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Abstract

The covariate-adjusted regression model was initially proposed for the situations where both

the predictors and the response variables are not directly observed, but are distorted by some

common observable covariates. In this paper, we investigate a covariate-adjusted nonparametric

regression (CANR) model and consider the proposed model on time series setting. We develop

a two-step estimation procedure to estimate the regression function. The asymptotic property of

the proposed estimation is investigated under the α-mixing conditions. Both the real data and

simulated examples are provided for illustration.
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§1. Introduction

The covariate-adjusted regression (CAR) model was first proposed by Sentürk and

Müller (2005) to analyze the regression relationship between plasma fibrinogen concentra-

tion and serum transferrin for haemodialysis patients. Both the response and predictors

are not directly observed but are thought to be distorted by unknown functions of a

confounding observable covariate in a multiplicative fashion. In order to estimate the co-

efficients, a two-step estimation procedure was proposed and the consistency of estimators

was also established. Subsequently, the asymptotic normality of the estimators was proved

by Sentürk and Müller (2006).
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Despite the covariate-adjusted regression is originally designed for independent cross-

sectional data, applications to other type of data settings have gained a lot of atten-

tion with important practical value in health sciences research, psychology and sociology.

For example: Sentürk (2006) proposed a covariate-adjusted varying coefficient regression

(CAVCR), where the goal was to target the covariate-adjusted relationship among lon-

gitudinal variables; Sentürk and Nguyen (2009) discussed the asymptotic properties of

covariate-adjusted regression when the observations were correlated; Nguyen et al. (2008)

proposed a covariate-adjusted linear mixed effects model and applied the model to lon-

gitudinal data; Nguyen and Sentürk (2009) proposed an estimation method which in-

corporates the correlation/covariance structure between repeated measurements in the

covariate-adjusted regression models for distorted longitudinal data. On the other hand,

Ma and Luan (2012) considered a covariate-adjusted regression model on time series set-

ting and studied the asymptotic property of the estimators.

Besides the parametric covariate-adjusted regression models mentioned above, there

are many extensions of the CAR model: Cui et al. (2009) proposed a covariate-adjusted

nonlinear regression model and applied the model to study the relationship between

glomerular filtration rate and serum creatinine. They introduced a nonparametric method

to estimate the distorting functions by regressing the predictors and the response on the

distorting covariate and obtained the nonlinear least squares estimators for the parame-

ters using the estimated response and predictors. Li et al. (2009) introduced a covariate-

adjusted partially linear regression model. Inspired by the work of Cui et al. (2009), they

proposed an estimation method. They also obtained the asymptotic normality of the

parametric component estimator.

In time series analysis, it can be classified into linear and nonlinear time series mod-

els. The most popular class of linear time series models consists of autoregressive (AR)

model, autoregressive moving-average (MA) model moving average (ARMA) models, au-

toregressive integrated moving average (ARIMA) model, and so on. However, in many

real time series data, there exists some nonlinear features, include, nonnormality, asym-

metric cycles, bimodality, nonlinear relationship between lagged variables, variation of

prediction performance over the state-space, time irreversibility, and others (Fan and Yao,

2003). Linear time series models encounter limitation to deal with these data with non-

linear features. Beyond the linear domain, there are many nonlinear forms to be explored.

Recently, developments in nonparametric regression techniques provide an alternative to

model nonlinear time series (Masry and Fan, 1997; Fan and Yao, 2003). The advantage of

the nonparametric regression techniques is that little prior information on model structure
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is assumed, and it may offer useful insights for further parametric fitting. Furthermore,

with increasing computing power in recent years, it has become commonplace to attemp-

t to analyze time series data of unprecedented size and complexity. All these changes

have an increasing demand for nonparametric method that can analyze complex data and

identify the underlying structure.

In this paper, we introduce a covariate-adjusted nonparametric regression (CANR)

model on time series setting. The CANR model is proposed as
Y = m(X) + ε,

Ỹ = ψ(U)Y,

X̃ = φ(U)X,

(1.1)

where m(·) is a regression function, Y is a response variable, X is a predictor, and ε

is an error term satisfying E(ε|X) = 0, Var (ε|X) = 1. In this model, X and Y are

not directly observed but are distorted by unknown functions of a confounding observable

covariate U . X̃ and Ỹ are distorted observations, and ψ(·) and φ(·) are unknown distorting

functions. In order to estimate the regression function m(·), a two-step method will be

proposed. In step 1, the distorting functions will be estimated using the nonparametric

method which were introduced by Cui et al. (2009) and the estimators of the response

and the predictors will be obtained. In step 2, a nonparametric method will be employed

to estimate the regression function using the estimated response and predictors. We

will study the asymptotic convergence property of the estimated regression function and

illustrate the proposed procedure by a simulated example.

In financial analysis, the relationships between the spot markets and the futures

markets are affected by many factors, such as stock price, stock index futures, interest

rate, and so on. In this paper, we will consider the the relationships between the spot

markets and the futures markets of China. Since the public listing on 16 April 2010,

Shanghai and Shenzhen 300 Stock Index Futures (IF) has exerted important influences

on Chinese financial markets. Thus, it is reasonable to take IF as a covariate variable

and consider the IF-adjusted nonparametric regression model. In Ma and Luan (2012), a

parametric regression method has been used to study this relationship and has showed that

there exist nonlinear causality between the spot and the futures markets. In this paper,

we will apply the proposed nonparametric regression method to study this relationship

and draw the conclusions coinciding with realities.

The paper is organized as follows. In Section 2, we describe the model in detail and

propose the estimator of the regression function. In Section 3, the results on asymptotic

《
应

用
概

率
统

计
》

版
权

所
有



1oÏ ê�ý �1#: �mS�¥��CþN��ëê£8�. 435

property are presented. A simulated example and the applications to real data are given

in Section 4. The technical proofs of the main results are presented in Section 5.

§2. Model and Estimations

We write a sample version of the covariate-adjusted nonparametric regression(CANR)

model as 
Yi = m(Xi) + εi,

Ỹi = ψ(Ui)Yi,

X̃i = φ(Ui)Xi,

i = 1, 2, . . . , n. (2.1)

In this paper, we consider the model on time series setting. We assume the unobserv-

able data {(Ui, Xi, Yi), i = 1, 2, . . . , n} is a joint strictly stationary α-mixing sequence,

then by property of α-mixing, the observable data {(Ui, X̃i, Ỹi), i = 1, 2, . . . , n} is also a

joint strictly stationary α-mixing sequence. The main objective is to estimate the regres-

sion function m(·) and to consider the asymptotic property based on the observable data

{(Ui, X̃i, Ỹi), i = 1, 2, . . . , n}.
To achieve this goal, some basic assumptions are needed as follows:

(A1) The variables ε, U,X are mutually independent, and E(ε|U,X) = 0, Var (ε|U,X)

= 1.

(A2) The functions ψ(·) and φ(·) are twice continuously differentiable, and satisfy

identifiability conditions: Eψ(U) = 1, Eφ(U) = 1 with φ(·) > 0.

(A3) {(Ui, Xi, Yi), i = 1, 2, . . . , n} is a strictly stationary α-mixing sequence with

α(l) ≤ cl−β for some c > 0 and β > 5/2.

(A4) For each fixed x ∈ (−∞,+∞), m(·) satisfies Lipschitz condition, that is, there

exist 0 < q ≤ 1, γ > 0 and some neighborhood N of x, such that

|m(t)−m(x)| ≤ ‖t− x‖q, ∀ t ∈ N.

To estimate the regression function, a two-step estimation procedure is proposed as

follows:

Step 1: Under condition (A2), We assume that the mean distorting effect vanishes in

model (2.1). As in Cui et al. (2009),

ψ(U) =
E(Ỹ |U)

EY
, φ(U) =

E(X̃|U)

EX
.
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Then the nonparametric estimators of ψ(U) and φ(U) are proposed as

ψ̂(u) =

1

n

n∑
i=1

Kh1(u− Ui)Ỹi
1

n

n∑
j=1

Kh1(u− Uj)
× 1

Ỹ
, ĝ

Ỹ
(u)× 1

Ỹ
, (2.2)

φ̂(u) =

1

n

n∑
i=1

Kh2(u− Ui)X̃i

1

n

n∑
j=1

Kh2(u− Uj)
× 1

X̃
, ĝ

X̃
(u)× 1

X̃
, (2.3)

where K(·) is a kernel function, h1 and h2 are bandwidths, Kh(·) = (1/h)K(·/h), Ỹ =
n∑
i=1

Ỹi, and X̃ =
n∑
i=1

X̃i. Consequently, estimators of Y and X can be presented as

Ŷi =
Ỹi

ψ̂(Ui)
, X̂i =

X̃i

φ̂(Ui)
, (2.4)

respectively. It follows from (2.1) and (2.4) that

Ŷi ≈ m(X̂i) + σ(X̂i)εi, (2.5)

where σ2(x) = Var (Ŷi|X̂i = x) and εi satisfies

E(εi) = 0, Var (εi) = 1.

Step 2: In Step 1, we have proposed the estimators X̂ and Ŷ of unobservable variables

X and Y . Then the regression function of model (2.1) can be estimated by the approximate

formula (2.5), which is a general nonparametric regression model. By the Nadaraya-

Watson estimation (Nadaraya, 1964; Watson, 1964), the estimated regression function is

proposed as

m̂(x) =

1

n

n∑
i=1

Kh0(x− X̂i)Ŷi

1

n

n∑
j=1

Kh0(x− X̂i)

,
n∑
i=1

Wh0(x− X̂i)Ŷi, (2.6)

where h0 is a bandwidth,

Wh0(x− X̂i) =
Kh0(x− X̂i)
n∑
j=1

Kh0(x− X̂i)

.

For simplicity, we assume the same kernel function in equations (2.2), (2.3), and (2.4).
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§3. Asymptotic Results

In this section, we consider the asymptotic property of the estimator given in (2.6)

on time series setting. Theorem 3.1 and Theorem 3.2 prove the asymptotic convergence

and the asymptotic normality of the estimated regression function m̂(·). For simplicity,

we denote the bandwidth by h throughout this section. The proofs are given in Section 5.

Same as in Section 2, we denote

g
X̃

(U) = E(X̃|U), g
Ỹ

(U) = E(Ỹ |U),

ĝ
X̃

(u) =

1

n

n∑
i=1

Kh1(u− Ui)X̃i

1

n

n∑
j=1

Kh1(u− Uj)
, ĝ

Ỹ
(u) =

1

n

n∑
i=1

Kh2(u− Ui)Ỹi
1

n

n∑
j=1

Kh2(u− Uj)
.

The following conditions are needed for the results.

(C1) The kernel K(·) is a bounded function with a bounded support, satisfying Lip-

schitz condition.

(C2) For some s > 2 and some intervals [a, b] and [A,B], E|X|s <∞, E|Y |s <∞ and

sup
u∈[a,b]

∫
|x|sf1(u, x)dx <∞,

sup
u∈[a,b]

∫
|y|sf2(u, y)dy <∞,

sup
x∈[A,B]

∫
|y|sf3(x, y)dy <∞,

where f1, f2, f3 denote the joint density of (U,X), (U, Y ) and (X,Y ), respectively.

(C3) For some δ > 0, h→ 0, n1−2s
−1−2δh→∞, as n→∞, where s is the same as in

(C2).

(C4) For some A1, A2, A3, and for any l ≥ 1,

f
U0,Ul|X̃0,X̃l

(u0, ul|x̃0, x̃l) ≤ A1 <∞,

f
U0,Ul|Ỹ0,Ỹl(u0, ul|ỹ0, ỹl) ≤ A2 <∞,

f
X0,Xl|Ỹ0,Ỹl(x0, xl|y0, yl) ≤ A3 <∞.

(C5) For some δ > 2, a > 1− 2/δ and some B1, B2, B3, assume
∑
l

la[α(l)]1−2/δ <∞,

E|X0|δ <∞, E|Y0|δ <∞,

f
U0|X̃0

(u|x̃) ≤ B1 <∞, f
U0|Ỹ0(u|ỹ) ≤ B2 <∞, fX0|Y0(x|y) ≤ B3 <∞.
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The following Lemma 3.1 gives some asymptotic results of X̂, Ŷ and Wh(x − X̂),

which will be used in the proof of Theorem 3.1 and Theorem 3.2.

Lemma 3.1 Under the conditions (A3) and (C1)-(C5), the following asymptotic

representations hold:

X̂i −Xi = OP
(
h+ (nh/ log(1/h))−1/2

)
,

Ŷi − Yi = OP
(
h+ (nh/ log(1/h))−1/2

)
,

Wh(x− X̂i)−Wh(x−Xi) = oP (1).

In the following theorem, we present the asymptotic convergence of the estimated

regression function m̂(x), and give the convergence rate.

Theorem 3.1 Let m̂(x) be defined by (2.6). If conditions (A1)-(A3) and (C1)-

(C5) are satisfied, then

sup
x∈[A,B]

|m̂(x)−m(x)| = OP
(
h+ (nh/ log(1/h))−1/2

)
.

Theorem 3.2 Let m̂(x) be defined by (2.6). If conditions (A1)-(A4) and (C1)-

(C5) are satisfied, then

√
nh(m̂(x)−m(x)− bn)

D−→ N(0,Σ2),

where

Σ2 =

σ2(x)

∫ +∞

−∞
K2(t)dt

f(x)
(∫ +∞

−∞
K(t)dt

)2 ,
f(·) is the density function of X, bn = O(hq), q is the same as in condition (A4).

§4. Numerical Studies

4.1 Simulated Example

In this subsection, we investigate the finite-sample behavior of the proposed estima-

tion. The underlying unobserved nonparametric regression model is

Y = sin(πX) + e,

where X is simulated from an AR(1) model Xi = 0.9Xi−1 + εi with εi generated from

N(0, 0.3). The confounding covariate U is simulated from an AR(1) model Ui = 0.8Ui−1 +
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εi0 with εi0 generated from N(0, 0.5). The error term e is generated from N(0, 0.03). The

true regression function m(x) is set as sin(πx). The distorting functions are chosen as

ψ(U) =
U + 3

3.0008
, φ(U) =

(U + 2)2

4.0030
,

satisfying the identifiability conditions (A2). The simulation is repeated 10000 times.

Figure 1 displays the plots of underlying variables X and Y and their estimators X̂, Ŷ

for n = 300, respectively. By (2.6), we can obtain the estimated function of m(·) in

CANR model. Figure 2 displays the curves of estimated function m̂(·) (circle line) and

true function m(·) (solid line) for n = 1000 by 10000 simulations. In order to analyze the

influence of covariate U , we also estimate m(·) in general nonparametric regression (GNR)

model without considering the covariate U . The performance of estimator m̂(·) is assessed

via the average squared error (ASE), defined by

ASE(m̂) =
1

n

n∑
k=1

{m̂(xk)−m(xk)}2,

with m̂ denotes estimator either in CANR model or in GNR model. The mean and

standard deviation of ASE through 10000 simulations are displayed in Table 1. It is

easy to see that the covariate-adjusted estimation is better than the estimation without

considering the covariate U .
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Figure 1 Plots of estimators X̂ and Ŷ : (a) X (·) and X̂ (�) (b) Y (·) and Ŷ (�)

《
应

用
概

率
统

计
》

版
权

所
有



440 A^VÇÚO 1n��ò

 2  1.5  1  0.5 0 0.5 1 1.5 2
 1.5

 1

 0.5

0

0.5

1

1.5
plot of hatm(.)

 

 

curve of hatm(.)

curve of  m(.)

Figure 2 Curves of estimated regression functions m̂(·) (circle line) and true

function m(·) (solid line)

Table 1 Average squared errors (ASE) of m̂(·)
ASE: mean(standard deviation)

CANR GNR

n = 300 0.0089(0.0138) 0.0091(0.0136)

n = 500 0.0061(0.0185) 0.0062(0.0186)

n = 1000 0.0057(0.0091) 0.0058(0.0091)

The simulation is repeated 10000 times for each of sample sizes n = 300, 500

and 1000. The ASE of estimator m̂(·) are reported in Table 1.

4.2 Applications to Financial Data

In financial analysis, the relationships between the spot markets and the futures mar-

kets have been paid close attention by researchers. Most traditional studies focus on the

linear Granger causality between the spot markets and the futures markets. In real mar-

kets, however, their relationships are influenced by many factors, such as stock price, stock

index futures, interest rate, and so on. These imply that there should exist more compli-

cated relationships between the spot and futures markets. Recently, empirical evidences

have also shown that nonlinear causality relationship indeed exists in the spot markets
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and futures markets, but the traditional linear methodology can’t discriminate nonlin-

ear causality very well, so as not to describe their relationships clearly. Several studies

have employed nonlinear method to describe nonlinear causality relationship between the

spot and futures return (Abhyankar, 1996; Chen and Lin, 2004; Silvapulle and Moosa,

1999). Take Chinese financial markets for example, since the public listing of Shanghai

and Shenzhen 300 Stock Index Futures (IF) on 16 April 2010, it has produced great im-

pact on the spot markets and the futures markets. A recent study also revealed that there

exists nonlinear causality between spot and future prices of Copper market (Dai and Ding,

2010). To illustrate our methods, we consider the relationship between the Copper Spot

Price (CSP) (response) and the Copper Futures Price (CFP) (predictor). The underlying

nonparametric regression model would be

CSP = m(CFP) + e, (4.1)

where e is an error term. As discussed above, Shanghai and Shenzhen 300 Stock Index

Futures (IF), as a stock index futures, affects the relationship between CSP and CFP.

Then we choose IF as the covariate U and consider the IF-adjusted estimation method

given in Section 2. We denote the distorted CSP and CFP by C̃SP and C̃FP, respectively.

The distorting equations are expressed as

C̃SP = ψ(IF)CSP, C̃FP = φ(IF)CFP. (4.2)

By (2.4), we obtain the estimators of CSP and CFP, which are denoted by ĈSP and ĈFP,

respectively. The time series plots of CSP, CFP, ĈSP and ĈFP are displayed in Figure

4. The estimators of the distorting functions ψ(·) and φ(·) are displayed in Figure 5. By

(2.6), we obtain the estimator of the regression function m(·). In order to illustrate our

method, we also give the non-adjusted estimator of regression function without considering

the covariate IF. We present the estimators derived by the two methods in Figure 6. From

the four figures, it can be seen that the estimators are adjusted when IF are too big

or too small, and they also provide the evidence that there exists nonlinear relationship

between CSP and CFP and this relationship is affected by IF. The result coincides well

with empirical evidence, and then it is helpful to investors to analyze the investment

environment clearly and to make the relatively correct investment decision.

We choose each trading day’s closing price of CSP, CFP, and IF over the period

between 16 April 2010 and 31 December 2010 with 218 observations. In order to ensure

the stationarity, we pretreat the raw data and use the first-order difference of the natural

logarithm. Figure 3(a) gives the time series plots of CSP (dotted line) and CFP (solid
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line). Figure 3(b) gives the time series plots of IF (solid line). (Data sources: Wind

Information).
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Figure 3 Time series plots of real data: (a) Plots of CSP (solid line)

and CFP (dotted line) (b) Plot of IF
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Figure 4 Plots of observed and estimated data: (a) Observed CFP

(circle) and estimated CFP (dot) (b) Observed CSP (circle)

and estimated CSP (dot)
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Figure 5 (a) Estimator of the distorting function ψ(·)
(b) Estimator of the distorting function φ(·)
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Figure 6 Non-adjusted estimator of m(·) (dotted line) and

covariate-adjusted estimator of m(·) (circle line)

§5. Proof of the Main Results

Proof of Lemma 3.1 By Theorem 6.5 in Fan and Yao (2003), we can get the

uniform convergence of the nonparametric estimators ĝ
X̃

(u) and ĝ
Ỹ

(u),

sup
u∈[a,b]

|ĝ
X̃

(u)− g
X̃

(u)| = OP
(
h+ (nh/ log(1/h))−1/2

)
, (5.1)
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sup
u∈[a,b]

|ĝ
Ỹ

(u)− g
Ỹ

(u)| = OP
(
h+ (nh/ log(1/h))−1/2

)
. (5.2)

Firstly, consider X̂i−Xi. By (2.2), (2.3) and (2.4), we can get the following decomposition,

X̂i −Xi = Xi

(φ(Ui)

φ̂(Ui)
− 1
)

= Xi

(g
X̃

(Ui)

EX

X̃

ĝ
X̃

(Ui)
− 1
)

= Xi

(g
X̃

(Ui)

ĝ
X̃

(Ui)
− 1 +

g
X̃

(Ui)

ĝ
X̃

(Ui)

X̃ − EX

EX

)
.

According to the term g
X̃

(Ui)/ĝX̃(Ui), it can be easily obtained by (5.1) that

g
X̃

(Ui)

ĝ
X̃

(Ui)
= 1− ĝ

X̃
(Ui)− gX̃(Ui)

ĝ
X̃

(Ui)
= OP

(
h+ (nh/ log(1/h))−1/2

)
.

Besides, applying the law of large numbers to (X̃ − EX)/EX, it follows that

X̂i −Xi = OP

(
Xi ·

ĝ
X̃

(Ui)− gX̃(Ui)

ĝ
X̃

(Ui)

)
+OP

(
Xi ·

ĝ
X̃

(Ui)− gX̃(Ui)

ĝ
X̃

(Ui)
· n−1/2

)
= OP

(
h+ (nh/ log(1/h))−1/2

)
.

Similarly, it can be shown that Ŷi − Yi = OP
(
h+ (nh/ log(1/h))−1/2

)
.

Lastly, because X̂ converges to X a.e., then X̂ converges to X in distribution, and

because the kernel function K(·) is continuous, it can be easily obtained that

Wh(x− X̂i)−Wh(x−Xi) =
Kh(x− X̂i)

1

n

n∑
j=1

Kh(x− X̂j)

− Kh(x−Xi)

1

n

n∑
j=1

Kh(x−Xj)

= oP (1).

This completes the proof of Lemma 3.1. �

Proof of Theorem 3.1

m̂(x)−m(x)

=
n∑
i=1

Wh(x− X̂i)Ŷi −m(x)

=
n∑
i=1

[Wh(x− X̂i)−Wh(x−Xi)][Ŷi − Yi] +
n∑
i=1

[Wh(x− X̂i)−Wh(x−Xi)]Yi

+
n∑
i=1

Wh(x−Xi)[Ŷi − Yi] +
n∑
i=1

Wh(x−Xi)Yi −m(x)

= Q1 +Q2 +Q3 +Q4, (5.3)
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where Qi, i = 1, . . . , 4 are defined as follows,

Q1 =
n∑
i=1

[Wh(x− X̂i)−Wh(x−Xi)][Ŷi − Yi],

Q2 =
n∑
i=1

[Wh(x− X̂i)−Wh(x−Xi)]Yi,

Q3 =
n∑
i=1

Wh(x−Xi)[Ŷi − Yi],

Q4 =
n∑
i=1

Wh(x−Xi)Yi −m(x).

By Lemma 3.1, the first three items are oP (1), and the major part Q4 is

OP
(
h+ (nh/ log(1/h))−1/2

)
,

derived from Theorem 6.5 in Fan and Yao (2003). �

Proof of Theorem 3.2 By Lemma 3.1, the first three items in (5.3) are oP (1),

so it remains to prove the asymptotic normality of the major part Q4. For simplicity, in

the proofs, we denote the bandwidth in (2.6) by h. By

Wh(x−Xi) =
Kh(x−Xi)
n∑
i=1

Kh(x−Xi)

,

it follows that

Q4 =

n∑
i=1

K
(x−Xi

h

)
Yi

n∑
i=1

K
(x−Xi

h

) −m(x)

=

n∑
i=1

(m(Xi)−m(x))K
(x−Xi

h

)
n∑
i=1

K
(x−Xi

h

) +

n∑
i=1

σ2(Xi)K
(x−Xi

h

)
εi

n∑
i=1

K
(x−Xi

h

)
, Bn +Rn. (5.4)

Consequently,

√
nh(m̂(x)−m(x)−Bn) =

n∑
i=1

1√
nh
σ(Xi)K

(x−Xi

h

)
εi

1

nh

n∑
i=1

K
(x−Xi

h

) ,

n∑
k=1

ξnk

Sn
, (5.5)

where {ξnk} is a martingale difference sequence, by Lemma 1.2 in Hu (2002), we have

n∑
k=1

ξnk
D−→ N(0, δ21),
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where δ21 = σ2(x)f(x)
∫ +∞
−∞ K2(t)dt.

For Sn, similar to the proof of Theorem 2.2 in Hu (2002), we have

Sn =
1

h
EK
(x−X1

h

)
+OP

(( 1

nh2

(
Var

(
K
(x−Xi

h

))
+ βn

(∫ +∞

−∞

∣∣∣K(x− t
h

)∣∣∣f(t)dt
)2))1/2)

=
1

h

∫ +∞

−∞
K
(x− t

h

)
f(t)dt+O

( 1

nh
+
βn
n

)
P−→ f(x)

∫ +∞

−∞
K(t)dt.

Then, it follows that

√
nh(m̂(x)−m(x)−Bn) =

n∑
k=1

ξnk

Sn

D−→ N(0,Σ2), n −→∞, (5.6)

where

Σ2 =

σ2(x)

∫ +∞

−∞
K2(t)dt

f(x)
(∫ +∞

−∞
K(t)dt

)2 .
For Bn,

n∑
i=1

(m(Xi)−m(x))K
(x−Xi

h

)
n∑
i=1

K
(x−Xi

h

) ,
I1
I2
. (5.7)

For I1,

I1 = nE
(

(m(X1)−m(x))K
(x−X1

h

))
+OP

((
nVar

(
(m(X1)−m(x))K

(x−X1

h

))
+ 2nβn

(∫ +∞

−∞

∣∣∣(m(t)−m(x))K
(x− t

h

)∣∣∣f(t)dt
)2)1/2)

= O(nhq+1) +OP
(
(nh2q+1 + nβnh

2q+2)1/2
)

= nh
(
O(hq) +OP (hq(nh)−1/2)

)
.

For I2,

I2 = nEK
(x−X1

h

)
+OP

((
nVar

(
K
(x−X1

h

))
+ 2nβn

(∫ +∞

−∞

∣∣∣K(x− t
h

)∣∣∣f(t)dt
)2)1/2)

= nEK
(x−X1

h

)
+OP

(
(nh+ 2nβnh

2)1/2
)

= nEK
(x−X1

h

)
+OP

(
(nh)1/2

)
.
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Let bn = E{(m(X1)−m(x))K[(x−X1)/h]}/EK[(x−X1)/h], then bn = O(hq), and

Bn = bn + hqOP ((nh)−1/2). (5.8)

By (5.6) and (5.8), as n −→∞, we have

√
nh(m̂(x)−m(x)− bn)

D−→ N(0,Σ2),

where

Σ2 =

σ2(x)

∫ +∞

−∞
K2(t)dt

f(x)
(∫ +∞

−∞
K(t)dt

)2 .
This completes the proof of Theorem 3.2. �
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