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Abstract
In this paper, we consider the optimal joint dividend and capital injection strategy with pro-

portional and fixed costs. It supposes that capitals can be injected whenever they are profitable,

but dividends can only be paid at the arrival times of a Poisson process with intensity γ > 0. Our

objective is to determine an optimal strategy of maximizing the expected cumulative discounted

dividends minus the expected discounted costs of capital injections before bankruptcy. By solving

some impulse problems, we get the closed-form solutions depending on the parameters of model.

Some known results in Løkka and Zervos (2008) can be viewed as limiting cases when γ →∞.
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§1. Introduction

Dividend payment and capital injection are two common approaches to control the

company’s surplus. The expected cumulative discounted dividends minus the expected

discounted costs of capital injections before bankruptcy can be regarded as the company’s

value, the management seeks the optimal join dividend payment and capital injection

strategies that maximize this value. Løkka and Zervos (2008) make a good contribution

to this topic, which consider a diffusion model with proportion costs for capital injections.

The optimal strategy happens to be either a dividend barrier strategy without capital

injections, or another dividend barrier strategy with forced injections when surplus is null
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to prevent bankruptcy. The tradeoff between two choices depends on the parameters of the

model. By adopting their technique, some extended results are obtained in other models.

See, He and Liang (2009), Yao et al. (2010) and Meng and Siu (2011).

Note that above all literature assume the dividends can be paid at any time. In

practice, it is more reasonable for the board of the company to check the balance on

a periodic basis and then decide whether to pay dividends to shareholders, resulting in

lump sum dividend payments at such discrete time points rather than continuous payment

streams. So Albrecher et al. (2011a) suppose that the dividends can only be paid to

shareholders at the arrival times of a Poisson process with rate γ > 0. A few extended

results have been obtained in other papers. For instance, Albrecher et al. (2011b, 2011c),

Wei et al. (2012) and Peng et al. (2013). As far as we know, there is no papers concerning

with optimal joint dividend and capital injection strategy with discrete observation time.

In this paper we suppose the company is bankrupt and has to go out of the business

whenever the surplus is negative. To prevent the bankruptcy, capital injection is allowed

if it is profitable. However, the dividends can only be paid to shareholders at the arrival

times of a Poisson process M(t) with rate γ > 0. To be more realistic, we take into account

the proportional and fixed transaction costs for the dividend payment process and capital

injection process in the model. Correspondingly, the appearance of cost makes thing more

complex, some impulse problems arise. For some related research, we can see Paulsen

(2008), Bai et al. (2010), Meng and Siu (2011) and Yao et al. (2011).

Here is a brief outline of this paper. Section 2 introduces the framework of this paper

and formulates the general optimization problems concerning with dividend payments and

capital injections. In Section 3, we solve a suboptimal problem without capital injections.

In Section 4, we solve a suboptimal problem that arises when the admissible strategies

are constrained to allow for no bankruptcy. Finally, by comparing the solutions of above

two suboptimal problems, we identify the closed-form solutions to the general optimal

problems in Section 5, which depend on the relationships among the parameters of risk

model. Some known results in Løkka and Zervos (2008) are extended.

§2. Formulation of the General Optimal Control Problem

Suppose that the surplus of a large company at time t follows

Xt = x + µt + σBt,

where x ≥ 0 represents the reserves at time zero, parameters µ and σ > 0 are fixed and

{Bt}t≥0 is a standard Brownian motion adapted to information filtration {Ft}t≥0 in the

probability space (Ω,F ,P). It is worth mentioning that we allow for the possibility µ ≤ 0
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in this paper. Let {M(t)}t≥0 be a Poisson process with intensity γ > 0 which is assumed

to be independent of {Bt}t≥0. Suppose that the process {ηt}t≥0 denotes the amount of

dividends, which can only be paid at the jump times of the Poisson process {M(t)}t≥0.

Let Lt denote the cumulative amount of dividends paid from time zero up to time t, then

we can write that

Lt =
∫ t

0
ηsdM(s). (2.1)

The capital injection process
{

Gt =
∞∑

n=1
I{τn≤t}ξn

}
is described by a sequence of increasing

stopping times {τn, n = 1, 2, . . .} and a sequence of random variables {ξn, n = 1, 2, . . .},
which represent the times and the sizes of capital injections, respectively. A control policy

π is described by π = {Lπ;Gπ} = {Lπ; τπ
1 , . . . , τπ

n , . . . ; ξπ
1 , . . . , ξπ

n , . . .}. The controlled

surplus process associated with π follows that

Xπ
t = x + µt + σBt − Lπ

t +
∞∑

n=1
I{τπ

n≤t}ξπ
n . (2.2)

Definition 2.1 A strategy π is said to be admissible if

(i) Lπ
t =

∫ t

0
ηπ

s dM(s) is an increasing, {Ft}-adapted càdlàg process.

(ii) τπ
n is a stopping time w.r.t. {Ft}, and 0 ≤ τπ

1 < · · · < τπ
n < · · · , a.s..

(iii) ξπ
n > 0 is measurable w.r.t. Fτπ

n
.

(iv) P
(

lim
n→∞ τπ

n < T
)

= 0, ∀T > 0.

Denote the set of all admissible strategies by Π. Define the time of bankruptcy by

τ := τπ = inf{t ≥ 0 : Xπ
t < 0},

which is an {Ft}-stopping time. The company needs to keep its surplus non-negative, or

else, the bankruptcy happens. The company’s value associated with π ∈ Π is described

by the following performance function

V (x, π) = Ex
(
β1

∫ τπ

0
e−δsηπ

s dM(s)−
∞∑

n=1
e−δτπ

n (β2ξ
π
n + K)I{τπ

n≤τπ}
)
, (2.3)

which is the expected present value of dividends less the discount costs of capital injections

until bankruptcy (may be infinity). Here Ex is the mathematical expectation corresponding

to Xπ
0 = x; δ > 0 denotes the discount rate reflecting the time preference of shareholders.

We assume that the shareholders need to pay β2ξ+K, β2 > 1, to meet the capital injection

of ξ. (β2 − 1)ξ is the proportional transaction costs, K > 0 is the fixed transaction costs.

Proportional costs on dividend transaction are taken into account through the value of

β1, with 0 < β1 ≤ 1 representing the net proportion of leakages from the surplus received
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by investors after transaction costs have been paid. We are interested in finding the value

function

V (x) = sup
π∈Π

V (x, π), (2.4)

and the associated optimal strategy π̂ ∈ Π such that V (x) = V (x, π̂).

To tackle this optimal control problem, we need to solve the associated HJB (Hamil-

ton-Jacobi-Bellman) equation satisfied by value function. It supposes that all value func-

tions appearing in this paper are sufficiently smooth and regular to perform. Since the

derivations of the HJB equations are standard in the theory of stochastic control, they are

omitted in the rest of the paper. To develop our result, for any function ω(x) ∈ C2, we

define the capital injection operator M by

Mω(x) = max
y≥0

{ω(x + y)− β2y −K}, (2.5)

and the infinitesimal operator L a by

L aω(x) =
1
2
σ2ω′′(x) + µω′(x)− δω(x) + γ[ω(x− a) + β1a− ω(x)]. (2.6)

Next, we need to consider two categories of suboptimal models in the following two

sections. By comparing the solutions for suboptimal problems, the general optimal control

problem are solved.

§3. Suboptimal Problem without Capital Injection

In this section, we consider a suboptimal problem without considering capital injec-

tions. Denote πp = {Lπp ;Gπp} = {Lπp ; 0} ∈ Π stand for the control process in which

capital injection is not allowed. Then the performance function associated with πp be-

comes

V (x, πp) = Ex
(
β1

∫ τπp

0
e−δsη

πp
s dM(s)

)
. (3.1)

Our objective is to find the value function

Vp(x) = sup
πp∈Π

V (x, πp), (3.2)

and the associated optimal strategy π∗p = {Lπ∗p ; 0} ∈ Π such that Vp(x) = V (x, π∗p).
With reference to the theory of optimal control, Vp(x) should satisfy the HJB equation

max
a≥0

{L aVp(x)} = 0 (3.3)

with the boundary condition

Vp(0) = 0. (3.4)
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Theorem 3.1 Let f(x) ∈ C2 be an increasing, concave solution of (3.3)-(3.4) and

the derivative f ′(x) is bounded, then we have the following statements:

(i) f(x) ≥ Vp(x) for all x ≥ 0.

(ii) If there exists some strategy π∗p = {Lπ∗p ; 0} ∈ Π such that f(x) = V (x, π∗p), then

f(x) = Vp(x) and π∗p is optimal.

Proof The proof of (i) is similar to Appendix A, it is omitted here. The result of

(ii) comes from the optimality of Vp(x). ¤

Theorem 3.2 The value function Vp(x) coincides with

f(x) =





A0(b∗p)er0x + A1(b∗p)er1x, µ > 0, γ > δ2σ2/(2µ2) and 0 ≤ x ≤ b∗p;

B0(b∗p)es0x + Cx + E(b∗p), µ > 0, γ > δ2σ2/(2µ2) and x ≥ b∗p;

B̃0e
s0x + C̃x + Ẽ, µ > 0, γ ≤ δ2σ2/(2µ2) and x ≥ 0;

B̃0e
s0x + C̃x + Ẽ, µ ≤ 0 and x ≥ 0,

(3.5)

in which the parameters A0(b∗p), A1(b∗p), B0(b∗p), C, E(b∗p), B̃0, C̃, Ẽ and b∗p are determined

in the following proof process. The associated optimal strategy π∗p = {Lπ∗p ; 0} is given by

L
π∗p
t =

∫ t

0
(X

π∗p
s − b∗p)+dM(s), (3.6)

which is a modified barrier strategy with the level b∗p ≥ 0. If the surplus exceeds the

barrier b∗p at the moment when the board of the company is checking the balance, the

excess η
π∗p
s = (X

π∗p
s − b∗p)+ is paid out immediately as dividends.

Proof We try to find a concave solution f(x) to (3.3) and (3.4). Thereby the

barrier b∗p > 0 such that f ′(b∗p) = β1 exists if and only if f ′(0) > β1 holds. Let us consider

the first case with f ′(0) > β1, then

max
a≥0

{L af(x)} = L 0f(x) = 0, 0 < x ≤ b∗p, (3.7)

max
a≥0

{L af(x)} = L x−b∗pf(x) = 0, x ≥ b∗p. (3.8)

Specifically,

1
2
σ2f ′′(x) + µf ′(x)− δf(x) = 0, 0 < x ≤ b∗p, (3.9)

1
2
σ2f ′′(x) + µf ′(x)− δf(x) + γ[f(b∗p) + β1(x− b∗p)− f(x)] = 0, x ≥ b∗p. (3.10)

By observing the structure of above system of equations, we give the general solution as

f(x) = A0(b∗p)e
r0x + A1(b∗p)e

r1x, 0 ≤ x ≤ b∗p, (3.11)

f(x) = B0(b∗p)e
s0x + B1(b∗p)e

s1x + C(b∗p)x + D(b∗p), x ≥ b∗p. (3.12)
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Substituting (3.12) into (3.10) yields

C(b∗p) := C :=
β1γ

γ + δ
, (3.13)

D(b∗p) =
1

δ + γ

(β1γµ

δ + γ
+ γ(f(b∗p)− β1b

∗
p)

)
, (3.14)

B0(b∗p) =
β1δ

(γ + δ)s0
e−s0b∗p , (3.15)

s1,0 =
1
σ2

(− µ±
√

µ2 + 2σ2(γ + δ)
)
, (3.16)

and B1(b∗p) = 0 holds since s1 > 0 and f ′(x) is bounded. Similarly, putting (3.11) into

(3.9) gives

r1,0 =
1
σ2

(− µ±
√

µ2 + 2σ2δ
)
. (3.17)

We write the smooth pasting conditions as

f(b∗p−) = f(b∗p+), (3.18)

f ′(b∗p−) = f ′(b∗p+), (3.19)

f ′′(b∗p−) = f ′′(b∗p+). (3.20)

Then (3.18)-(3.20) lead to

A0(b∗p) =
β1[δs0 − r1(γ + δ)]
r0(r0 − r1)(γ + δ)

e−r0b∗p < 0, (3.21)

A1(b∗p) =
β1[δs0 − r0(γ + δ)]
r1(r1 − r0)(γ + δ)

e−r1b∗p > 0. (3.22)

Finally, we rewrite the boundary condition (3.4) as

ψ(b∗p) :=
β1[δs0 − r1(γ + δ)]
r0(r0 − r1)(γ + δ)

e−r0b∗p +
β1[δs0 − r0(γ + δ)]
r1(r1 − r0)(γ + δ)

e−r1b∗p = 0, (3.23)

which gives

b∗p =
1

r1 − r0
ln

(r0(r0(δ + γ)− δs0)
r1(r1(δ + γ)− δs0)

)
. (3.24)

To ensure that b∗p > 0, the condition

r0(r0(δ + γ)− δs0)
r1(r1(δ + γ)− δs0)

> 1 (3.25)

is required. Under the assumption of µ > 0, some calculations show that (3.25) equals to

γ >
δ2σ2

2µ2
. (3.26)
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In such case, we can verify that

f ′(0) > β1 (3.27)

is true. Next let us consider the opposite case with f ′(0) ≤ β1, which leads to

max
a≥0

{L af(x)} = L xf(x) = 0, x ≥ 0. (3.28)

Explicitly,

1
2
σ2f ′′(x) + µf ′(x)− δf(x) + γ[f(0) + β1x− f(x)] = 0, x ≥ 0. (3.29)

The candidate solution f(x) takes the form as

f(x) = B̃0e
s0x + C̃x + Ẽ, x ≥ 0. (3.30)

By plugging (3.30) in (3.29) and using condition f(0) = 0, we get

C̃ = C =
β1γ

γ + δ
, (3.31)

B̃0 = −Ẽ = − β1µγ

(γ + δ)2
. (3.32)

Now, we can calculate that f ′(0) ≤ β1 holds if and only if either

0 < γ ≤ δ2σ2

2µ2
or µ ≤ 0 (3.33)

happens. Finally, following the argument as that of Theorem 3.2 in Yao et al. (2010),

we can prove that f(x) is indeed a twice continuously differentiable, increasing, concave

solution of (3.3) and (3.4) and f ′(x) is bounded. The optimality of π∗p can be verified as

doing in Appendix B. The proof procedure is omitted. ¤

§4. Suboptimal Problem without Bankruptcy

In this section we require that the company survives forever by forced capital injec-

tions. Denote πr = {Lπr ;Gπr} ∈ Π as the control process such that the company never

goes bankrupt, so τπr = ∞. For each admissible strategy πr, the performance function

becomes

V (x, πr) = Ex
(
β1

∫ ∞

0
e−δsηπr

s dM(s)−
∞∑

n=1
e−δτπr

n (β2ξ
πr
n + K)I{τπr

n <∞}
)
. (4.1)

Our objective is to find the value function

Vr(x) = sup
πr∈Π

V (x, πr), (4.2)
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and the associated optimal strategy π∗r = {Lπ∗r ;Gπ∗r} ∈ Π such that Vr(x) = V (x, π∗r ).
With reference to the theory of optimal control, Vr(x) should satisfy the HJB equation

max
{

max
a≥0

{L aVr(x)},MVr(x)− Vr(x)
}

= 0, (4.3)

and the boundary condition

MVr(0)− Vr(0) = 0. (4.4)

Because the time value of money, we know the optimal timing of capital injection can

only come at the moments when the surplus process hits the barrier 0. Mathematically, the

equation MVr(x) = Vr(x) has a unique solution x = 0, the inequality MVr(x) < Vr(x)

holds strictly for x > 0. Actually, when the surplus reaches 0, we have to inject new

capitals to prevent from bankruptcy, then the surplus jumps to some appropriate level

ξ∗ > 0 immediately. Hence the corresponding boundary condition is Vr(0) = MVr(0) =

Vr(ξ∗)− β2ξ
∗ −K. By the definition of operator M , it has ξ∗ = inf{x : V ′

r (x) = β2}. We

can construct a injection strategy Gπ∗r by letting

τ
π∗r
1 = inf{t ≥ 0 : X

π∗r
t− = 0}, (4.5)

τπ∗r
n = inf{t > τ

π∗r
n−1 : X

π∗r
t− = 0}, n = 2, 3, . . . , (4.6)

ξπ∗r
n ≡ ξ∗, n = 1, 2, 3, . . . . (4.7)

In addition, if we further assume that Vr(x) is concave and there exists some number

b∗r = inf{x : V ′
r (x) = β1} > 0, then the optimal dividend strategy should be a modified

barrier strategy with the barrier b∗r . Mathematically, L
π∗r
t satisfies

L
π∗r
t =

∫ t

0
(Xπ∗r

s − b∗r)+dM(s), (4.8)

i.e, η
π∗r
s = (Xπ∗r

s − b∗r)+. The optimality of π∗r = {Lπ∗r ;Gπ∗r} ∈ Π will be confirmed later.

Theorem 4.1 Let g(x) ∈ C2 be an increasing, concave solution of (4.3) and (4.4)

and g′(x) is bounded, then we have the following statements:

(i) g(x) ≥ Vr(x) for all x ≥ 0.

(ii) If there exists some strategy π∗r = {Lπ∗r ;Gπ∗r} ∈ Π such that g(x) = V (x, π∗r ),
then g(x) = Vr(x) and π∗r is optimal.

Proof The proof of (i) is similar to Appendix A, it is omitted here. The result of

(ii) comes from the optimality of Vr(x). ¤

Theorem 4.2 The value function Vr(x) coincides with

g(x) =





A0(b∗r)er0x + A1(b∗r)er1x, 0 ≤ x ≤ b∗r ;

B0(b∗r)es0x + Cx + E(b∗r), x ≥ b∗r .
(4.9)
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Correspondingly, the optimal strategy π∗r = {Lπ∗r ;Gπ∗r} is given by (4.5)-(4.8). The unique

pair (ξ∗, b∗r) is determined by (4.10) and (4.11).

Proof Note that Vr(x) and Vp(x) satisfy the same HJB equation (see (3.3) and

(4.3)) but with different boundary conditions (see (3.4) and (4.4)). Therefore Vr(x) takes

the same form as g(x) in (4.9). Furthermore, by employing boundary condition (4.4),

we will determine the barrier b∗r and the optimal amount of injection ξ∗ ∈ (0, b∗r) by the

following equations

g′(ξ∗) = β2, (4.10)

g(0) = g(ξ∗)− β2ξ
∗ −K. (4.11)

For convenience, let us define an increasing function

φ(z) :=
β1[δs0 − r1(γ + δ)]
(r0 − r1)(γ + δ)

e−r0z +
β1[δs0 − r0(γ + δ)]
(r1 − r0)(γ + δ)

e−r1z, z ≥ 0. (4.12)

Then (4.10) can be written as

φ(b∗r − ξ∗) =
β1[δs0 − r1(γ + δ)]
(r0 − r1)(γ + δ)

e−r0(b∗r−ξ∗) +
β1[δs0 − r0(γ + δ)]
(r1 − r0)(γ + δ)

e−r1(b∗r−ξ∗) = β2. (4.13)

It is not difficult to see that

φ(0) = β1 < β2, φ′(0) > 0, φ′′(z) > 0, lim
z→∞φ(z) = ∞.

Above properties admit a unique solution ∆ = b∗r − ξ∗ > 0 satisfying (4.13). Recalling

(3.23), we represent (4.11) as

ψ(b∗r)− ψ(∆) + β2(b∗r −∆) + K = 0. (4.14)

Denote that

Q(b) = ψ(b)− ψ(∆) + β2(b−∆) + K, b ≥ ∆. (4.15)

Noting that the function φ(z) is increasing and ψ′(z) = −φ(z), we calculate that

Q(∆) = K > 0, (4.16)

lim
b→∞

Q(b) = −∞, (4.17)

Q′(b) = ψ′(b) + β2 = −φ(b) + β2 ≤ −φ(∆) + β2 = 0. (4.18)

So we conclude that there exists a unique solution b∗r > ∆ to (4.14), thus ξ∗ = b∗r −∆ can

also be determined. That is to say, there exists a unique pair (ξ∗, b∗r) satisfying (4.10) and

(4.11). According to Theorem 4.1, the result follows. ¤

Remark 1 According to above analysis, we see that the difference ∆ = b∗r − ξ∗

and b∗r can viewed as decreasing functions in β1 or increasing functions in β2. In addition,

larger K results in higher level b∗r , but it is independent of ∆ = b∗r−ξ∗. However, Theorem

3.2 shows that b∗p is independent of the transaction factor β1, β2 and K.
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§5. The Solution to the General Optimal Problem

We now address the problem of maximizing the performance criterion V (x, π) over

all admissible strategies. According to the stochastic control theory, V (x) should satisfy

the following HJB equation

max
{

max
a≥0

{L aV (x)},MV (x)− V (x)
}

= 0 (5.1)

with boundary condition

max{MV (0)− V (0),−V (0)} = 0. (5.2)

Theorem 5.1 Let v(x) ∈ C2 be an increasing, concave solution of equations (5.1)

and (5.2) and v′(x) is bounded, then we have the followings:

(i) For each π ∈ Π, it has v(x) ≥ V (x, π). So v(x) ≥ V (x) for all x ≥ 0.

(ii) If there exists some strategy π̂ = {Lπ̂;Gπ̂} ∈ Π such that v(x) = V (x, π̂), then

v(x) = V (x) and π̂ is optimal.

Proof Please see the proof of (i) in Appendix A. The result of (ii) is obvious.

¤

Lemma 5.1 For future use, we give the following statements:

(i) When 0 ≤ b∗p ≤ b∗r holds, it has f(0) = 0 and M f(0)− f(0) ≤ 0.

(ii) When 0 < b∗r < b∗p holds, it has g(0) > 0 and M g(0)− g(0) = 0.

Proof (i) The equality f(0) = 0 is known, we shall prove that M f(0)− f(0) ≤ 0

in different cases.

Case 1: If b∗p = 0, then the inequalities b∗p < b∗r and f ′(0) ≤ β1 holds. Thus,

M f(0)− f(0) = max
y≥0

(f(y)− β2y)− f(0)−K (5.3)

= (f(0)− β2 · 0)− f(0)−K = −K < 0. (5.4)

Case 2: When 0 < b∗p < b∗r − ξ∗ < b∗r , we derive that

β1 < f ′(0) = φ(b∗p) ≤ φ(b∗r − ξ∗) = β2, (5.5)

which suggests that

M f(0)− f(0) = (f(0)− β20)− f(0)−K = −K < 0. (5.6)

Case 3: When 0 < b∗r − ξ∗ < b∗p < b∗r , we get that f ′(0) = φ(b∗p) > φ(b∗r − ξ∗) = β2.

Because of the concavity of f(x), there exists some number ξ ∈ (0, b∗p) such that f ′(ξ) =
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β2 ⇔ φ(b∗p − ξ) = β2 ⇔ b∗p − ξ = b∗r − ξ∗ = ∆. Then

M f(0)− f(0) = f(ξ)− β2ξ − f(0)−K = ψ(b∗p − ξ)− β2ξ − ψ(b∗p)−K

= ψ(∆)− β2(b∗p −∆)− ψ(b∗p)−K = −Q(b∗p). (5.7)

Recalling that the function Q(b) is decreasing and Q(b∗r) = 0, we obtain

M f(0)− f(0) ≤ 0 ⇔ Q(b∗p) ≥ 0 = Q(b∗r) ⇔ b∗p ≤ b∗r . (5.8)

(ii) The property of M g(0)− g(0) = 0 is known. Then we note that

g(0) = A0(b∗r) + A1(b∗r) = ψ(b∗r),

ψ(b∗p) = A0(b∗p) + A1(b∗p) = 0,

ψ′(b) = −φ(b) < 0, b ≥ 0.

Thus g(0) ≥ 0 equals to ψ(b∗r) ≥ ψ(b∗p), which happens if and only if b∗r ≤ b∗p. ¤

Theorem 5.2 We can identify the solution to the general control problem as

follows:

(i) When f(0) = 0 and M f(0) − f(0) < 0, or equivalently, 0 ≤ b∗p ≤ b∗r holds, then

V (x) = Vp(x) = f(x), and the associated optimal strategy π̂ is consistent with π∗p.
(ii) When M g(0) = g(0) and g(0) ≥ 0, or equivalently, b∗p > b∗r holds, then V (x) =

Vr(x) = g(x), and the associated optimal strategy π̂ is consistent with π∗r .

Proof Together with Lemma 5.1 and Appendix B, the results are proved. ¤

Remark 2 Above theorem shows, in our model, that the decision to declare

bankruptcy or to collect new capitals depends on the model parameters, which is con-

sistent with the results and idea in Løkka and Zervos (2008). By letting K → 0, β1 → 1

and γ →∞, all results there can be obtained.

Appendix

A. Proof of Theorem 5.1

(i) Consider an arbitrage admissible strategy π ∈ Π, applying Itô formula yields

e−δ(t∧τπ)v(Xπ
t∧τπ)

= v(x) +
∫ t∧τπ

0
e−δsL av(Xπ

s )ds + Z1(t ∧ τπ) + Z2(t ∧ τπ)

−β1

∫ t∧τπ

0
e−δsηπ

s dM(s) +
∞∑

n=1
e−δτπ

n [v(Xπ
s− + ξπ

n)− v(Xπ
s−)]I{τπ

n≤t∧τπ} (A.1)
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with

Z1(t ∧ τπ) =
∫ t∧τπ

0
e−δsσv′(Xπ

s )dBs,

Z2(t ∧ τπ) =
∫ t∧τπ

0
e−δs[v(Xπ

s− − ηπ
s ) + β1η

π
s − v(Xπ

s−)](dM(s)− γds).

Note that the stopping processes Z1(t∧τπ) and Z2(t∧τπ) are both martingales. Moreover,

suggested by (5.1), we know

∞∑
n=1

e−δτπ
n [v(Xπ

s− + ξπ
n)− v(Xπ

s−)]I{τπ
n≤t∧τπ} ≤

∞∑
n=1

e−δτπ
n (β2ξ

π
n + K)I{τπ

n≤t∧τπ} (A.2)

and ∫ t∧τπ

0
e−δsL av(Xπ

s )ds ≤ 0. (A.3)

Thereby, taking conditional expectations on both side of (A.1) yields:

Ex
(
e−δ(t∧τπ)v(Xπ

t∧τπ)
)

≤ v(x)− Ex
(
β1

∫ t∧τπ

0
e−δsηπ

s dM(s)−
∞∑

n=1
e−δτπ

n (β2ξ
π
n + K)I{τπ

n≤t∧τπ}
)
. (A.4)

Then, letting t →∞ and using dominated convergence theorem, we have

v(x) ≥ Ex
(
β1

∫ τπ

0
e−δsηπ

s dM(s)−
∞∑

n=1
e−δτπ

n (β2ξ
π
n + K)I{τπ

n≤τπ}
)

= V (x, π). (A.5)

Then the arbitrariness of π and the definition of V (x) suggest that v(x) ≥ V (x).

(ii) The proof of (ii) is obvious from (i) and the definition of V (x).

B. Proof of Theorem 5.2

(i) If f(0) = 0 and M f(0) < f(0), then f(x) satisfies conditions of Theorem 5.1, so

f(x) ≥ V (x). Under the strategy π∗p, we can get the following result from (3.3)

∫ t∧τ
π∗p

0
e−δsL η

π∗p
s f(X

π∗p
s )ds = 0. (A.6)

Moreover, the capital injection never occurs since π∗p = {Lπ∗p ; 0}, so

∞∑
n=1

e−δτ
π∗p
n

[
v(X

π∗p
s− + ξ

π∗p
n )− v(X

π∗p
s−)

]
I{τπ∗p

n ≤t∧τπ∗p} ≡ 0. (A.7)

Replacing π, τ, v by π∗p, τ
π∗p , f , respectively, in Itô formula (A.1) and taking expectations,

we have

f(x) = Ex
(
β1

∫ t∧τ
π∗p

0
e−δsdL

π∗p
s + f(X

π∗p
t∧τπ∗p )e−δ(t∧τ

π∗p )
)
. (A.8)
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Letting t →∞ yields

f(x) = Ex
(
β1

∫ τ
π∗p

0
e−δsη

π∗p
s dM(s)

)
= V (x, π∗p), (A.9)

which, together with f(x) ≥ V (x), implies that f(x) = V (x) = V (x, π∗p) and π∗p is the

associated optimal strategy.

(ii) If M g(0) = g(0) and g(0) ≥ 0, then g(x) satisfies conditions of Theorem 5.1,

g(x) ≥ V (x). From (4.3) and (4.4) we know, under the strategy π∗r ,

∫ t∧τπ∗r

0
e−δsL η

π∗r
s g(Xπ∗r

s )ds = 0. (A.10)

Furthermore, (4.5)-(4.8) indicate that

∞∑
n=1

e−δτ
π∗r
n

[
g(Xπ∗r

s− + ξπ∗r
n )− g(Xπ∗r

s−)
]
I{τπ∗r

n ≤t∧τπ∗r }

=
∞∑

n=1
e−δτ

π∗r
n

[
g(ξπ∗r

n )− g(0)
]
I{τπ∗r

n ≤t∧τπ∗r } =
∞∑

n=1
e−δτ

π∗r
n (β2ξ

π∗r
n + K)I{τπ∗r

n ≤t∧τπ∗r }. (A.11)

Replacing π, τπ, v by π∗r , τπ∗r = ∞, g in Itô formula (A.1) and taking expectations, we have

g(x) = Ex(e−δtg(Xπ∗r
t ))

+Ex
(
β1

∫ t

0
e−δsηπ∗r

s dM(s)−
∞∑

n=1
e−δτ

π∗r
n (β2ξ

π∗r
n + K)I{τπ∗r

n ≤t}

)
. (A.12)

Letting t →∞, the first term on the right hand side vanishes. Then we obtain

g(x) = Ex
(
β1

∫ t

0
e−δsηπ∗r

s dM(s)−
∞∑

n=1
e−δτ

π∗r
n (β2ξ

π∗r
n + K)I{τπ∗r

n ≤t}

)
= V (x, π∗r ), (A.13)

which, together with g(x)≥V (x), implies that g(x)=V (x)=V (x, π∗r ) and π∗r ={Lπ∗r ;Gπ∗r}
is associated optimal strategy.
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带交易费用和指数观察时间间隔的最优分红注资策略

姚定俊 郭文旌

(南京财经大学金融学院, 南京, 210023)

徐 林

(安徽师范大学数学计算机科学学院, 芜湖, 241003)

本文中我们考虑比例交易费用和固定交易费用影响下的最优分红与注资策略问题. 我们假设如有必要公

司随时可以得到注资以避免破产, 但是只有在参数为γ > 0的泊松过程的跳跃时刻才可能分红. 为了最大化破

产前分红现值与注资现值之差, 我们寻找最优的分红和注资策略. 通过求解相应的脉冲控制问题, 我们找到了

依赖于模型参数的显示解. Løkka和Zervos (2008)中的已知结果可以看成是本文结果在γ →∞时的极限情形.

关键词: 分红, 注资, 交易费用, 最优策略, 指数观察时间.
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