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Abstract

This article considers Bayesian inference of the linear regression model with one change point

in observations, provided that the prior distribution of the change point is the beta-binomial distri-

bution or the power prior introduced by Ibrahim et al. (2003) and the variances of the observations

on two sides of the change point are the same. We get closed forms of the posterior distributions

of the change point, the regression coefficients and the common variance. This not only generalizes

the result of Ferreira (1975) from the the discrete uniform prior distribution of the change point

t to the beta-binomial distribution which can well describe the shape of the change point distri-

bution, but also can be further generalized to the power prior distribution of the change point,

which included the historical information. Simulation shows higher performance or accuracy of the

Bayesian method when the change point follows the beta-binomial and power prior.

Keywords: Beta-binomial prior, power prior, change point, Bayesian estimation, linear

model.
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§1. Introduction

The change point is a specific parameter that is introduced to account for the abrupt

change in a non-smooth manner at a particular point in time. Typically, there exist two

types of change points. The first one is in change of the location of independent variables

of the observations. The second one is in the change of the observations themselves. The

main difference of them is that in the first change-point problem the independent variables

are in the natural order of time, while in the second model the indices of the observations

are the time scales. In other words, the first change-point model consists of two segments
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while the second is a sort of mixture of two models. Take linear regression model with

only one change point for example. Let (x1, y1), (x1, y2), . . . , (xn, yn) be the observations

of size n. The first kind of change-point simple linear regression model with one change

point can be expressed as

y(i) =

a1x(i) + b1 + ε1, 1 ≤ i ≤ t;

a2x(i) + b2 + ε2, t < i ≤ n,

where a1 6= a2 and (x(t), y(t)) or simply t is the change point which is the cut point for the

independent variables. The second type has the form as follows.

yi =

a1xi + b1 + ε1, 1 ≤ i ≤ t;

a2xi + b2 + ε2, t < i ≤ n,

where a1 6= a2 and (xt, yt) or simply t is the change point which is the cut point for the

observations. In both types of change-point problems, the distributions of ε1 and ε2 can

be the same or not.

The change-point problem occurs frequently in medical research, product life time

degradation experiment and time series data. For example, cancer incidence rates remain

relatively stable for people at a younger age, but change drastically after a certain age

threshold (MacNeill and Mao, 1995). The data obtained from a group of preschool boys

indicates that their weight/height ratio relates to their age in one way before a certain age

but that the functional relation of the two changes afterwards (Gallant, 1977). Example

arises from a study of the risk of myocardial infarction, which showed a sharp decrease

in risk at low alcohol intakes and a dramatic increase after reaching a certain a mount

of daily alcohol consumption (Pastor and Guallar, 1988). These three examples are the

first type of change-point regression models. Another example is that two or more testers

get samples from one experiments and the differences of testers may lead to the different

results of the experiment. This may lead to the second type of the change-point problem.

In this paper we only discuss the second type of change-point problem in the regression

setting and we mean the second one in the later discussion if not otherwise stated.

From the perspective of the development of statistics, methods about change-point

problems are not mature. For specific problems, there have been some particular effective

methods including Bayesian method, Schwarz information criterion method, maximum

likelihood method, nonparametric method and the least square method et al. Ferreira

(1975) estimated the parameters of linear regression model with one change point using the

Bayesian method. Chin Choy and Broemeling (1980) dealt with the problem of generalized

linear regression model with one change point.
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Ferreira (1975) used the discrete uniform distribution as the prior distribution of the

change point. We generalize the result of Ferreira (1975) from the discrete uniform prior to

the beta-binomial prior and power prior, which helps elicit useful historical data or prior

information in practice for the change point. Beta-binomial distribution, a compound

distribution of the binomial distribution binom(n, p) with respect to the beta distribution

beta(a, b) for the success probability p, is the one dimension discrete random variable

distribution taking integral values from 0 to n and resembles the the shape of the beta

distribution which takes continuous values from 0 to 1, though. Power prior (Ibrahim

et al., 2003) is an informative prior that incorporate the historical data into the current

study by quantifying it with a suitable prior distribution on the model parameter.

The structure of the paper is as follows. In Section 1, we introduce the change-

point problem for linear regression model and Section 2 gives the assumptions needed for

the Beysian inference. Section 3 gives the technique development of Bayesian analysis

of linear regression model with one change point and presents the closed forms of the

marginal posterior distribution of the parameters. Section 4 is a numerical example which

shows the effectiveness of the Bayesian estimation.

§2. Bayesian Analysis

2.1 Assumptions

Assume that (x1, y1), (x2, y2), . . . , (xn, yn) are n pairs of observations which follow the

linear regression model with change point t. That is,

yi =

a1(xi − x1) + b1 + εi, Var (yi) = σ2, i = 1, . . . , t;

a2(xi − x2) + b2 + εi, Var (yi) = σ2, i = t+ 1, . . . , n,
(2.1)

where

x1 =
1

t

t∑
i=1

xi, y1 =
1

t

t∑
i=1

yi, x2 =
1

n− t
n∑

i=t+1
xi, y2 =

1

n− t
n∑

i=t+1
yi.

To establish the linear regression model, four points are needed at least and t = 2, 3, . . . , n−
2.

The regression coefficients in the first part of the model are not exactly the same as the

second part of the model. In addition, we assume for simplicity that Var (yi) = σ2, i =

1, . . . , n. The main purpose of the paper is the estimation of the unknown parameters

t, a1, b1, a2, b2 and σ2.

We further assume that

1. all prior distributions of the parameters are independent.
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2. the prior distributions of the regression coefficients a1, b1, a2 and b2 in the quadratic

linear regression model (2.1) follows the flat distribution on (−∞,∞).

3. the prior distribution of the variance σ2 follows the conjugate inverse gamma dis-

tribution IG(α, λ) with pdf

π(σ2) =
λα

Γ(α)

( 1

σ2

)α+1
exp

{
− λ

σ2

}
, (2.2)

where λ and α are hyper-parameters and Γ(α) is the gamma function, Γ(α)=
∫∞
0 tα−1e−tdt.

Notice that the inverse gamma distribution with α = 0 and λ = 0 is a noninformative

prior for σ2; that is π(σ2) ∝ 1/σ2.

4. two kinds of prior distribution of the change point t are considered here. The first

one is beta-binomial, beta-bin(n, a, b), whose probability mass function (pmf) is defined

as

π(t|n, a, b) =

(
n

t

)
B(t+ a, n− t+ b)

B(a, b)
, t = 0, 1, . . . , n, (2.3)

where n is the sample size, a and b are the hyper-parameters, and B(x, y) is the beta

function defined as B(x, y) =
∫ 1
0 t

x−1(1− t)y−1dt.
Beta-binomial distribution, also called negative hypergeometric or Polya distribution,

is the compound distribution of the beta and binomial distributions. In the Bayesian

setting, it is obtained as the marginal distribution of the number of successes in n Bernoulli

trials which follows a binomial distribution, for the success proportion or the probability

of success when it takes the conjugate beta prior Beta(a, b). A beta-binomial distribution

returns a integer value between 0 and n. It can be looked upon as the discrete counterpart

of the beta distribution which returns a continuous value between 0 and 1. See Figure 1

for the comparison of the beta and beta-binomial distributions for different combinations

of a and b given n = 20. As mentioned earlier, for the change-point problem we discuss, t

only takes values of 2, 3, . . . , n− 2.

Another prior distribution of change point t is the power prior. Denote D(n, y,X)

as the current study data, where n denotes the sample size, y denotes the n× 1 response

vector, and X the n × p covariates matrix. Similarly, the historical data is denoted by

D0(n0, y0, X0). Further, the marginal likelihood of the change point t which can be got

by integrating the joint likelihood with respect to other parameters is denoted by L(t|D).

Let π0(t) denote the prior distribution before the historical data, in this paper π0(t) ∝ 1.

Given a0, we define the power prior distribution of t for the current study as

π(t|D0, a0) ∝ L(t|D0)
a0π0(t), (2.4)

where a0 is a scalar parameter that weights the historical data relative to the likelihood

for the current study.
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Figure 1 Comparison of beta and beta-binomial distributions

2.2 Model Formulation

According to Bayesian formulation, the likelihood function of the linear regression

model (2.1) with one change point is as follows,

L(θ|τ )

=
( 1√

2πσ

)n
exp

{
− 1

2σ2

[ t∑
i=1

(yi − a1(xi − x1)− b1)2 +
n∑

i=t+1
(yi − a2(xi − x2)2 − b2)2

]}
=
( 1√

2πσ

)n
exp

{
− 1

2σ2

[ t∑
i=1

((yi − y1)− a1(xi − x1)− (b1 − y1))2

+
n∑

i=t+1
((yi − y2)− a2(xi − x2)− (b2 − y2))2

]}
,

where θ = (a1, a2, b1, b2, σ
2, t), τ = {(xi, yi), i = 1, 2, . . . , n}, t = 2, 3, . . . , n− 2.
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For the sake of simplicity, let

T 2
1 =

t∑
i=1

((yi − y1)− a1(xi − x1)− (b1 − y1))2,

T 2
2 =

n∑
i=t+1

((yi − y2)− a2(xi − x2)− (b2 − y2))2.

Then the likelihood function can be written as

L(θ|τ ) =
( 1√

2πσ

)n
exp

{
− 1

2σ2
(T 2

1 + T 2
2 )
}
.

Thus, given the priors of θ = (a1, a2, b1, b2, σ
2, t) above, we get the joint posterior distri-

bution of θ

π(θ|τ ) ∝ L(θ|τ )π(θ)

∝
( 1

σ2

)(n+2)/2
exp

{
− T 2

1 + T 2
2

2σ2

}
π(t), (2.5)

where π(t) is the prior distribution of the change point t, which can be either the beta-

binomial prior (2.3) or the power prior (2.4).

§3. Posteriors

For the convenience of the development of the posterior distributions of the regression

coefficients and the change point, we need to decompose T 2
1 and T 2

2 with the help of the

notations below

S
(1)
x2 =

t∑
i=1

(xi − x1)2, S
(2)
x2 =

n∑
i=t+1

(xi − x2)2,

S
(1)
y2 =

t∑
i=1

(yi − y1)2, S
(2)
y2 =

n∑
i=t+1

(yi − y2)2,

S(1)
xy =

t∑
i=1

(xi − x1)(yi − y1), S(2)
xy =

n∑
i=t+1

(xi − x2)(yi − y2),

S2
1 = S

(1)
y2 − S

(1)
xy

2
/S

(1)
x2 , S2

2 = S
(2)
y2 − S

(2)
xy

2
/S

(2)
x2 ,

S2 = S2
1 + S2

2 .

Then T 2
1 and T 2

2 can be decomposed into three terms,

T 2
1 = S2

1 + t(b1 − y1)2 + S
(1)
x2 (a1 − S(1)

xy /S
(1)
x2 )2,

T 2
2 = S2

2 + (n− t)(b2 − y2)2 + S
(2)
x2 (a2 − S(2)

xy /S
(2)
x2 )2.
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3.1 Marginal Posterior Distribution of t

According to the properties of χ2 and Student’s t distribution, integrating the join-

t posterior distribution function about σ2, b1, a1, b2 and a2 respectively, we can get the

marginal posterior distribution of t.

First, integrate (2.5) with respect to σ2, which can be regarded as an integration of

the density function the inverse gamma distribution with parameters λ = (T 2
1 +T 2

2 )/2 and

α = n/2. Then it gives ∫ ∞
0

( 1

σ2

)(n+2)/2
exp

{
− T 2

1 + T 2
2

2σ2

}
π(t)dσ2

=
Γ(n/2)

((T 2
1 + T 2

2 )/2)n/2
π(t) ∝ (T 2

1 + T 2
2 )−n/2π(t). (3.1)

Secondly, integrate (3.1) with respect to b1. With

B = S2
1 + S

(1)
x2 (a1 − S(1)

xy /S
(1)
x2 )2 + T 2

2 ,

we have ∫ ∞
−∞

(T 2
1 + T 2

2 )−(n+2)/2π(t)db1 =

∫ ∞
−∞

[t(b1 − y1)2 +B]−n/2π(t)db1

= B−n/2
∫ ∞
−∞

[
1 +

t(b1 − y1)2

B

]−n/2
π(t)db1

= B−n/2
∫ ∞
−∞

[
1 +

(
√

(n− 1)t/B(b1 − y1))2

n− 1

]−n/2
π(t)db1

∝ t−1/2B−(n−1)/2π(t). (3.2)

Let

A = S2
1 + T 2

2 .

Integrating (3.2) with respect to a1 gives rise to∫ ∞
−∞

t−1/2B−(n−1)/2π(t)da1 ∝ (tS
(1)
x2 )−1/2A−(n−2)/2π(t). (3.3)

Similarly, integrating (3.3) with respect to b2 and a2 respectively, we get the posterior

distribution of t,

π(t|τ ) ∝ (t(n− t)S(1)
x2 S

(2)
x2 )−1/2(S2)−(n−4)/2π(t), t = 2, 3, . . . , n− 2.

3.2 Marginal Posterior Distributions of a1 and a2

Similar to the process of getting the marginal posterior distribution of t, integrating

(2.5) with respect to σ2, b1, a1 and b2 in turn and adding all values up with respect to t,
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we can get the posteriors of a2.

π(a2|τ ) ∝
n−2∑
t=2

(
1 +

(a2 − S(2)
xy /S

(2)
x2 )2

S2/S
(2)
x2

)−(n−3)/2 π(t|τ )

(S2/S
(2)
x2 )

1/2
.

Similarly, we get the marginal posterior distribution of a1 as follows,

π(a1|τ ) ∝
n−2∑
t=2

(
1 +

(a1 − S(1)
xy /S

(1)
x2 )2

S2/S
(1)
x2

)−(n−3)/2 π(t|τ )

(S2/S
(1)
x2 )

1/2
.

Thus, the marginal posterior distribution of aj (j = 1, 2) is a weighted non-standar-

dized Student’s t distribution with location S
(j)
xy /S

(j)
x2 , scale S2/S

(j)
x2 and degree of freedom

n− 4. The weights are π(t|τ ), t = 2, 3, . . . , n− 2, the posterior probability mass function

values.

3.3 Marginal Posterior Distributions of b1 and b2

In a similar manner, integrating (2.5) with respect to σ2, a1, b1 and a2 in turn and

adding all values up with respect to t, we can get the marginal posterior distribution of

b2 is

π(b2|τ ) ∝
n−2∑
t=2

(
1 +

(b2 − y2)2

S2/(n− t)

)−(n−3)/2 π(t|τ )

(S2/(n− t))1/2
.

And the marginal posterior distribution of b1 is

π(b1|τ ) ∝
n−2∑
t=2

(
1 +

(b1 − y1)2

S2/t

)−(n−3)/2 π(t|τ )

(S2/t)1/2
.

Thus we see that the marginal posterior distribution of bj (j = 1, 2) is a weighted non-

standardized Student’s t distribution with location yj , scale S2/t and degree of freedom

n− 4. The weights are values of the posterior probability mass function π(t|τ ).

3.4 Marginal Posterior Distribution of σ2

Integrating (2.5) with respect to b1, a1, b2 and a2 respectively according to the property

of normal distribution and adding up all values of t, we can get the marginal posterior

distribution σ2.

π(σ2|τ ) ∝
n−2∑
t=2

(S2

σ2

)(n−6)/2
e−S

2/(2σ2)S2π(t|τ ).

Therefore, the marginal posterior distribution of σ2 has the nice property that it is a

mixture of inverse gamma distributions with shape parameter (n−8)/2 and rate parameter

S2/2. The weights are still the values of π(t|τ ).
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§4. Numerical Example

Here, we analysis the data given in Quandt (1958) and Ferreira (1975) using Bayesian

Method. These data were created accordingly to the model

yi =

0.7(xi − x1) + 9.15 + εi, i = 1, . . . , 12;

0.5(xi − x2) + 11 + εi, i = 13, . . . , 20,

where the error were generated following a N(0, 1) distribution.

And here we using five prior distributions of change point. The first three were used

by Ferreira (1975) and the last two are beta-binomial distribution and the power prior

which are introduced in this paper. Figure 2 shows their pmf.

π1(t) ∝ 1,

π2(t) ∝ (t(n− t))1/2,

π3(t) ∝
(
t(n− t)S(1)

x2 S
(2)
x2

)1/2
,

π4(t) ∝
(
n

t

)
B(t+ 8, n− t+ 5)

B(8, 5)
,

π5(t) ∝
(
t0(n0 − t0)S(1)

x20S
(2)
x20

)1/2
.

The deviation and mean squared errors of the estimates computed with 1000 repetitions

are listed in Table 1. Note that the MSE under π3 is smaller than others. And the marginal

distribution of five priors are given in Figures 3-7.

Table 1 Bayesian estimates corresponding to five prior distributions

prior t a1 a2 b1 b2 σ2

π1 -0.10483 -0.0027229 -0.0016050 0.033114 -0.10193 0.11909

π2 -0.12949 -0.0016373 -0.0009565 0.021626 -0.09612 0.11259

Deviation π3 -0.16703 0.0006213 -0.0036355 0.005348 -0.08512 0.09940

π4 0.02223 -0.0035617 -0.0098051 0.040395 -0.04365 0.09344

π5 -0.03395 -0.0034710 -0.0028541 0.012081 -0.06851 0.10158

π1 4.64793 0.7167612 8.0472600 0.328598 0.31405 0.24564

π2 4.11569 0.5715159 7.1300023 0.295608 0.28802 0.23424

MSE π3 2.68788 0.0139487 0.0370354 0.179114 0.22453 0.21075

π4 1.75436 0.0156827 5.3347231 0.139908 0.25037 0.21295

π5 3.34804 0.5813534 5.8202566 0.259134 0.25545 0.21595
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Figure 2 Prior distriburtions of the change point
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Figure 3 Marginal posterior distributions under prior π1(t)
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Figure 4 Marginal posterior distributions under prior π2(t)

5 10 15

0.
0

0.
4

π3(t|x,y) 

t

π 3
(t

|x
,y

) 

0 1 2 3 4 5 6

π3(σ
2|x,y) 

σ2

π 3
(σ

2 |x
,y

) 

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

π3(a1|x,y) 

a1

π 3
(a

1|
x,

y)
 

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

π3(a2|x,y) 

a2

π 3
(a

2|
x,

y)
 

6 8 10 12 14

π3(b1|x,y) 

b1

π 3
(b

1|
x,

y)
 

6 8 10 12 14

π3(b2|x,y) 

b2

π 3
(b

2|
x,

y)
 

Figure 5 Marginal posterior distributions under prior π3(t)
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Figure 6 Marginal posterior distributions under prior π4(t)
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Figure 7 Marginal posterior distributions under prior π5(t)
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§5. Conclusion and Remarks

Beta-binomial distribution is selected as the prior of the change point, because beta-

binomial distribution with different parameters can well describe the prior information of

the change point. And power that incorporate the historical data into the current study

can well describe the historical information. According to the properties of χ2 distribution

and Student’s t distribution, we get closed forms of the marginal posterior distributions of

the change point, the regression coefficients and the common variance. Simulation shows

higher performance or accuracy of the Bayesian method when the prior distribution of the

change point follows the beta-binomial distribution.

Some further work can be done and under our investigation.

1. regression models with difference variances;

2. regression models with multiple change points;

3. regression models with changes occur as independent variables instead of time or

observation, as mentioned in MacNeill and Mao (1995), Gallant (1977) and Pastor and

Guallar (1998);

4. generalized linear models with change points.
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