have been obtained in other papers. For instance, Albrecher et al. (2011b, 2011c¢),
Wei et al. (2012) and Peng et al. (2013). As far as we know, there is no papers concerning
with optimal joint dividend and capital injection strategy with discrete observation time.
In this paper we suppose the company is bankrupt and has to go out of the business
whenever the surplus is negative. To prevent the bankruptcy, capital injection is allowed
if it is profitable. However, the dividends can only be paid to shareholders at the arrival
times of a Poisson process M (t) with rate v > 0. To be more realistic, we take into account
the proportional and fixed transaction costs for the dividend payment process and capital
injection process in the model. Correspondingly, the appearance of cost makes thing more
complex, some impulse problems arise. For some related research, we can see Paulsen
(2008), Bai et al. (2010), Meng and Siu (2011) and Yao et al. (2011).

Here is a brief outline of this paper. Section 2 introduces the framework of this paper
and formulates the general optimization problems concerning with dividend payments and
capital injections. In Section 3, we solve a suboptimal problem without capital injections.
In Section 4, we solve a suboptimal problem that arises when the admissible strategies
are constrained to allow for no bankruptcy. Finally, by comparing the solutions of above
two suboptimal problems, we identify the closed-form solutions to the general optimal
problems in Section 5, which depend on the relationships among the parameters of risk

model. Some known results in Lgkka and Zervos (2008) are extended.

§2. Formulation of the General Optimal Control Problem

Suppose that the surplus of a large company at time t follows
Xy =x+ ut + 0By,

where x > 0 represents the reserves at time zero, parameters p and o > 0 are fixed and
{B:}+>0 is a standard Brownian motion adapted to information filtration {F;}:>0 in the

probability space (€2, F,P). It is worth mentioning that we allow for the possibility u < 0
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in this paper. Let {M(t)}+>0 be a Poisson process with intensity v > 0 which is assumed
to be independent of {B;};>0. Suppose that the process {n:};>0 denotes the amount of
dividends, which can only be paid at the jump times of the Poisson process {M (t)}+>0.
Let L; denote the cumulative amount of dividends paid from time zero up to time ¢, then

we can write that

Lt:/0 nsdM (s). (2.1)

oo
The capital injection process {Gt =>1 {Tn<t}§n} is described by a sequence of increasing
n=1 -

stopping times {7,,n = 1,2,...} and a sequence of random variables {&,,n = 1,2,...},
which represent the times and the sizes of capital injections, respectively. A control policy
7 is described by # = {L™;G™} = {L™;7],...,77,.. &7, ..., &, ...}. The controlled

surplus process associated with 7 follows that
[e.e]
X{=ax+pt+oB— LY + 3 Iirrenyén- (2.2)
n=1

Definition 2.1 A strategy = is said to be admissible if
t

(i) LT = / nidM (s) is an increasing, {F;}-adapted cadlag process.
0

(i)

t
7 is a stopping time w.r.t. {F}, and 0 <77 <--- <77 < ---, as..

iii) & > 0 is measurable w.r.t. For.

-
P(lim 77 <T)=0,YT >0.
n—oo

(iif)
(iv)

Denote the set of all admissible strategies by II. Define the time of bankruptcy by
T:=7"=inf{t > 0: X[ <0},

which is an {F;}-stopping time. The company needs to keep its surplus non-negative, or
else, the bankruptcy happens. The company’s value associated with = € II is described
by the following performance function

™

Ve, m) = E (o /0 e—58n2dM<s>—ie—wﬁzsz+K>I{T5§Tw}), (2.3)

which is the expected present value of dividends less the discount costs of capital injections
until bankruptcy (may be infinity). Here E” is the mathematical expectation corresponding
to X = x; 0 > 0 denotes the discount rate reflecting the time preference of shareholders.
We assume that the shareholders need to pay 526+ K, B2 > 1, to meet the capital injection
of £&. (f2 — 1)¢ is the proportional transaction costs, K > 0 is the fixed transaction costs.
Proportional costs on dividend transaction are taken into account through the value of

81, with 0 < 81 < 1 representing the net proportion of leakages from the surplus received
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by investors after transaction costs have been paid. We are interested in finding the value

function

V(z) = itélgV(x,ﬂ), (2.4)

and the associated optimal strategy 7 € II such that V(z) = V(z, 7).

To tackle this optimal control problem, we need to solve the associated HJB (Hamil-
ton-Jacobi-Bellman) equation satisfied by value function. It supposes that all value func-
tions appearing in this paper are sufficiently smooth and regular to perform. Since the
derivations of the HJB equations are standard in the theory of stochastic control, they are
omitted in the rest of the paper. To develop our result, for any function w(x) € C2, we

define the capital injection operator .# by

Mw(x) = rggg{w(w +y) — By — K}, (2.5)
and the infinitesimal operator Z¢ by
Lw(x) = %O'lel(.%’) + pw'(x) — dw(z) + y[w(z — a) + Bra — w(x)). (2.6)

Next, we need to consider two categories of suboptimal models in the following two
sections. By comparing the solutions for suboptimal problems, the general optimal control

problem are solved.

83. Suboptimal Problem without Capital Injection

In this section, we consider a suboptimal problem without considering capital injec-
tions. Denote 7, = {L™;G™} = {L"™;0} € II stand for the control process in which
capital injection is not allowed. Then the performance function associated with m, be-

comes

i
V(a,my) = E (1 / e aM(s)). (3.1)
0
Our objective is to find the value function
Vp(w) = sup V(z,my), (3.2)
mp€ll

and the associated optimal strategy 7, = {L™;0} € 11 such that V,(z) = V(z, )

With reference to the theory of optimal control, V,,(z) should satisfy the HJB equation
max{.Z*Vy(z)} =0 (3.3)
a>0

with the boundary condition
V»(0) =0. (3.4)
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Theorem 3.1 Let f(z) € C? be an increasing, concave solution of (3.3)-(3.4) and
the derivative f/(z) is bounded, then we have the following statements:

(i) f(z) > Vp(x) for all x > 0.

(ii) If there exists some strategy m, = {L™;0} € I such that f(z) = V(, my), then
f(z) = Vp(x) and 7 is optimal.

Proof The proof of (i) is similar to Appendix A, it is omitted here. The result of
(ii) comes from the optimality of V,(z). O

Theorem 3.2  The value function V,(z) coincides with

.

Ag(by)e™ + Ay (by)e?, >0, v>6%0%/(2p2) and 0 < x < by;

o) Bo(by)eso® + Ca + E(b), >0, v>6202/(242%) and z > by (3.5)
Boe®* + Cx + E, pu>0,v<6%0%/(2u?) and = > 0;
\EoeSOI—FCN’x—I—E, w<0 and z >0,

in which the parameters Ao(b;’;),Al(b;),Bo(b;),C,E(b;),éo,a,i’ and bj, are determined

in the following proof process. The associated optimal strategy m, = {Lﬂ;; 0} is given by

* t *
L” :/ (Xg7 —b3)+dM(s), (3.6)
0

which is a modified barrier strategy with the level b, > 0. If the surplus exceeds the
barrier b, at the moment when the board of the company is checking the balance, the
excess 1." = (X457 — by)+ is paid out immediately as dividends.

Proof We try to find a concave solution f(z) to (3.3) and (3.4). Thereby the
barrier by > 0 such that f'(bj) = B exists if and only if f/(0) > 8 holds. Let us consider
the first case with f'(0) > /31, then

m%({f“f(x)} = 2% (x) =0, 0<z<by, (3.7)
ma{ £ f ()} = L f(x) =0, x>0 (3.8)

Specifically,
ST @) +uf @) @) =0, 0<a<b (3.9)

1 * * *
01" @)+ pf(2) = 6f (2) +Af(B) + Bi(w = b)) = f(@)] =0, ==} (3.10)
By observing the structure of above system of equations, we give the general solution as

f(x) = Ag(b})e™® + Ay (b))e"*, 0<a<b, (3.11)
f(z) = Bo(b)e*" + Bi(b,)e’™ + C(b,)x + D(b,,), T > by (3.12)



552 N FHME 2 4801 BTG

Substituting (3.12) into (3.10) yields

C(b) i=C = ffé, (3.13)
D) = 55§ 0 = it .14
Bo(t) = e, (3.15)
510 = %(—ui\/u2+202(7+5)), (3.16)

and Bi(by) = 0 holds since s; > 0 and f'(z) is bounded. Similarly, putting (3.11) into
(3.9) gives

1
T = ﬁ(—ui\//ﬂ—i—Qa%). (3.17)
We write the smooth pasting conditions as
f(by=) = f(b,+), (3.18)
flop=) = f(by+), (3.19)
(b =) = f(b+)- (3.20)

Then (3.18)-(3.20) lead to

_ Bildso =r(y+0)] _rop

\ )

Ao(by,) ro(ro — 1) (7 £ 0) e <0, (3.21)
o _ Bildso —ro(y +6)] —r1b%

Aq(by) = 1 —70) (7 £0) e > 0. (3.22)

Finally, we rewrite the boundary condition (3.4) as

ey . Bildso = (Y + )] oz, Brldso —ro(Y+0)] ppr
T e ) AT ey o) R
which gives
.1 ro(ro(d + ) — ds0)
b= 1 —T0 = (7‘1(7“1(5 +7) — 580)>' (3.24)

To ensure that bj, > 0, the condition

r0(ro(d + ) — ds0)
r1(r1(0 + ) — ds0)

>1 (3.25)

is required. Under the assumption of p > 0, some calculations show that (3.25) equals to

5202

T/’LQ. (3-26)

v >
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In such case, we can verify that

f(0)> (3.27)
is true. Next let us consider the opposite case with f/(0) < 1, which leads to
r(rllg(%({faf(m)} =2%f(z) =0, x> 0. (3.28)
Explicitly,
ST+l () = 6F@) +1FO) + iz~ f@] =0, w20, (3.29)

The candidate solution f(z) takes the form as
f(z) = Bpe*® + Cz + E, x> 0. (3.30)

By plugging (3.30) in (3.29) and using condition f(0) = 0, we get

_ o= ffy (3.31)
%:—E:—éﬁgy (3.32)
Now, we can calculate that f/(0) < 1 holds if and only if either
2,2
0<7§W or uw<0 (3.33)

happens. Finally, following the argument as that of Theorem 3.2 in Yao et al.(2010),
we can prove that f(x) is indeed a twice continuously differentiable, increasing, concave
solution of (3.3) and (3.4) and f’(x) is bounded. The optimality of ), can be verified as
doing in Appendix B. The proof procedure is omitted. O

§4. Suboptimal Problem without Bankruptcy

In this section we require that the company survives forever by forced capital injec-
tions. Denote 7, = {L™;G™} € II as the control process such that the company never

goes bankrupt, so 7™ = oco. For each admissible strategy ., the performance function

becomes
Vi) =€ (3 [t prar(s) - £ e (T + )l ). (@1
Our objective is to find the value function
Vi(z) = sup V(z,m), (4.2)

€Il
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and the associated optimal strategy 7 = {L™;G™ } € II such that V,.(z) = V (z, 7}).
With reference to the theory of optimal control, V,.(x) should satisfy the HJB equation

max { max{:ZV,(2)}, A Vi(x) = Vi(a) | =0, (4.3)

and the boundary condition
AV,.(0) = V,.(0) = 0. (4.4)

Because the time value of money, we know the optimal timing of capital injection can
only come at the moments when the surplus process hits the barrier 0. Mathematically, the
equation .ZV,(z) = V,(z) has a unique solution z = 0, the inequality .#V,(z) < V;(x)
holds strictly for z > 0. Actually, when the surplus reaches 0, we have to inject new
capitals to prevent from bankruptcy, then the surplus jumps to some appropriate level
&* > 0 immediately. Hence the corresponding boundary condition is V;.(0) = .#V,.(0) =
Vi (€*) — B2&* — K. By the definition of operator .#, it has £* = inf{x : V/(z) = B2}. We

can construct a injection strategy G™ by letting

7 =inf{t >0: X" =0}, (4.5)
T o=inf{t > 77 X7 =0}, n=23,..., (4.6)
£ = €¥, n=1,2,3,.... (4.7)

In addition, if we further assume that V,.(z) is concave and there exists some number
by = inf{z : V/(x) = (1} > 0, then the optimal dividend strategy should be a modified

barrier strategy with the barrier b;. Mathematically, Lf: satisfies
t
07 = [ X =) am), (4.8)
0

ie, n;r: = (X;r'*‘ — b¥) 4. The optimality of 7¥ = {L™;G™} € II will be confirmed later.

Theorem 4.1 Let g(x) € C? be an increasing, concave solution of (4.3) and (4.4)
and ¢'(x) is bounded, then we have the following statements:

(i) g(z) > Vi (x) for all z > 0.

(ii) If there exists some strategy 7 = {L™;G™} € II such that g(z) = V(z,7}),
then g(x) = V,.(z) and 7 is optimal.

Proof The proof of (i) is similar to Appendix A, it is omitted here. The result of
(i) comes from the optimality of V,.(z). O

Theorem 4.2  The value function V. (x) coincides with

Ag(bF)emoT + Ay (b¥)e®, 0<x<by
g(x) = (4.9)
By(b)eo* + Cx + E(bY), x> b}
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Correspondingly, the optimal strategy 7 = {L™; G™ } is given by (4.5)-(4.8). The unique
pair (£%,07) is determined by (4.10) and (4.11).

Proof Note that V,.(z) and V,(x) satisfy the same HJB equation (see (3.3) and
(4.3)) but with different boundary conditions (see (3.4) and (4.4)). Therefore V;.(z) takes
the same form as g(z) in (4.9). Furthermore, by employing boundary condition (4.4),
we will determine the barrier b7 and the optimal amount of injection £* € (0, ;) by the

following equations
g'(§) = B, (4.10)
9(0) = g(&") — 2" — K. (4.11)

For convenience, let us define an increasing function

L 51 [580 — 7" (’Y + 6)} e~ T0% 51 [530 — T0(7 —+ 5)] e~ 17

Y= =+ 9) - ¢ PEr B
Then (4.10) can be written as
ot — ¢y = s = £ O] ey | Bildso =10V + 0N ¢ _ g, (4.13)

(o~ )7 +9) (i — 7o)y +9)
It is not difficult to see that
¢(0) = B1 < fa, ¢'(0) > 0, ¢"(2) >0, lim ¢(z) = oo.
Above properties admit a unique solution A = b5 — &* > 0 satisfying (4.13). Recalling
(3.23), we represent (4.11) as

P(by) — Y(A) + B2(by — A) + K = 0. (4.14)
Denote that
QM) =) —P(A) + f(b—A)+ K,  b>A. (4.15)
Noting that the function ¢(z) is increasing and ¢/(z) = —¢(z), we calculate that
Q(A) =K >0, (4.16)
Jim Q(b) = —oo, (4.17)
Q'(b) = ¢/ (b) + B2 = —¢(b) + B2 < —d(A) + 2 = 0. (4.18)

So we conclude that there exists a unique solution b > A to (4.14), thus £* = b} — A can
also be determined. That is to say, there exists a unique pair (£*,b}) satisfying (4.10) and
(4.11). According to Theorem 4.1, the result follows. O

Remark 1 According to above analysis, we see that the difference A = b} — ¢*
and b} can viewed as decreasing functions in ; or increasing functions in J5. In addition,
larger K results in higher level by, but it is independent of A = b} —&*. However, Theorem

3.2 shows that b} is independent of the transaction factor 3,82 and K.
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85. The Solution to the General Optimal Problem

We now address the problem of maximizing the performance criterion V(z,7) over
all admissible strategies. According to the stochastic control theory, V(z) should satisfy
the following HJB equation

max { max LV (1)}, 4V (z) - V(w)} =0 (5.1)
with boundary condition
max{.ZV(0) — V(0),-V(0)} = 0. (5.2)

Theorem 5.1 Let v(z) € C? be an increasing, concave solution of equations (5.1)
and (5.2) and v/(z) is bounded, then we have the followings:

(i) For each 7 € II, it has v(z) > V(z, 7). So v(z) > V(z) for all x > 0.

(ii) If there exists some strategy @ = {L™;G™} € II such that v(z) = V(z,7), then
v(xz) = V(z) and 7 is optimal.

Proof Please see the proof of (i) in Appendix A. The result of (ii) is obvious.
O

Lemma 5.1 For future use, we give the following statements:

(i) When 0 < by, < by holds, it has f(0) = 0 and . f(0) — f(0) < 0.

(ii) When 0 < b} < b holds, it has g(0) > 0 and .#g(0) — g(0) = 0.

Proof (i) The equality f(0) = 0 is known, we shall prove that .Z f(0) — f(0) <0
in different cases.

Case 1: If by = 0, then the inequalities by < b} and f'(0) < 1 holds. Thus,

Af(0) = f(0) = I;lgg(f(y) — bay) — f(0) - K (5-3)
= (f(0)=f2-0) = f(0) - K = —K <0. (5-4)

Case 2: When 0 < b’ < b — £* < b?, we derive that
B < f1(0) = ¢(by) < d(by — &) = P, (5.5)
which suggests that
A f(0) = f(0) = (£(0) = 320) = f(0) - K = —K <0. (5.6)

Case 3: When 0 < by — &* < by < by, we get that f'(0) = #(b)) > ¢(b) — &) = fa.
Because of the concavity of f(x), there exists some number £ € (0,b%) such that f'(€) =
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B2 & p(bh — &) = Bo & b — & =bF — ¢* = A. Then
AMF0) = f(0) = (&) =€ — f(0) = K = (b, — &) — & — ¥(b}) — K
= Y(A) = Balb, — A) = P(by) — K = =Q(b},)- (5.7)
Recalling that the function Q(b) is decreasing and Q(b)) = 0, we obtain
AF(0) ~ F(0) 06 Q(E) = 0= Q(bY) & b < b (5.8)
(ii) The property of .# ¢(0) — g(0) = 0 is known. Then we note that
9(0) = Ao (b)) + Av (b)) = (b)),
P(bp) = Ao(by) + Ax(b,) = 0,
P'(b) = —¢(b) <0, b>0.
Thus g(0) > 0 equals to ¥(b;) > 1(by), which happens if and only if b; < by O

Theorem 5.2 We can identify the solution to the general control problem as
follows:

(i) When f(0) = 0 and . f(0) — f(0) < 0, or equivalently, 0 < b < b} holds, then
V(z) = Vp(x) = f(), and the associated optimal strategy 7 is consistent with 7.

(ii) When .#g(0) = g(0) and g(0) > 0, or equivalently, b; > b} holds, then V(z) =
Vr(z) = g(x), and the associated optimal strategy 7 is consistent with 7.

Proof Together with Lemma 5.1 and Appendix B, the results are proved. U

Remark 2 Above theorem shows, in our model, that the decision to declare
bankruptcy or to collect new capitals depends on the model parameters, which is con-
sistent with the results and idea in Lgkka and Zervos (2008). By letting K — 0, 51 — 1

and v — 00, all results there can be obtained.

Appendix

A. Proof of Theorem 5.1
(i) Consider an arbitrage admissible strategy 7 € II, applying It6 formula yields
e_S(t/\TW)U(XZr/\T”)

tATT
= o(x)+ / e LW(XTYds + Z1(E ATT) + Zo(t A TT)
0

tATT 00
— 4 /O M () + 3 T +60) — oKD Mgeineey (A)
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with

tAT™
ZitAT™) = / e %gv' (XT)dBs,
0

Zo(t A7) = /0 e (XTI ) + Bl — o(XT))(dM(s) — Ads).

Note that the stopping processes Z1 (t AT™) and Z3(t A7T™) are both martingales. Moreover,
suggested by (5.1), we know

(e8] &)
21 e o(XT +&]) - V(X ) rr<inemy < 21 e (BalT + K)zrcinemy  (A2)
n— n—=
and
tATT
/ e 2% (XT)ds < 0. (A.3)
0
Thereby, taking conditional expectations on both side of (A.1) yields:
EZ (675(t/\T7T)U(Xt7r/\TW))

tAT™ 00
< w(z)-E* (51/0 e nTdM(s) — Z_:l e (Bal] + Kﬂ{r;;ﬁtmﬂ})- (A.4)

Then, letting t — oo and using dominated convergence theorem, we have

™

v(x) > E” (ﬁl /OT e O nrdM(s) — ioll e (Bl + K)I{T;;grw}> =V(x,m). (A5)

Then the arbitrariness of 7 and the definition of V(x) suggest that v(x) > V(x).
(ii) The proof of (ii) is obvious from (i) and the definition of V' (z).

B. Proof of Theorem 5.2

(i) If f(0) =0 and .Z f(0) < f(0), then f(x) satisfies conditions of Theorem 5.1, so
f(z) > V(x). Under the strategy 7, we can get the following result from (3.3)

t/\TW; ¥ *
/ e 95" F(XI7)ds = 0. (A.6)
0

. . . . . *
Moreover, the capital injection never occurs since 7, = {L™;0}, so

*

e (X 4 €7) — (XTI .

S—

=0. (A.7)

o

Replacing 7, 7,v by 7}, 7™, f, respectively, in Ité formula (A.1) and taking expectations,

we have

t/\TW; ® * 7r*
flz) = E* (61 / e AL + f(XTP L )e AT p>). (A.8)
0 tAT

P



ENY SRR FEOCHE ARbK: RS S PR BOWEE N 1] 1) B8 A dme It 2 2133 92 5K 559

Letting ¢t — oo yields

*
e

fa) =€ (o [ PP (s) = Vi) (A9

which, together with f(x) > V(z), implies that f(z) = V(x) = V(z, 7}

») and 7y is the

associated optimal strategy.
(ii) If #g(0) = ¢g(0) and g(0) > 0, then g(x) satisfies conditions of Theorem 5.1,
g(x) > V(z). From (4.3) and (4.4) we know, under the strategy =,

tATr o .
/ e " g(XT)ds = 0. (A.10)
0

Furthermore, (4.5)-(4.8) indicate that

*

e [g(XT + &) — g(XT))I

*
{Tn" <tAT™r}

18

3
I
—

|
M 8

_6Tn [ (é.n ) ( )]I{ 7Tr<t/\7_7'rr} = Z 6_6Tn (/82§n ) { ﬂ)rkgt/\T":}' (All)

n=1

Replacing 7, 7™, v by ., 7™ = 00, ¢ in It6 formula (A.1) and taking expectations, we have

g(z) = E"(e7g(X[7))
T ! —ds, 7 & —57’n m K\)I A.12
+E (51/0 e *nirdM(s) — Z (B + K) {n’{:gt}) (A.12)

Letting t — oo, the first term on the right hand side vanishes. Then we obtain

(&)

ota) = (A [ etpian(s) = 55 T (gl + K0T ) = Vo), (A3

which, together with g(z)>V (z), implies that g(z)=V (z)=V (z,7}) and 7} ={L™:G™}

is associated optimal strategy.

References

[1] Albrecher, H., Gerber, H.U. and Shiu, E.S.W., The optimal dividend barrier in the Gamma-Omega
model, European Actuarial Journal, 1(1)(2011a), 43-55.

[2] Albrecher, H., Cheung, E.C.K. and Thonhauser, S., Randomized observation periods for the com-
pound Poisson risk model: the discounted penalty function, Scandinavian Actuarial Journal, in
press(2011b).

[3] Albrecher, H., Cheung, E.C.K. and Thonhauser, S., Randomized observation periods for the com-
pound Poisson risk model: Dividends, ASTIN Bulletin, 41(2)(2011c), 645-672.



560 N FHME 2 4801 BTG

[4] Bai, L., Guo, J. and Zhang, H., Optimal excess-of-loss reinsurance and dividend payments with both
transaction costs and taxes, Quantitative Finance, 10(10)(2010), 1163-1172.
[5] He, L. and Liang, Z.X., Optimal financing and dividend control of the insurance company with fixed
and proportional transaction costs, Insurance: Mathematics and Economics, 44(1)(2009), 88-94.
[6] Lokka, A. and Zervos, M., Optimal dividend and issuance of equity policies in the presence of pro-
portional costs, Insurance: Mathematics and Economics, 42(3)(2008), 954-961.
[7] Meng, H. and Siu, T., On optimal reinsurance, dividend and reinvestment strategies, Economic
Modelling, 28(1-2)(2011), 211-218.
[8] Paulsen, J., Optimal dividend payments and reinvestments of diffusion processes with both fixed and
proportional costs, SIAM Journal on Control and Optimization, 47(5)(2008), 2201-2226.
[9] Peng, D., Liu, D. and Liu, Z., Dividend problems in the dual risk model with exponentially distributed
observation time, Statistics and Probability Letters, 83(3)(2013), 841-849.
[10] Wei, J., Wang, R. and Yang, H., On the optimal dividend strategy in a regime-switching diffusion
mode, Advances in Applied Probability, 44(3)(2011), 886-906.
[11] Yao, D., Yang, H. and Wang, R., Optimal financing and dividend strategies in a dual model with
proportional costs, Journal of Industrial and Management Optimization, 6(4)(2010), 761-777.
[12] Yao, D., Yang, H. and Wang, R., Optimal dividend and capital injection problem in the dual

model with proportional and fixed transaction costs, Furopean Journal of Operational Research,
211(3)(2011), 568-576.

™ 32 3 B P FN4E EUL 22 i8] 8] R Y B L 57 21 i E R ORI

R H Uk ® AR

(AR & KSR, M, 210023)  (CCRUNE K FZHEFE T ENERN 5B, J63, 241003)

AR SC A FRATT 2% L8 LU AR B 2l AN ] 5 A8 5 98 FH RS TR a5 0 2 41 5 A 8 e ) R PR v oy e B2
] BN AT LA B0V 5% ARE Sl ™, (2 LA AESHOy > ORARA i RE AR ER IN 2 4 AT BE 2R 41, 4 T S KA
PRI LU S BB 2 22, Bl 13- 3R B 0 00 20 R W8 S . 3 3k R AR 1) Sk bz v vl A, A 1363 T
R TR S H00) R . LokkaflZervos (2008) H 1 CLAN 45 SR AT LLAE O AL 45 RAEy — oo MR RIS TE.

KR A, W, TS WA, BRSNS, FREOR ST,

ZERSES: 0211.62.





