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Abstract

In this paper, we establish maximal inequalities, exponential inequalities and Marcinkiewicz-

Zygmund inequality for partial sum of random variables which are independent on an upper expec-

tation space. As applications, we give the complete convergence for the partial sum of independent

random variables on upper expectation space.
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§1. Introduction

The inequalities of partial sum of independent random variables paly an important

role in classical probability theory. In this paper, we will consider the inequalities for

sum of random variables which are independent on an upper expectation space, where the

independence is used the definition introduced by Peng (2007). The idea of this paper is

inspired by the inequalities of demimartingales and N -demimartingales (see Christofides

and Hadjikyriakou, 2009; Hadjikyriakou, 2011; Lin and Bai, 2010; Newman and Wright,

1982; Rio, 2009; Sung, 2011). Next we introduce the notations and lemmas which will be

useful in this paper.

Let (Ω,F) be a measurable space, and M be the set of all probability measures on

(Ω,F). Every non-empty subset P ⊆M defines an upper probability

V (A) := sup
P∈P

P(A), A ∈ F ,
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and a lower probability

v(A) := inf
P∈P

P(A), A ∈ F .

Obviously V (·) and v(·) are conjugate to each other, that is

V (A) + v(Ac) = 1,

where Ac is the complement set of A.

Definition 1.1 (quasi-surely, see Denis et al., 2011) A set D is a polar set if

V (D) = 0 and a property holds “quasi-surely” (q.s. for short) if it holds outside a polar

set.

For every non-empty subset P ⊆M, we set

L0(Ω) := {X : X is F-mearsurable and for all P ∈ P, EP[X] exists}.

Now we define the upper expectation Eu[·] (following Huber and Strassen, 1973) and the

lower expectation El[·] on (Ω,F) generated by P. For each X ∈ L0(Ω), define

Eu[X] := sup
P∈P

EP[X], El[X] := inf
P∈P

EP[X].

(Ω,F ,P,Eu) is called an upper expectation space and (Ω,F ,P,El) is called a lower ex-

pectation space.

It is easy to check that El[X] = −Eu[−X] and Eu[·] is a sub-linear expectation (more

details can see Peng, 2010) on (Ω,F), in other words, Eu[·] satisfies the following properties

(1)-(4): for all X,Y ∈ L0(Ω),

(1) Monotonicity: X ≥ Y implies Eu[X] ≥ Eu[Y ];

(2) Constant preserving: Eu[c] = c, ∀ c ∈ R;

(3) Positive homogeneity: Eu[λX] = λEu[X], ∀λ ≥ 0;

(4) Sub-additivity: Eu[X + Y ] ≤ Eu[X] + Eu[Y ].

By properties (2) and (4), it is easy to check that Eu[·] satisfies translation invariance, that

is, for any constant c, Eu[X + c] = Eu[X] + c.

For p > 0, we set

Lp := {X ∈ L0(Ω) : Eu[|X|p] <∞};

N p := {X ∈ L0(Ω) : Eu[|X|p] = 0};

N := {X ∈ L0(Ω) : X = 0, q.s.}.
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From Denis et al. (2011) we know that N p = N , and Lp := Lp/N is a Banach space under

norm ‖X‖p := (Eu[|X|p])1/p for p ≥ 1, as well Lp := Lp/N is a complete metric space

under the distance d(X,Y ) := Eu[|X − Y |p] for 0 < p < 1.

Definition 1.2 (independence under upper expectation, see Peng, 2007) Let (Ω,

F ,P,Eu) be an upper expectation space, X1, X2, . . . , Xn be a sequence of random variables

such that Xi ∈ L1, i = 1, . . . , n. Random variable Xn is said to be independent to random

vector Y := (X1, . . . , Xn−1) under Eu[·] (or P), if for each measurable function ϕ on Rn

with ϕ(Y,Xn) ∈ L1 and ϕ(y,Xn) ∈ L1 for all y ∈ Rn−1, we have

Eu[ϕ(Y,Xn)] = Eu[Eu[ϕ(y,Xn)]y=Y ].

A sequence of random variables {Xi}∞i=1 is said to be an independent sequence if Xi+1 is

independent to Y := (X1, . . . , Xi) for each i ∈ N∗.

The following lemma which has been proved in Peng (2010) is very useful in upper

expectation theory.

Lemma 1.1 Let (Ω,F ,P,Eu) be an upper expectation space and X,Y be two

random variables such that Eu[Y ] = El[Y ], then

Eu[X + αY ] = Eu[X] + αEu[Y ], ∀α ∈ R.

In particular, if Eu[Y ] = El[Y ] = 0, then Eu[X + αY ] = Eu[X].

Lemma 1.2 Let (Ω,F ,P,Eu) be an upper expectation space and random variable

X is independent to random vector Y := (X1, . . . , Xn) and Eu[X] = El[X] = 0. Then for

each measurable function ϕ on Rn such that Xϕ(Y ) ∈ L1, we have

Eu[Xϕ(Y )] = 0.

It is easy to check Lemma 1.2 hold, so we omit the proof.

Remark 1 In the remainder of this paper, we always suppose that {Xi}∞i=1 is a

sequence of independent random variables on upper expectation space (Ω,F ,P,Eu) with

Eu[Xi] = El[Xi] = 0 for i ∈ N∗. The partial sum sequence of {Xi}∞i=1 is denoted by

{Sn}∞n=1, that is Sn :=
n∑
i=1

Xi.

The rest of this paper is organized as follows. In Section 2, we establish the maximal

inequalities. In Section 3, we derive the exponential inequalities and their applications.

The Marcinkiewicz-Zygmund inequality and its applications are given in Section 4.
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§2. Maximal Inequalities

For n ∈ N∗, we set

Mn := max(S1, . . . , Sn), mn := min(S1, . . . , Sn),

and the more general rank orders

Sn,j :=

j-th largest of (S1, . . . , Sn), if j ≤ n,

min(S1, . . . , Sn), if j > n.

It is obvious that Sn,1 = Mn.

Theorem 2.1 Let f(·) be a nondecreasing function on R with f(0) = 0, then for

any n, j ∈ N∗,

Eu
[ ∫ Sn,j

0
u df(u)

]
≤ Eu[Snf(Sn,j)], (2.1)

in particular for any λ > 0,

V (Sn,j ≥ λ) ≤ λ−1Eu[I{Sn,j≥λ}Sn]. (2.2)

Proof For fixed n, j ∈ N∗, let Yk = Sk,j and Y0 = 0, then

Snf(Yn) =
n−1∑
k=0

Sk+1(f(Yk+1)− f(Yk)) +
n−1∑
k=1

(Sk+1 − Sk)f(Yk). (2.3)

It can be deduced from the definition of Sn,j that

for k < j, either Yk = Yk+1 or Sk+1 = Yk+1,

for k ≥ j, either Yk = Yk+1 or Sk+1 ≥ Yk+1.

Thus for any k,

Sk+1(f(Yk+1)− f(Yk)) ≥ Yk+1(f(Yk+1)− f(Yk)) ≥
∫ Yk+1

Yk

udf(u).

So equality (2.3) yields

Snf(Yn) ≥
∫ Yn

0
udf(u) +

n−1∑
k=1

(Sk+1 − Sk)f(Yk).

Taking Eu[·] on both sides of the above inequality, we have

Eu[Snf(Sn,j)] = Eu[Snf(Yn)] ≥ Eu
[ ∫ Yn

0
udf(u) +

n−1∑
k=1

Xk+1f(Yk)
]

≥ Eu
[ ∫ Sn,j

0
udf(u)

]
−
n−1∑
k=1

Eu[−Xk+1f(Yk)]

= Eu
[ ∫ Sn,j

0
udf(u)

]
,
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where the last equality follows from Lemma 1.2. Therefore, inequality (2.1) is proved.

Taking f(u) be the indicator function Iu≥λ, we can obtain inequality (2.2) from (2.1).

�

Corollary 2.1 For any λ > 0, t < 0, we have

V (Mn ≥ λ) ≤ λ−1Eu[I{Mn≥λ}Sn], (2.4)

and

V (mn ≤ t) ≤ t−1El[I{mn≤t}Sn]. (2.5)

Proof Inequality (2.4) can be obtained easily from Theorem 2.1 since Mn = Sn,1.

To prove inequality (2.5), define Zi := −Xi, then {Zi}∞i=1 is a sequence of independent

random variables on upper expectation space (Ω,F ,P,Eu) with Eu[Zi] = El[Zi] = 0 and
n∑
i=1

Zi = −Sn. Note that

{mn ≤ t} =
{

max
1≤i≤n

(−Si) ≥ −t
}
.

It follows from Theorem 2.1 that

V (mn ≤ t) = V
(

max
1≤i≤n

(−Si) ≥ −t
)

≤ −t−1Eu
[
− I{

max
1≤i≤n

(−Si)≥−t
}Sn]

= t−1El
[
I{mn≤t}Sn

]
. �

Corollary 2.2 For any p > 1, if further assume {Xi}∞i=1 ⊆ Lp, then for any 0 ≤
λ1 < λ2,

V (Mn ≥ λ2) ≤ (λ2 − λ1)−1E1/p
u [|Sn|p]V (Sn ≥ λ1)1/q, (2.6)

where 1/p+ 1/q = 1. In particular, when p = 2, we have

V (Mn ≥ λ2) ≤ (λ2 − λ1)−1
( n∑
i=1

σ2i

)1/2
V (Sn ≥ λ1)1/2, (2.7)

where σ2i = Eu[X2
i ].

Proof Taking λ = λ2 in (2.4), we have

V (Mn ≥ λ2) ≤ λ−12 Eu
[
I{Mn≥λ2}Sn

]
≤ λ−12

(
Eu
[
I{Sn≥λ1}Sn

]
+ Eu

[
I{Mn≥λ2,Sn<λ1}Sn

])
≤ λ−12

(
Eu
[
I{Sn≥λ1}Sn

]
+ λ1V (Mn ≥ λ2)

)
.
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Therefore

V (Mn ≥ λ2) ≤ (λ2 − λ1)−1Eu[I{Sn≥λ1}Sn] ≤ (λ2 − λ1)−1E1/p
u [|Sn|p]V (Sn ≥ λ1)1/q,

where the last inequality is obtained by Hölder inequality under upper expectation space

(see Chen et al., 2013). Hence inequality (2.6) is proved. Since {Xi}∞i=1 be a sequence of

independent random variables with Eu[Xi] = El[Xi] = 0, from Lemma 1.1 and Lemma 1.2,

we can get Eu[|Sn|2] =
n∑
i=1

Eu[X2
i ]. Then we can obtain inequality (2.7) from inequality

(2.6). �

§3. Exponential Inequalities and Their Applications

Theorem 3.1 Let {ci}∞i=1 be positive real numbers, and random variables |Xi| ≤
ci, ∀ i ∈ N∗. Then for any ε ≥ 0,

V (Sn ≥ nε) ≤ exp

(
−n2ε2

2
n∑
i=1

c2i

)
(3.1)

and

V (|Sn| ≥ nε) ≤ 2 exp

(
−n2ε2

2
n∑
i=1

c2i

)
. (3.2)

Proof Let t ∈ R+ and x ∈ [−ci, ci]. We can write

tx =
(1

2
+

x

2ci

)
cit+

(1

2
− x

2ci

)
(−cit).

By the convexity of the exponential function we have

etx ≤ cosh(cit) +
x

ci
sinh(cit).

Thus

Eu[etSn ] = Eu
[ n∏
i=1

etXi

]
≤ Eu

[ n∏
i=1

(
cosh(cit) +Xi

sinh(cit)

ci

)]
.

Now, we want to show the following inequality

Eu[etSn ] ≤
n∏
i=1

cosh(cit), ∀ t ≥ 0. (3.3)

Firstly, we notice that

Eu[etS1 ] ≤ Eu
[

cosh(c1t) +X1
sinh(c1t)

c1

]
= cosh(c1t) +

sinh(c1t)

c1
Eu[X1] = cosh(c1t),
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where the last equality follows from Eu[X1] = 0. Therefore inequality (3.3) is true for

n = 1. Assume that inequality (3.3) holds for n = k. We consider the case n = k + 1.

Eu[etSk+1 ] = Eu[etXk+1 · etSk ]

≤ Eu
[(

cosh(ck+1t) +Xk+1
sinh(ck+1t)

ck+1

)
· etSk

]
≤ cosh(ck+1t)Eu[etSk ] +

sinh(ck+1t)

ck+1
Eu[Xk+1e

tSk ]

≤
k+1∏
i=1

cosh(cit),

where the last inequality follows from Lemma 1.2 and the induction hypothesis. Thus

inequality (3.3) is established.

Since cosh(cit) ≤ ec
2
i t

2/2, by inequality (3.3) we have

Eu[etSn ] ≤ exp

( t2 n∑
i=1

c2i

2

)
.

For any ε, t > 0

V (Sn ≥ nε) = V (etSn ≥ etnε) ≤ e−tnεEu[etSn ] ≤ exp

(
− tnε+

t2
n∑
i=1

c2i

2

)
.

The above upper bound is minimized by choosing t = nε
/ n∑
i=1

c2i . Hence, the inequality

(3.1) is established.

To prove inequality (3.2), note that

V (|Sn| ≥ nε) ≤ V (Sn ≥ nε) + V (−Sn ≥ nε)

and {−Xi}∞i=1 is also a sequence of independent random variables on upper expectation

space (Ω,F ,P,Eu) with Eu[−Xi] = El[−Xi] = 0 for i ∈ N∗. Then we can get inequality

(3.2) by applying inequality (3.1) twice. �

Corollary 3.1 If {Xi}∞i=1 is uniformly bounded, in other words, there exists c > 0

such that for any i ∈ N∗, |Xi| ≤ c. Then we have

V (Sn ≥ nε) ≤ exp
(−nε2

2c2

)
and V (|Sn| ≥ nε) ≤ 2 exp

(−nε2
2c2

)
.

The next two asymptotic results concern the complete convergence for the partial

sum of bounded independent random variables on upper expectation space (Ω,F ,P,Eu)

with Eu[Xi] = El[Xi] = 0 for i ∈ N∗.

《
应

用
概

率
统

计
》

版
权

所
有



8 A^VÇÚO 1n��ò

Theorem 3.2 If |Xi| ≤ c <∞ for i ∈ N∗, then for r > 1/2, n−rSn → 0 q.s.

Proof From Corollary 3.1 we get

∞∑
n=1

V (|Sn| ≥ nrε) ≤ 2
∞∑
n=1

exp
(−n2r−1ε2

2c2

)
<∞.

By Borel-Cantelli lemma on upper expectation space (see Chen et al., 2013), we complete

the proof of this theorem. �

Theorem 3.3 Let {ci}∞i=1 be positive real numbers and |Xi| ≤ ci, i ∈ N∗. Assume

that
∞∑
i=1

c2i <∞. Then for any r > 0, we have n−rSn → 0 q.s.

Proof From Theorem 3.1 we get

∞∑
n=1

V (|Sn| ≥ nrε) ≤ 2
∞∑
n=1

exp

(
−n2n2r−2ε2

2
n∑
i=1

c2i

)
= 2

∞∑
n=1

exp

(
−n2rε2

2
n∑
i=1

c2i

)

≤ 2
∞∑
n=1

exp

(
−n2rε2

2
∞∑
i=1

c2i

)
<∞.

By Borel-Cantelli lemma on upper expectation space (see Chen et al., 2013), we complete

the proof of this theorem. �

§4. Marcinkiewicz-Zygmund Inequality and Its

Applications

The following lemma will be useful in the proof of Marcinkiewicz-Zygmund inequality.

The proof follows from standard arguments and it is therefore omitted.

Lemma 4.1 Let a, b be real numbers and p ∈ (1, 2], then

|a+ b|p ≤ |a|p + p|a|p−1sign(a)b+ 22−p|b|p.

The following theorem gives a Marcinkiewicz-Zygmund inequality for {Sn}∞n=1.

Theorem 4.1 For p ∈ (1, 2], we have

‖Sn‖pp ≤ ‖X1‖pp + 22−p
n−1∑
j=1
‖Xj+1‖pp ≤ 22−p

n∑
j=1
‖Xj‖pp.

Proof By applying Lemma 4.1 for a = Sj , b = Xj+1, we have

Eu[|Sj+1|p] ≤ Eu[|Sj |p] + pEu[|Sj |p−1sign(Sj)Xj+1] + 22−pEu[|Xj+1|p]

= Eu[|Sj |p] + 22−pEu[|Xj+1|p],
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where the last equality follows from Lemma 1.2 forXj+1 being independent to (X1, . . . , Xj)

and Eu[Xj+1] = El[Xj+1] = 0. By induction we have

Eu[|Sn|p] ≤ Eu[|X1|p] + 22−p
n∑
j=2

Eu[|Xj |p] = ‖X1‖pp + 22−p
n∑
j=2
‖Xj‖pp

≤ 22−p
n∑
j=1
‖Xj‖pp. �

Theorem 4.2 Let p ∈ (1, 2], ‖Xj‖p < cj <∞ for j ∈ N∗. Then for any ε > 0, we

have

V (|Sn| > nε) ≤ 4

(2nε)p

n∑
j=1

cpj .

Proof By Theorem 4.1 and ‖Xj‖p < cj , we have

Eu[|Sn|p] ≤ 22−p
n∑
j=1
‖Xj‖pp ≤ 22−p

n∑
j=1

cpj .

Thus for any ε > 0,

V (|Sn| > nε) ≤ Eu[|Sn|p]
npεp

≤ 4

(2nε)p

n∑
j=1

cpj . �

Theorem 4.3 Let ‖Xj‖p < cj <∞, for j ∈ N∗. Consider the following conditions

for p ∈ (1, 2]:

(i)
∞∑
j=1

cpj <∞ and let r be a positive number such that pr > 1;

(ii)
n∑
j=1

cpj = O(nα) where α is a positive number and let r be a positive number such

that pr − 1 > α.

If any one of the above conditions is true, then n−rSn → 0, q.s.

Proof From the Borel-Cantelli lemma under upper expectation space (see Chen et

al., 2013), we only need to prove
∞∑
n=1

V (|Sn| > nrε) <∞.

Assume that (i) is true. From Theorem 4.2, we have

∞∑
n=1

V (|Sn| > nrε) ≤ 4

(2ε)p

∞∑
n=1

n∑
j=1

cpj

npr
≤ 4

(2ε)p

∞∑
n=1

∞∑
j=1

cpj

npr
<∞.

Now assume that condition (ii) is valid. Using Theorem 4.2, for pr − 1 > α, we have

∞∑
n=1

V (|Sn| > nrε) ≤
∞∑
n=1

4

(2ε)p
1

npr
O(nα) ≤ 4

(2ε)p

∞∑
n=1

O(nα−pr) <∞. �
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