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Abstract

The periods of states for Markov chains in a random environment are introduced and some

properties about periods are investigated. An open problem (Orey, 1991; Problem 1.3.3) is studied

under the assumption that states have periods.
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§1. Introduction

Let (X ,A ) be a denumerable state space and (Θ,B) be an environment space.

{P (θ), θ ∈ Θ} is a family of stochastic matrices acting on (X ,A ). Let p(θ;x, y) be the

(x, y) entry of P (θ) such that p( · ;x, y) is B measurable for each x, y ∈X . Let
−→
Θ = ΘZ be

the product space of doubly infinite sequences {θn} and let
−→
B = BZ be its product σ-field.

T :
−→
Θ →

−→
Θ is a shift operator on

−→
Θ defined by (T

−→
θ )n = θn+1 for every

−→
θ ∈
−→
Θ and π is its

distribution on
−→
B. We assume π is a shift invariant probability on (

−→
Θ ,
−→
B), i.e., π = π ◦T .

Consider a doubly infinite stochastic environment sequence
−→
ξ = {ξn, n = 0,±1,±2, . . .}

taking values in Θ and a stochastic sequence
−→
X = {Xn, n = 0, 1, 2, . . .} taking values in

X , if the following condition is satisfied:

P (Xn+1 ∈ A, ξn+1 ∈ B|
−→
Xn

0 ,
−→
ξ n−∞) = P (ξn;Xn, A)P (ξn+1 ∈ B|

−→
ξ n−∞) a.s.

for every A ∈ A , B ∈ B and n = 0, 1, 2, . . ., then (
−→
X,
−→
ξ ) is called a Markov chain in a

random environment (MCRE).
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The study of MCRE has been pursued for some time, often for special cases and

examples such as random walks (Kozlov, 1974; Solomon, 1975; Kalikow, 1981; Andjel,1988;

Kesten et al., 1975) and birth and death chains (Smith and Wilkinson, 1969; Athreya and

Karlin, 1971) in a random environment. Nawrotzki (1981, 1982) introduced a general

theory. Then Cogburn (1980, 1984) developed such a theory in a wider context making

the connection with the well-developed theory of Hopf Markov chains. Orey (1991) gave

an introductory exposing some basic results of Nawrotzki and Cogburn and presented

some open problems. In this article the periods of states for Markov chains in a random

environment are introduced and some properties about periods are investigated. An open

problem (Orey, 1991; Problem 1.3.3) is studied under the assumption that states have

periods.

§2. Period

Let F ∈ A ×
−→
B, (F )y = {

−→
θ : (y,

−→
θ ) ∈ F}, ηn = (Xn, T

n−→ξ ), n ≥ 0,

P (θm, θm+1, . . . , θn) = P (θm)P (θm+1) · · ·P (θn) = (p(θm, θm+1, . . . , θn, x, y), x, y ∈X ),

P (n)(
−→
θ ;x, F ) = P

(x,
−→
θ )

(ηn ∈ F ) =
∑
y∈X

p(θ0, θ1, . . . , θn−1, x, y)IFy(Tn
−→
θ ),

P (n)(
−→
θ ;x, y) = P (n)(

−→
θ ;x, {y} ×

−→
Θ),

G(
−→
θ ;x, F ) =

∞∑
n=1

P
(x,
−→
θ )

(ηn ∈ F ) =
∞∑
n=1

P (n)(
−→
θ ;x, F ),

G(
−→
θ ;x, y) = G(

−→
θ ;x, {y} ×

−→
Θ).

Definition 2.1 If the set {n ≥ 1 : π({
−→
θ : P (n)(

−→
θ ;x, x) > 0}) = 1} is nonempty,

we define the period of x as follows:

dx = G · C ·D · {n ≥ 1 : π({
−→
θ : P (n)(

−→
θ ;x, x) > 0}) = 1},

where G · C ·D· denotes the greatest common divisor.

Definition 2.2 We say x strongly leads to y if there exists a positive integer n

such that

π({
−→
θ : P (n)(

−→
θ ;x, y) > 0}) = 1,

we say that x and y strongly communicate iff x strongly leads to y and y strongly leads

to x.

Theorem 2.1 If x and y strongly communicate, then the periods of x and y exist

and dx = dy.
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Proof Suppose x and y strongly communicate. Then there are positive m and n

such that

π({
−→
θ : P (m)(

−→
θ ;x, y) > 0}) = 1, π({

−→
θ : P (n)(

−→
θ ; y, x) > 0}) = 1.

Hence, by π ◦ T−1 = π,

π({
−→
θ : P (n)(Tm

−→
θ ; y, x) > 0}) = 1.

Let
−→
Θ = ({

−→
θ : P (m)(

−→
θ ;x, y) > 0, P (n)(Tm

−→
θ ; y, x) > 0}).

Then π(
−→
Θ) = 1. To every

−→
θ ∈
−→
Θ,

P (m+n)(
−→
θ ;x, x) ≥ P (m)(

−→
θ ;x, y)P (n)(Tm

−→
θ ; y, x) > 0.

So by Definition 2.2 the period of x exists. Since states x and y are interchangeable in the

argument above, it follows that the period of y exists. This proves the first assertion.

Let

π({
−→
θ : P (s)(

−→
θ ;x, x) > 0}) = 1,

−→
Θ1 = {

−→
θ : P (n)(

−→
θ ; y, x) > 0, P (s)(Tn

−→
θ ;x, x) > 0, P (m)(Tn+s

−→
θ ;x, y) > 0},

−→
Θ2 = {

−→
θ : P (n)(

−→
θ ; y, x) > 0, P (2s)(Tn

−→
θ ;x, x) > 0, P (m)(Tn+2s−→θ ;x, y) > 0},

−→
Θ3 =

−→
Θ1 ∩

−→
Θ2.

Then π(
−→
Θ3) = 1. To every

−→
θ ∈
−→
Θ3,

P (n+s+m)(
−→
θ ; y, y) ≥ P (n)(

−→
θ ; y, x)P (s)(Tn

−→
θ ;x, x)P (m)(Tn+s

−→
θ ;x, y) > 0,

P (n+2s+m)(
−→
θ ; y, y) ≥ P (n)(

−→
θ ; y, x)P (2s)(Tn

−→
θ ;x, x)P (m)(Tn+2s−→θ ;x, y) > 0.

It follows that dy divides n+ 2s+m− (n+ s+m) = s, so dy divides dx. By the symmetry

of dx and dy we have dx = dy. �

Definition 2.3 Define C(x) = {y : y and x strongly communicate}.

Corollary 2.1 If y ∈ C(x) and z ∈ C(x), then dy = dz.

Theorem 2.2 If the period of x exists and dx = d, then there exists a positive

integer N such that n ≥ N implies that

π({
−→
θ : P (nd)(

−→
θ ;x, x) > 0}) = 1.
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Proof By the definition of a period there exists finitely many positive integers

s1, s2, . . . , sm, with π({
−→
θ : P (si)(

−→
θ ;x, x) > 0}) = 1, 1 ≤ i ≤ m and such that d is their

greatest common divisor. Let

−→
Θ i =

∞⋂
k=0

{
−→
θ : P (si)(T k

−→
θ ;x, x) > 0}, 1 ≤ i ≤ m,

−→
Θ0 =

m⋂
i=1

−→
Θ i.

Then π(
−→
Θ0) = 1. By an elementary result from number theory there exists a positive

integer N such that n ≥ N implies the existence of positive integers c1, c2, . . . , cm and

such that nd =
m∑
i=1

cisi. To every
−→
θ ∈
−→
Θ0, we have

P (nd)(
−→
θ ;x, x) ≥ P (c1s1)(

−→
θ ;x, x)P (c2s2)(T c1s1

−→
θ ;x, x) · · ·P (cmsm)

(
T

m−1∑
i=1

cisi−→
θ ;x, x

)
.

It follows that P (nd)(
−→
θ ;x, x) > 0. �

Theorem 2.3 To every y ∈ C(x) there corresponds a unique residue class ry

modulo dx such that

π({
−→
θ : P (n)(

−→
θ ;x, y) > 0}) = 1

implies that n ≡ ry (mod dx). Furthermore there exists an N(y) such that n ≥ N implies

that

π({
−→
θ : P (ndx+ry)(

−→
θ ;x, y) > 0}) = 1.

Proof Let π({
−→
θ : P (m)(

−→
θ ;x, y) > 0}) = 1 and π({

−→
θ : P (m′)(

−→
θ ;x, y) > 0}) = 1.

There exists n such that π({
−→
θ : P (n)(

−→
θ ; y, x) > 0}) = 1. Hence, by π ◦ T−1 = π,

π({
−→
θ : P (n)(Tm

−→
θ ; y, x) > 0}) = 1.

Let
−→
Θ = ({

−→
θ : P (m)(

−→
θ ;x, y) > 0, P (n)(Tm

−→
θ ; y, x) > 0}).

Then π(
−→
Θ) = 1. To every

−→
θ ∈
−→
Θ,

P (m+n)(
−→
θ ;x, x) ≥ P (m)(

−→
θ ;x, y)P (n)(Tm

−→
θ ; y, x) > 0.

So π({
−→
θ : P (m+n)(

−→
θ ;x, x) > 0}) = 1. Simiarly π({

−→
θ : P (m′+n)(

−→
θ ;x, x) > 0}) = 1 holds.

It follows that dx divides m−m′. This proves the first assertion.

By Theorem 2.2 there exists a positive integer N such that n ≥ N implies

π({
−→
θ : P (ndx)(

−→
θ ;x, x) > 0}) = 1.
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Now if y ∈ C(x) corresponds a residue class ry, then there exists a positive m such that

π({
−→
θ : P (mdx+ry)(

−→
θ ;x, y) > 0}) = 1.

Let N(y) = N +m. If n ≥ N(y), then ndx + ry = n′dx +mdx + ry where n′ ≥ N . Hence

π({
−→
θ : P (ndx+ry)(

−→
θ ;x, y) > 0}) = 1.

This proves the second assertion. �

Definition 2.4 (Orey, 1991) Define Cx =
{−→
θ :

∞∑
k=1

P (θ−k · · · θ−1;x, x) =∞
}

.

An open problem (Orey, 1991; Problem 1.3.3) When does the zero-one property

hold on Cx?

Lemma 2.1 π(Cx) = π(
−→
θ : G(

−→
θ ;x, x) =∞).

Proof It is obvious by π = π ◦ T−1. �

Theorem 2.4 If the transformation T about π be ergodic and dx = 1, then

π(Cx) = 0 or 1.

Proof By Theorem 2.2 and dx = 1, there exist a positive integers N such that

n ≥ N implies

π({
−→
θ : P (n)(

−→
θ ;x, x) > 0}) = 1.

Let

B = {
−→
θ : G(

−→
θ ;x, x) =∞}.

If π(B) > 0, then by the Pointcare recurrence theorem there exists F ⊂ B, π(F ) = π(B) >

0 such that
−→
θ ∈ F implies that there exists a sequence n1 < n2 < · · · such that Tni

−→
θ ∈ F ,

i = 1, 2, . . .. Since π is ergodic we have π
( ∞⋃
n=0

T−nF
)

= 1 by the ergodic theorems. It

follows that to almost everywhere
−→
θ there exists an m ≥ 0 such that Tm

−→
θ ∈ F . So there

exists a sequence n′1 < n′2 < · · · such that Tm+n′i
−→
θ ∈ F . Let n′k be large enough such

that m+ n′k ≥ N , Tm+n′k
−→
θ ∈ F then we have

G(
−→
θ ;x, x) =

∞∑
n=1

P
(x,
−→
θ )

(Xn = x) ≥
∞∑

n=m+n′k+1

P
(x,
−→
θ )

(Xm+n′k
= x,Xn = x)

≥ P (m+n′k)(
−→
θ ;x, x)

∞∑
n=m+n′k+1

P
(x,T

m+n′
k
−→
θ )

(Xn = x) =∞.

So π(
−→
θ : G(

−→
θ ;x, x) =∞) = 1, it follows that π(Cx) = 1 by Lemma 2.1. �
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Definition 2.5 (Durrett, 2005) A measure-preserving transformation T on (Ω,

F , π) is called mixing about π if for all A,B ∈ F

lim
n→∞

π(AT−nB) = π(A)π(B).

Lemma 2.2 Let transformation T about π be mixing. If π(B) > 0, then to every

positive integers d and N we have π
( ∞⋃
n=N

T−ndB
)

= 1.

Proof π(B) > 0 implies that π(Bc) < 1. The transformation T about π is mixing

implies that for all A,B ∈ F

lim
n→∞

π(AT−nB) = π(A)π(B).

Hence given any ε > 0 there exists an N such that n ≥ N implies

π(AT−nB) ≤ π(A)π(B) + ε.

Set n1 = N and let n2 − n1 be large enough such that

π(T−n1dBc ∩ T−n2dBc) ≤ π(T−n1dBc)π(T−n2dBc) +
ε

2
= (π(Bc))2 +

ε

2
.

Let n3 − n2 be large enough such that

π(T−n1dBc ∩ T−n2dBc ∩ T−n3dBc) ≤ π(T−n1dBc ∩ T−n2dBc)π(T−n3dBc) +
ε

4

≤ (π(Bc))3 +
ε

2
+
ε

4
.

Simiarly,

π(T−n1dBc ∩ T−n2dBc ∩ · · · ∩ T−nkdBc) ≤ (π(Bc))k + ε

holds for every positive integers k. It follows that

π
( ∞⋂
n=N

T−ndBc
)
≤ π(T−n1dBc ∩ T−n2dBc ∩ · · · ∩ T−nkdBc) ≤ (π(Bc))k + ε.

Letting n → ∞ and then ε ↓ 0, we conclude that π
( ∞⋂
n=N

T−ndBc
)

= 0. It follows that

π
( ∞⋃
n=N

T−ndB
)

= 1. �

Theorem 2.5 If the transformation T about π be mixing and the period of x

exists, then π(Cx) = 0 or 1.
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Proof Let dx = d. By Theorem 2.2 there exists a positive integer N such that

n ≥ N implies

π({
−→
θ : P (nd)(

−→
θ ;x, x) > 0}) = 1.

Let

B = {
−→
θ : G(

−→
θ ;x, x) =∞}.

If π(B) > 0, then by the Lemma 2.2 we have

π
( ∞⋃
n=N

T−ndB
)

= 1.

To almost everywhere
−→
θ there exists an n′ ≥ N such that Tn

′d−→θ ∈ B, it follows that

G(
−→
θ ;x, x) =

∞∑
n=1

P
(x,
−→
θ )

(Xn = x) ≥ P (n′d)(
−→
θ ;x, x)

∞∑
n=n′d+1

P
(x,Tn′d−→θ )(Xn = x) =∞.

So π(
−→
θ : G(

−→
θ ;x, x) =∞) = 1, it follows that π(Cx) = 1 by Lemma 2.1. �
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