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Abstract

Bridge regression, a special family of penalized regressions of a penalty function
∑
|βj |γ with

γ > 0, has been studied in many literatures. In this paper, we provide some theoretical results of

how the shrinkage rule changing with γ under two settings: γ ≥ 1 and 0 < γ < 1, respectively.

Simulation results are conducted to evaluate the performance of the proposed method.
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§1. Introduction

Consider the linear model

Yi = x′iβ0 + εi, i = 1, 2, . . . , n, (1.1)

where Yi ∈ R1 is a response variable, xi ∈ Rp is a p × 1 covariate vector, and the εi’s

are i.i.d. model errors. Without loss of generality, we assume that the response Yi and

covariates xi are centered to have mean zero. This results in a vanished intercept term,
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and we can concentrate on the estimation for the unknown coefficient β0. It is known that

variable selection is a crucial step in high-dimensional modelling and various powerful

penalization methods have been developed for variable selection in parametric models.

The usual method for estimating β0 is proposed by minimizing the penalized least squares

objective function

Ln(β) =
n∑
i=1

(Yi − x′iβ)2 + λn
p∑
j=1
|βj |γ , (1.2)

where λn is a penalty parameter. For any given γ > 0, the minimizer β̂n of (1.2) is called

a bridge estimator by Frank and Friedman (1993), who introduced it as a generalization

of ridge regression (which occurs for γ = 2). The special case for γ = 1 is related to the

LASSO estimator proposed by Tibshirani (1996), and the LASSO method is well-known

as a variable selection and shrinkage method. For 0 < γ ≤ 1, some components of the

minimizer β̂n of (1.2) can be exactly zero if λn is sufficiently large (Knight and Fu, 2000).

In addition to bridge estimators, other penalization methods have been proposed for the

purpose of simultaneous variable selection and shrinkage estimation. Examples include the

SCAD penalty (Fan, 1997; Fan and Li, 2001) and the elastic-net (Enet) penalty (Zou and

Hastie, 2005). For the SCAD penalty, Fan and Li (2001) studied asymptotic properties

of penalized likelihood methods when the number of parameters is finite. Fan and Peng

(2004) considered the same problem when the number of parameters diverges and obtain an

“oracle” estimator. Here the oracle property means that the resulting estimators perform

asymptotically as efficient as if the true model were known.

Recently, there have been several studies of large sample properties of high-dimen-

sional problems. Fan and Li (2006) provided a review of statistical challenges in high-

dimensional problems that arise in many important applications. Huang et al. (2008)

studied the asymptotic properties of bridge estimators with 0 < γ < 1 when the number

of covariates p may increase to infinity with sample size n. However, all of them as we

indicated above focus on the relationship between the consistency of model selection (or

parameters) and the tuning parameter λn, and also the rule of λn. It should be noted that

the rule of λn usually depends on γ, which also plays a decisive role in the consistency

of model selection (or parameters). For any fixed sample size n and γ, the larger value

of λn is, the smaller number of non-zeros of β̂n is, and also the smaller the sub-model is.

Tibshirani (1996) and Fu (1998) studied how the size of γ makes effect to the estimation

shrinkage rule when γ ≥ 1, without some rigorous theoretical results. In this paper, we

establish in theory that how the estimation of parameters changes with γ in the high-

dimensional sparse models. Once some regularity allows, it will provide a criterion for
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users to choose a proper γ in application.

The rest of this paper is organized as follows. In Section 2, we obtain the shrinkage

regular pattern for the bridge estimation of coefficients β0, under the variety of γ for γ ≥ 1

and 0 < γ < 1 respectively. In Section 3, we report the results of a simulation study. All

the technical proofs of the asymptotic results are given in the Appendix.

§2. The Shrinkage Rule of the Components

Let xi = (xi1, xi2, . . . , xipn)′ be the pn × 1 vector of ith observation of covariates,

i = 1, 2, . . . , n. Here the subscript pn means that the dimension of covariates depends on

the sample size n. Assume that the covariates xi are a fixed design, the response Yi’s are

centered and the each component xij are also standardized, i.e.,

n∑
i=1

Yi = 0,
n∑
i=1

xij = 0 and
1

n

n∑
i=1

x2ij = 1, j = 1, 2, . . . , pn.

For notation simplicity, we write the true parameter β0 = (β′10,β
′
20)
′, where β10 ∈ Rqn ,

β20 ∈ Rmn , qn + mn = pn. Considering the sparsity, we suppose that β10 6= 0 and β20

= 0, where 0 is the zero vector of size mn. Let xi = (z′i,u
′
i)
′. zi consists of the first qn

covariates corresponding to the nonzero coefficients and ui consists of the remaining mn

covariates corresponding to the zero coefficients. Moreover, let Xn = (x1,x2, . . . ,xn)′,

X1n = (z1, z2, . . . ,zn)′, X2n = (u1,u2, . . . ,un)′ respectively. Denote

Σn = n−1X ′nXn and Σ1n = n−1X ′1nX1n.

Without loss of generality, we further assume that the design matrix of the active vari-

ables is orthogonal, that is, Σ1n = I, where I denotes the qn × qn identity matrix. This

assumption is mild as qn is much smaller than sample size n under the sparsity condition.

More conveniently, it allows us to study the characteristics of the shrinkage effect under

different choices of γ.

The following conditions are needed for the consistency of bridge estimator.

(C1) εi, i = 1, 2, . . . , n are independent and identically distributed random variables

with mean zero and variance σ2, 0 < σ2 <∞;

(C2) There exist constants 0 < b1 < b2 <∞ such that

b1 ≤ min{|β10j |, 1 ≤ j ≤ qn} ≤ max{|β10j |, 1 ≤ j ≤ qn} ≤ b2;

(C3) ρ1n > 0 for all n;
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(C4) λn(qn/n)1/2 → 0;

(C5) λnn
−γ/2(ρ1n/

√
pn)2−γ →∞.

In the following, we first present Lemma 2.1 obtained by Huang et al. (2008) for the

bridge estimators.

Lemma 2.1 Let β̂n denote the minimizer of (1.2). Under conditions (C1)-(C4), for

any γ > 0, we have ‖β̂n − β0‖ = Op(hn), where hn = min{h1n, h2n}, h1n = ρ−1(pn/n)1/2

and h2n = [(pn + λnqn)/(nρ1n)]1/2.

If ρ1n > ρ1 > 0 for all n, Lemma 2.1 yields the rate of convergence Op(h2n) =

Op((pn/n)1/2) under condition (C4). Moreover, if pn is further assumed to be finite for all

n, then the rate of convergence can be n−1/2. However, if ρ1n → 0, the rate of convergence

will be slower than n−1/2.

The following Lemma 2.2 provides an explicit relationship between the average of

bridge estimation and γ.

Lemma 2.2 Let β̂n = (β̂′1n, β̂
′
2n)′, where β̂1n and β̂2n are estimators of β10 and

β20, respectively. Under conditions (C1)-(C4), for any γ > 0 and sufficiently large n, we

can have

E(β̂1nj) = ∆(γ) +
1

2

λn
n
γEop(1) + Cn, (2.1)

where

∆(γ) = β10j −
1

2

λn
n
γ|β10j |γ−1sgn(β10j),

β̂1nj is the jth component of β̂1n, β10j is the jth component of β10, j = 1, 2, . . . , qn and

Cn is an expression not relative to γ. Here sgn(·) stands for the sign function.

2.1 Shrinkage Effect of Bridge Estimation when γ ≥ 1

Firstly considering the case of γ ≥ 1, we aim to find the shrinkage regular pattern for

the bridge estimator of β0 under the variety of γ. We have the following theorem.

Theorem 2.1 Under conditions (C1)-(C5),

(1) when 0 < β10j ≤ e−1, ∆(γ) is monotonically increasing for γ ∈ [1,+∞).

(2) when −e−1 ≤ β10j < 0, ∆(γ) is monotonically descending for γ ∈ [1,+∞).

(3) when β10j ≥ 1, ∆(γ) is monotonically descending for γ ∈ [1,+∞).

(4) when β10j ≤ −1, ∆(γ) is monotonically increasing for γ ∈ [1,+∞).

Theorem 2.1 plays an important role in searching the shrinkage rule of γ. Although

the second term in (2.1) contains γ, when n is sufficiently large, it will be very small and

its effect on E(β̂1nj) could be neglected comparing to ∆(γ). As a result, the monotonicity
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of E(β̂1nj) on γ can be treated the same as that of ∆(γ) asymptotically. Also, Theorem

2.1 tells us that, when 0 < |β10j | ≤ e−1, the larger value of γ is, the large value of the

bridge estimator |β̂1nj | is; on the contrary, when |β10j | ≥ 1, the larger value of γ is, the

smaller value of the bridge estimator |β̂1nj | is, j = 1, 2, . . . , qn.

Remark 1 Theorem 2.1 does not provide any conclusions when e−1 < |β10j | < 1,

because the shrinkage rule is no longer monotonous in γ in this context. However, what

we care most is the case 0 < |β10j | ≤ e−1, especially when |β10j | is relative small. In such

cases, the bridge regression could retain variables with large size of coefficients for γ ≥ 1.

Theorem 2.1 shows that larger value of γ tends to retain smaller parameters of β0, while

smaller value of γ tends to shrink smaller parameters of β0 into zero.

Therefore, it implies that if the true model includes many small but nonzero regression

parameters, the LASSO will perform poorly but the bridge estimation for large value of

γ will perform well. If the true model includes many zero parameters, the LASSO will

perform well but the bridge estimation for large value of γ will perform poorly. This

phenomenon was also revealed by Tibshirani (1996) and Fu (1998) through simulation

studies, without providing some rigorous theoretical results. Generally, if one wants to

retain small parameters, a relative large γ can be used. To see the results of Theorem 2.1

more clearly, we plot E(β̂1nj) against |β10j | in Figure 1, whose absolute values are plotted

in the diagonal. The figures illustrate the same results as the theoretical findings given

above.
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Figure 1 Shrinkage effect of bridge regressions for fixed λn > 0
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2.2 Shrinkage Effect of Bridge Estimation when 0 < γ < 1

For 0 < γ < 1, we also obtain the shrinkage regular pattern for the bridge estimation

of β0 under the variety of γ. We have the following theorem.

Theorem 2.2 For 0 < γ < 1, when |β10j | ≥ e−1, ∆(γ) is monotonically descending

for γ ∈ (0, 1).

Similar to the analysis of Theorem 2.1, Theorem 2.2 tells us that for sufficiently large

n and |β10j | ≥ e−1, the bridge estimator |β̂1nj | shrinks towards |β10j | much as γ towards

to 1.

Remark 2 Theorem 2.2 does not provide any conclusions for 0 < |β10j | < e−1,

the shrinkage rule in this context is no longer monotonous in γ. For example, if we let

γ = −1/ log(|β10j |) when 0 < |β10j | < e−1, the shrinkage efficiency will be the largest

since γ moves towards to the endpoint 1. In other words, if the true model includes many

small but nonzero regression coefficients, we tend to choose γ near to 1 for keeping small

coefficients.

For 0 < γ < 1, we also plot E(β̂1nj) against |β10j | in Figure 2. All the parameters are

designed the same as those used in Figure 1. From Figure 2, we can see clearly that the

shrinkage rule coincides with the conclusion obtained from Theorem 2.2.
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Figure 2 Shrinkage effect of bridge regressions for fixed λn > 0

§3. A Simulation Study

In this section, a simulation study is conducted to examine the performance of bridge

estimation under different choices of γ for the model selection. The sample size n = 200

and p = 10 and 400 are used in the example.

Consider the following linear model

y = X ′β + ε, (3.1)
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where ε ∼ N(0, 1), the coefficients

β = (3.0, 3.0, 3.0, 5.0, 5.0, 5.0, 0.2, 0.15, 0.1, 0.08)′ for p = 10,

and

β = (3.0, 3.0, 3.0, 5.0, 5.0, 5.0, 0.5, 0.5, 0.1, 0.08, 0, . . . , 0)′ for p = 400.

The covariate vector X = (x1, x2, . . . , xp)
′ is generated from a multivariate normal dis-

tribution with the pairwise correlation between the ith and jth elements as ρ|i−j|, i, j =

1, 2, . . . , p. ρ = 0 denotes all elements of X are independent of each other.

Some tables are provided to investigate the performance of different bridge estimators

through γ, in terms of model selection accuracy and coefficients estimation accuracy under

different estimation methods. Numerical results are shown in Table 1 and Table 2, giving

the median number of predictors being included in the model, denoted as S, and the

median of the estimators for the nonzero coefficients, denoted as β̂i’s.

Table 1 Results of coefficient estimations via four variable selection methods when n>p

γ S β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10

p = 10, 0.9 8 2.9450 2.9527 2.9478 4.9542 4.9498 4.9490 0.1338 0.0814 0.0297 0.0000

ρ = 0 1 10 2.9531 2.9571 2.9528 4.9503 4.9549 4.9539 0.1541 0.1097 0.0663 0.0395

2 10 2.9167 2.9311 2.9203 4.8901 4.8944 4.8870 0.1775 0.1332 0.0858 0.0623

0.1 8 2.9857 2.9950 3.0001 4.9969 4.9944 4.9955 0.1398 0.0813 0.0000 0.0000

p = 10, 0.9 9 2.9442 2.9525 2.9581 4.9531 4.9543 4.9535 0.1283 0.0864 0.0162 0.0103

ρ = 0.5 1 10 2.9482 2.9525 2.9577 4.9532 4.9533 4.9539 0.1500 0.1087 0.0655 0.0425

2 10 1.0486 1.0313 1.0352 1.6804 1.7273 1.7141 0.0525 0.0537 0.0328 0.0179

true β10 − 3.00 3.00 3.00 5.00 5.00 5.00 0.20 0.15 0.10 0.08

Table 2 Results of coefficient estimations via four variable selection methods when n<p

γ S β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10

0.1 6 2.9704 2.9654 2.9547 4.9733 4.9733 4.9804 0.0000 0.0000 0.0000 0.0000

p = 400, 0.9 8 2.7837 2.7754 2.7704 4.7819 4.7810 4.7910 0.2016 0.2034 0.0000 0.0000

ρ = 0 1 9 2.9099 2.8980 2.8960 4.8950 4.8975 4.9034 0.3986 0.3977 0.0000 0.0000

2 10 0.8161 0.8074 0.8202 1.3694 1.3678 1.3732 0.1165 0.1244 0.0203 0.0214

0.1 6 2.9594 2.9501 2.9558 4.9770 4.9795 4.9702 0.0000 0.0000 0.0000 0.0000

p = 400, 0.9 8 2.7729 2.7705 2.7676 4.7875 4.7933 4.7851 0.1952 0.2048 0.0000 0.0000

ρ = 0.5 1 9 2.9119 2.9111 2.9073 4.9033 4.9093 4.9061 0.4068 0.4034 0.0056 0.0000

2 10 0.6428 0.6258 0.6332 1.0454 1.0488 1.0626 0.0807 0.0790 0.0125 0.0241

true β10 − 3.00 3.00 3.00 5.00 5.00 5.00 0.50 0.50 0.10 0.08
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From the numerical results in Tables 1-2, it is clearly that those larger coefficients

are shrunk largely as γ grows, for those small coefficients, samller γ (0 < γ < 1) will

shrink smaller coefficient largely, whenever p ≤ n or p > n. This result coincides with the

theoretical analysis in Theorem 2.1 and Theorem 2.2. Moreover, in Table 2, we can see

that ridge estimator with γ = 2 collapses in the context of p > n. It implies that γ ≤ 1

can be used to deal with the “p� n” problems in practice.

Appendix

Proof of Lemma 2.2 Under conditions (C1) and (C3), β̂n is consistent by Lemma

2.1. By condition (C2), each component of β̂1n stays away from zero for n sufficiently large.

Thus, when n is large enough, the derivative (∂/∂β1)Ln(β̂1n, β̂2n) exists. That is

−2
n∑
i=1

(Yi − z′iβ̂1n − u′iβ̂2n)zi + λnγ|β̂1n|γ−1sgn(β̂1n) = 0.

Put β20 = 0 and εi = Yi − z′iβ10 into above equation, we can get

−2
n∑
i=1

(εi − z′i(β̂1n − β10)− u′iβ̂2n)zi + λnγ|β̂1n|γ−1sgn(β̂1n) = 0.

Therefore,

Σ1n(β̂1n − β10) =
1

n

n∑
i=1

εizi −
1

2n
γλn|β̂1n|γ−1sgn(β̂1n)− 1

n

n∑
i=1
u′iβ̂2nzi.

It follows that,

e′nj(β̂1n − β10) =
1

n

n∑
i=1

εienjΣ
−1
1n zi −

1

2

λn
n
γe′njΣ

−1
1n |β̂1n|γ−1sgn(β̂1n)

− 1

n

n∑
i=1

enjΣ
−1
1n ziu

′
iβ̂2n, (4.1)

where enj is a qn × 1 vector whose other components are all zeros except the jth one is 1,

j = 1, 2, . . . , qn. Note that Σ1n = Iqn×qn , then the equation (4.1) is simplified to

β̂1nj − β10j =
1

n

n∑
i=1

εienjzi −
1

2

λn
n
γ|β̂1nj |γ−1sgn(β̂1nj)

− 1

n

n∑
i=1

enjΣ
−1
1n ziu

′
iβ̂2n. (4.2)

Taking expectation on both sides of (4.2), we have

E(β̂1nj) = β10j −
1

2

λn
n
γE[|β̂1nj |γ−1sgn(β̂1nj)]−

1

n

n∑
i=1

enjΣ
−1
1nE(ziu

′
i)β̂2n. (4.3)
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By Lemma 2.1, we know that

β̂1nj
P−→ β10j ,

thus

|β̂1nj |γ−1sgn(β̂1nj)
P−→ |β10j |γ−1sgn(β10j).

It follows that

E[|β̂1nj |γ−1sgn(β̂1nj)] = |β10j |γ−1sgn(β10j) + Eop(1). (4.4)

Plugging (4.4) into (4.3), and we denote

Cn =
1

n

n∑
i=1

enjΣ
−1
1nE(ziu

′
i)β̂2n,

then we obtain that

E(β̂1nj) = β10j −
1

2

λn
n
γ|β10j |γ−1sgn(β10j)−

1

2

λn
n
γEop(1) + Cn. (4.5)

We complete the proof of Lemma 2.2. �

Proof of Theorem 2.1 By Lemma 2.2, let ∂∆(γ)/∂γ = 0, we have

|β10j |γ−1sgn(β10j)(1 + γ log(|β10j |)) = 0.

Solving the equation of γ, we get

γ0 = − 1

log(|β10j |) .

When 0 < β10j ≤ e−1, γ0 ≤ 1, it is easy to verify that ∂2∆(γ)/∂γ20 > 0. As a result, γ0 is

the minimum point of the curve function ∆(γ). It follows that, when 0 < β10j ≤ e−1, ∆(γ)

is monotonically increasing for γ ≥ 1. When −e−1 ≤ β10j < 0, ∆(γ) is monotonically

descending for γ ≥ 1. As such, the conclusion of Theorem 2.1 (1) is obtained. The

conclusion of Theorem 2.1 (2) can be obtained similarly, we omit the details. �

Proof of Theorem 2.2 Proof of Theorem 2.2 is similar to that of Theorem 2.1.

So we omit it here. �
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