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Abstract

Algebraic convergence in L2-sense is studied for the reflecting diffusion processes on noncom-

pact manifold with non-convex boundary. A series of sufficient and necessary conditions for the

algebraic convergence are presented.
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§1. Introduction

Let (M, g) be a d-dimensional noncompact connected Riemannian manifold with non-

convex boundary ∂M . Consider the operator L = 4 + ∇h for some h ∈ C1(M) with

Z :=
∫
M eh(x)dx < ∞, where 4 and ∇ are, respectively, the Laplace and the gradient

operators associated to the Riemannian metric g. Let π(dx) = Z−1eh(x)dx, where dx is

the Riemannian volume measure. It follows that L is symmetric with respect to π for all

functions in C∞0 (M).

Let Xt be the reflecting L-diffusion process on M , which is assumed to be non-

explosive (see the conditions, for example, in Ikeda and Watanabe, 1981; Chapter V

and Wang, 2013; Theorem 3.1.1), and Pt be the corresponding Markov semigroup. It is

known that the process has algebraic convergence in L2-sense if there exist a functional

V : L2(π)→ [0,∞] and constants C > 0, q > 1 such that

‖Ptf − π(f)‖2 ≤ CV (f)/tq−1, t > 0, f ∈ L2(π), (1.1)
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where ‖ · ‖ denotes the L2-norm, and π(f) =
∫
M fdπ. From now on, we use

∫
to represent∫

M for convenience.

The main purpose of the paper is to work out some explicit criteria for the algebraic

convergence of the reflecting diffusion process on noncompact connected manifold M with

non-convex boundary. Actually, what we are doing is to find out some q > 1 such that

sup
t>0

tq−1‖Ptf − π(f)‖ is bounded within a class of functions. So the algebraic convergence

depends heavily on the functional V . When ∂M is convex or empty, we can use the

Kendal-Cranston’s coupling to construct the functional V and obtain some criteria for

the algebraic convergence, see Wang (2006) for detail. But when ∂M is non-convex, the

coupling method can not be adopted directly as the minimal geodesic between two points

may not be entirely contained in M , see Kendall (1986) for the original reference. This

paper is devoted to dealing with this difficulty. The main idea of the paper is to make a

proper conformal change of the metric to reduce the non-convex case to the convex, see

the following Lemma 2.1. And we find a relatively good distance to construct the function

V , which is also one of innovations of this paper. The second innovation is that using the

polar coordinates transformation, we obtain a series of sufficient and necessary conditions

of algebraic convergence for the reflecting diffusion processes on the noncompact manifold

M with non-convex boundary.

§2. Main Results

Consider the reflecting L-diffusion process. Let N be the outward unit normal vector

field of ∂M and H = {f |f ∈ L2(π), Nf |∂M = 0}. According to (1.1), the definition of

algebraic convergence, the diffusion process will have algebraic convergence rate if V (f) :=

sup
t≥0

tq−1‖Ptf − πf‖2 is bounded within the class of functions H for some constant q > 1.

Obviously this V satisfies the following conditions:

V (cf + d) = c2V (f), for all c, d ∈ R. (2.1)

For some constant c > 0, V (Ptf) ≤ cV (f), for all t ≥ 0, f ∈ L2(π). (2.2)

The inequality (2.2) is the contraction condition. Conditions (2.1) and (2.2) are the

prerequisites for us to construct V . Since it is difficult for us to use coupling method

to construct the functional V as before (see for instance Wang, 2006; Chen and Wang,

2003; Wang, 2004), we are trying to construct it in another way without using coupling

method. Prior to this, we need make the conformal change of Riemannian metric, so that
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the manifold M under the new metric is much easier to handle. We have the following

lemma from Wang (2007):

Lemma 2.1 Let Sect be the sectional curvature of M . Suppose M satisfies the

following conditions:

Sect ≤ k, where k ≥ 0;

For some constants K ∈ R, there is Ric(Y, Y ) ≥ (d− 1)K|Y |2 for all Y ∈ TM ;

For some constants σ, r ≥ 0, there is −σ|X|2≤〈∇XN,X〉≤r|X|2 for all X∈T∂M .

Then there is a function ϕ ∈ C∞(M) being strictly positive, such that ∂M is convex under

the new metric g̃ = ϕ−2g.

For the detailed construction of ϕ, the reader can refer to Wang (2007). Now we can

discuss the convergence problem of the diffusion processes under the new metric g̃. For

(M, g̃), let ∇̃, 4̃ be the corresponding gradient operator and Laplace-Beltrami operator,

R̃ic be the new Ricci curvature and ρ(x, y) be the new Riemannian distance from x to y.

It’s easy to get the following equations:

4 = ϕ−2
(
4̃+ (d− 2)∇̃ logϕ

)
, ∇h = ϕ−2∇̃h.

Then the operator L can be rewritten as

L = ϕ−2
[
4̃+ (d− 2)∇̃ logϕ+ ∇̃h

]
= ϕ−2(4̃+W ),

where W = (d− 2)∇̃ logϕ+ ∇̃h.

Let J be a positive function satisfying

J(r) = sup
{
4̃ρ(·, x)(y) + 〈W (y), ∇̃ρ(·, x)(y)〉g̃, ρ(x, y) = r, (x, y) /∈ Cut

}
<∞,

where Cut :={(x, y) : x and y are conjugate points}. How to get the quantitative expres-

sion of J(r)? Let’s give an example. Recall that R̃ic < 0 for the noncompact manifold. In

particular, if R̃ic ≥ (d−1)k0 for some k0 < 0 and ‖W‖∞ <∞, using Laplacian comparison

theorem, we have 4̃ρ(β(r)) ≤ (d − 1)η′(r)/η(r) and 〈W, ∇̃ρ〉g̃ < ‖W‖∞ < ∞. So we can

just take J(r) = (d− 1)η′(r)/η(r) + ‖W‖∞, where

η(r) = sinh(
√
−k0r)/

√
−k0, k0 < 0. (2.3)

For any continuous function ψ(x) > 0, let

C(r) :=

∫ r

0
J(s)ds; F (r) :=

∫ r

0
e−C(s)ds

∫ ∞
s

eC(u)ψ(u)du, r ≥ 0.

Especially, if we take ψ(x) ≡ 1, F (r) can be just taken as
∫ r

0 e−C(s)ds.

Now, we can construct the function V as follows.
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Lemma 2.2 Let V (f) = sup
x6=y

∣∣[f(x) − f(y)]/[F ◦ ρ(x, y)]
∣∣2. Then V (f) satisfies

conditions (2.1), (2.2).

Let us consider the geodesic polar coordinates of metric on M : (r, θ), which has the

expression: ds2 = dr2 +
∑
i,j
hij(r, θ)dθidθj , 1 ≤ i, j ≤ d− 1, where θ is (d− 1)-dimensional

unit spherical coordinates and (hij) is a positive matrix. The volume element of M under

geodesic polar coordinates is denoted by A(r, θ)dr ∧ dθ, where dθ is the volume element

on the (d−1)-dimensional unit spherical Sd−1(1). Assume that o ∈M , and denote ρ(o, x)

= ρ(x). As θ is the spherical coordinate of exp−1
o (x)/ρ(x), without confusion, we can

denote θ = exp−1
o (x)/ρ(x). Let β : [0, ρ(o, x)] → M be the minimal geodesic from o to

x under (M, g̃). So β(t) = expo (tθ), t ∈ [0, R(θ)), where R(θ) = sup{t : β(t) ∈ M}. By

the geodesic completeness of M , we have that β(R(θ)) ∈ ∂M ∪ cut(o), cut(o) is the set of

conjugate points of o.

Let ξ(x) > 0 be a test function on the manifold M . Denote

σ1(x) :=
ϕ2(x)

π(x)A(ρ(x), θ)

∫ R(θ)

ρ(x)

A(r, θ)

ξ2(β(r))
ρ(β(r))π(β(r))dr.

The following result is the main theorem of algebraic convergence for the reflecting L-

diffusion process on M with non-convex boundary.

Theorem 2.1 Suppose that M satisfies the conditions of Lemma 2.1. Let V be

as in Lemma 2.2.

(i) If there exists a positive function ξ(x) on M and a constant q > 1, such that

sup
x∈M

σ1(x) <∞,
∫
F (ρ(x))2ξ(x)2q−2π(dx) <∞.

Then the process has algebraic convergence, i.e. (1.1) holds.

(ii) On the contrary, assume that the process has algebraic convergence with respect

to V . If there is a monotone increasing function ζ : M → [0,∞) satisfying

(a) there exists sufficiently large positive integer m so that
∫
ζ2mdπ =∞;

(b) ‖∇ζ‖2 has upper bound;

(c) there exists ε < 2q such that V (ζ ∧N) ≤ N ε for all N ∈ N.

Then for all 0 ≤ k ≤ 2q − ε, we have
∫
ζk(x)π(dx) <∞.

Using a different method from the proof of Theorem 2.1, we can obtain another

criterion of algebraic convergence. Let ξ > 0 as before. Define

σ2(x) :=
ξ(x)ϕ(x)

π(x)A(ρ(x), θ)

∫ R(θ)

ρ(x)

A(r, θ)

ξ2(β(r))
π(β(r))dr.
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Theorem 2.2 Suppose that M satisfies the conditions of Lemma 2.1. Let V be

as in Lemma 2.2. If there exists a positive function ξ(x) and a constant q > 1, satisfying

sup
x∈M

σ2(x) <∞,
∫
F (ρ(x))2ξ(x)2q−2π(dx) <∞,

then the process has algebraic convergence with respect to V .

According to Theorem 2.2, we select a particular test function to get a more convenient

criterion.

Corollary 2.1 Suppose that M satisfies the conditions of Lemma 2.1 and define

V as in Lemma 2.2. If there exists q > 1, such that∫ ∞
0

eC(u)ψ(u)du ·
∫
ϕ−2(x)σ2(x)2qπ(dx) <∞,

then the process has algebraic convergence with respect to V .

In particular, if (M, g̃) has constant curvature K0, then we have A(r, θ) = η(r)d−1,

where η(r) defined as (2.3) with K0 instead of k0. So we can get more explicit expressions

of σ1(x) and σ2(x) which are not very difficult to computed.

For more general case, we can use the comparison theorem to simplify σ1 and σ2. For

example, if R̃ic ≥ (d− 1)k0 for some k0 < 0, denote η by (2.3) and define

δ1(x) :=
ϕ2(x)

π(x)η(ρ(x))d−1

∫ R(θ)

ρ(x)

η(r)d−1

ξ2(β(r))
ρ(β(r))π(β(r))dr;

δ2(x) :=
ξ(x)ϕ(x)

π(x)η(ρ(x))d−1

∫ R(θ)

ρ(x)

η(r)d−1

ξ2(β(r))
π(β(r))dr.

In fact, δ1(x), δ2(x) are the new expressions of σ1(x), σ2(x) by replacing A(r, θ) with

η(r)d−1 respectively. Then we have the corollary as follows.

Corollary 2.2 Under the additional condition of R̃ic ≥ (d− 1)k0 for some k0 < 0,

Theorem 2.1 and Theorem 2.2 are still valid by using δi(x) instead of σi(x), i = 1, 2,

respectively.

In fact, our results are also suitable for the convex manifolds because ϕ ≡ 1 in this

case. Especially, when M = Rd, we have Ric ≡ 0, β(r) = ry/ρ(y), Cut is null, R(θ) ≡ +∞
and ϕ ≡ 1. Thus,

σ2(y) =
ξ(y)

π(y)ρ(y)d−1

∫ +∞

ρ(y)
rd−1ξ−2(ry/ρ(y))π(ry/ρ(y))dr

=
ξ(y)ρ(y)

π(y)

∫ +∞

1
td−1ξ−2(ty)π(ty)dt,
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which is consistent with Theorem 2.1 of Wang (2004). Therefore, the above conclusions

are more general.

Furthermore, our conclusion can be used for the hyperplane. We have known that

many manifolds with boundary are diffeomorphic to the hyperplane. Consider the special

case that M is d-dimensional upper half-plane Hd. Let o as the origin of the coordinates.

To judge the algebraic convergence, we only need to take supremum of σi (i = 1, 2) for

y ∈ Hd.

§3. Proofs of the Results

Our starting point is the following theorem which gives a sufficient (necessary) con-

dition of algebraic convergence for general Markov semigroup. See Liggett (1991) for

details.

Theorem 3.1 (Liggett-Stroock) Let 1 < p, q < ∞, such that 1/q + 1/p = 1.

Suppose that V : L2(π) → [0,∞] satisfies V (cf + d) = c2V (f) for all c, d ∈ R. Consider

the following two statements.

(i) There exists a constant C ′ > 0, such that

‖f − πf‖2 ≤ C ′D(f)1/pV (f)1/q, f ∈ D(D), (3.1)

where D(f) =
∫
|∇f |2π(x)dx is the Dirichlet form of the operator L with domain D(D) =

{f ∈ L2(π) : D(f) <∞}.

(ii) There exists a constant C > 0, such that ‖Ptf−πf‖2 ≤ CV (f)/tq−1, for all t > 0,

f ∈ L2(π).

Then we have the following conclusions:

(a) If (i) holds and V satisfies the contraction condition V (Pt(f)) ≤ cV (f), c > 0,

then (ii) holds;

(b) If the process is reversible with respect to π and (ii) holds, then (i) holds.

Remark 1 In the original Liggett-Stroock theorem in Liggett (1991), the contrac-

tion property of V is represented as V (Ptf) ≤ V (f). Here we use V (Pt(f)) ≤ cV (f)

instead of V (Ptf) ≤ V (f). It is easy to check that the Liggett-Stroock theorem still holds.

In fact, the criteria for algebraic convergence of this paper are some more explicit

conditions for (3.1) of the Liggett-Stroock theorem in the context of diffusion processes

on M . Now, we will start from the contraction property of V .
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Proof of Lemma 2.2 Apparently, V (f) satisfies (2.1). When x 6= y, we have

∣∣∣Ptf(x)− Ptf(y)

F ◦ ρ(x, y)

∣∣∣2 ≤ 3
[∣∣∣Ptf(x)− f(y)

F ◦ ρ(x, y)

∣∣∣2 +
∣∣∣f(x)− f(y)

F ◦ ρ(x, y)

∣∣∣2 +
∣∣∣Ptf(y)− f(x)

F ◦ ρ(x, y)

∣∣∣2]. (3.2)

By symmetricity, we only need to prove

sup
x6=y

∣∣∣Ptf(x)− f(y)

F ◦ ρ(x, y)

∣∣∣2 ≤ V (f). (3.3)

For some fixed y, we temporarily abbreviate ρ(x, y) to ρ(x) for convenience. Firstly, we

have

LF (ρ(x)) = ϕ−2[4̃F (ρ(x)) +WF (ρ(x)] = ϕ−2[F ′′(ρ(x)) + F ′(ρ(x))(4̃ρ(x) +Wρ(x))]

≤ ϕ−2[F ′′(ρ(x)) + J(ρ(x))F ′(ρ(x))] = −ϕ−2ψ(ρ(x)) ≤ 0.

Next, let Xt be the L-diffusion process with X0 = x. We have

ExF (ρ(Xt, y)) = F (ρ(x, y)) +

∫ t

0
PsLF (ρ(x))ds ≤ F (ρ(x, y)).

Thus, we have∣∣∣Ptf(x)− f(y)

F ◦ ρ(x, y)

∣∣∣2 =
∣∣∣Ex(f(Xt)− f(y)

F (ρ(Xt, y))
· F (ρ(Xt, y))

F (ρ(x, y))

)∣∣∣2
≤
(

sup
x6=y

∣∣∣f(x)− f(y)

F (ρ(x, y))

∣∣∣2) · ∣∣∣ExF (ρ(Xt, y))

F (ρ(x, y))

∣∣∣2 = V (f) ·
∣∣∣ExF (ρ(Xt, y))

F (ρ(x, y))

∣∣∣2 ≤ V (f),

which yields (3.3) by making the supremum over all x 6= y on the left-hand side.

Therefore, taking the supremum over all x 6= y on the left-hand side of (3.2) yields

V (Ptf) ≤ 9V (f) for all t ≥ 0. Hence the proof of Lemma 2.2 is completed. �

Proof of Theorem 2.1 We only prove the part (i) of the theorem since the proof

of part (ii) is quite similar as the diffusion processes on Rn. See Wang (2007; Theorem

2.1) for details.

By the Liggett-Stroock theorem, we only to check condition (3.1). So we will start

from the variance ‖f − πf‖2, f ∈ L2(π). Because the diffusion process which we studied

is reflecting on ∂M , f must satisfy Neumann boundary, i.e. Nf |∂M = 0. Since C∞0 (M) is

dense in the function class H = {f |f ∈ L2(π), Nf |∂M = 0}, it is easy to see that C∞0 (M)

is large enough for us to discuss the problem by an approximation argument.

Suppose that o ∈ M is the original point, and recall that ρ(o, x) = ρ(x). Let f ∈
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C∞0 (M), ξ > 0. We have

‖f − πf‖2 = inf
c

∫
π(dx)(f(x)− c)2 ≤

∫
π(dx)(f(x)− f(o))2

≤
{∫ (f(x)− f(o)

ξ(x)

)2
π(dx)

}1/p{∫ (f(x)− f(o)

ξ(x)

)2
ξ(x)2qπ(dx)

}1/q

=: I1/p · II1/q. (3.4)

Let β : [0, ρ(x)]→M (β(0) = o, β(ρ(x)) = x) be the minimal geodesic between o and

x under the new metric g̃. Then |dβ(t)/dt|g̃ = 1, and

df(β(t))

dt
=
〈
∇̃f, dβ(t)

dt

〉
g̃
≤ |∇̃f |g̃ ·

∣∣∣dβ(t)

dt

∣∣∣
g̃

= |∇̃f |g̃.

We get

I =

∫
ξ−2(x)(f(x)− f(o))2π(dx) ≤

∫
ξ−2(x)

(∫ ρ(x)

0

df(β(t))

dt
dt
)2
π(dx)

≤
∫
ξ−2(x)

(∫ ρ(x)

0
|∇̃f |g̃(β(t))dt

)2
π(dx) ≤

∫
ξ−2(x)ρ(x)π(dx)

∫ ρ(x)

0
|∇̃f |2g̃(β(t))dt.

Then, we establish geodesic polar coordinates (r, θ) with o as the original point. We have

I ≤
∫
Sd−1(1)

dθ

∫ R(θ)

0
A(r, θ)ξ−2(β(r))ρ(β(r))π(β(r))dr

∫ r

0
|∇̃f |2g̃(β(s))ds

=

∫
Sd−1(1)

dθ

∫ R(θ)

0
|∇̃f |2g̃(β(s))ds

∫ R(θ)

s
A(r, θ)ξ−2(β(r))ρ(β(r))π(β(r))dr

=

∫
A−1(ρ(y), θ)|∇̃f |2g̃(y)dy

∫ R(θ)

ρ(y)
A(r, θ)ξ−2(β(r))ρ(β(r))π(β(r))dr

=

∫
σ1(y)ϕ−2(y)π(y)|∇̃f |2g̃(y)dy.

Here in the third step, θ is the spherical coordinates of exp−1
o (y)/ρ(y). By the conformal

change, we have

|∇̃f |2g̃ = ϕ2〈∇f,∇f〉.

Combining the above results with sup
y∈M

σ1(y) <∞ gives that there exists constant C1 such

that

I ≤ sup
y∈M

σ1(y)

∫
|∇f |2π(y)dy = C1

∫
|∇f |2π(y)dy = C1D(f). (3.5)

On the other hand,

II =

∫ (f(x)− f(o)

ξ(x)

)2
ξ(x)2qπ(dx) ≤ V (f)

∫
F (ρ(x))2ξ(x)2q−2π(dx). (3.6)
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Hence we get II ≤ C2V (f) for some constant C2 when
∫
F (ρ(x))2ξ(x)2q−2π(dx) <∞.

Combining (3.5), (3.6) with (3.4), we obtain that there exists constant C such that

‖f−π(f)‖2 ≤ CD(f)1/pV (f)1/q. By Theorem 3.1 (Liggett-Stroock theorem), the reflecting

L-diffusion process has algebraic convergence. �

Proof of Theorem 2.2 Let the symbols I and II be the same as in the proof of

Theorem 2.1. We have

I ≤ 2

∫
Sd−1(1)

dθ

∫ R(θ)

0
A(r, θ)ξ−2(β(r))π(β(r))dr ·

∫ r

0
|∇̃f |g̃(β(t))dt

∫ t

0
|∇̃f |g̃(β(s))ds

= 2

∫
Sd−1(1)

dθ

∫ R(θ)

0
|∇̃f |g̃(β(t))dt ·

∫ R(θ)

t
A(r, θ)ξ−2(β(r))π(β(r))dr

∫ t

0
|∇̃f |g̃(β(s))ds

= 2

∫
|∇̃f |g̃(x)A−1(ρ(x), θ)

{∫ R(θ)

ρ(x)
A(r, θ)ξ−2(β(r))π(β(r))dr ·

∫ ρ(x)

0
|∇̃(f)|g̃(β(s))ds

}
dx.

By Schwarz’s inequality, we obtain

I ≤ 2
[ ∫

ξ−2(x)
(∫ ρ(x)

0
|∇̃f |g̃(β(s))ds

)2
π(x)dx

]1/2

·
[ ∫ (

|∇̃f |g̃(x)
1

π(x)
ξ(x)

∫ R(θ)

ρ(x)
A−1(ρ(x), θ)A(r, θ)ξ−2(β(r))π(β(r))dr

)2
π(x)dx

]1/2

≤ 4

∫
|∇f |2(x)

ϕ2(x)ξ2(x)

π2(x)A2(ρ(x), θ)

(∫ R(θ)

ρ(x)
A(r, θ)ξ−2(β(r))π(β(r))dr

)2
π(x)dx

= 4

∫
|∇f |2(x)σ2(x)π(x)dx.

This means when sup
x∈M

σ2(x) <∞, I ≤ CD(f) for some constant C. The rest of the proof

is the same as the corresponding part of the proof of Theorem 2.1. �

Proof of Corollary 2.1 We select a simple test function ξ ≡ 1. By a proof

similar to that of Theorem 2.2 and Schwarz’s inequality, we obtain that

‖f − π(f)‖2 ≤
∫
π(dx)(f(x)− f(o))2 ≤ 4

∫
|∇f |2(x)σ2(x)2π(dx)

≤ 4
[ ∫
|∇f |2(x)π(dx)

]1/p[ ∫
|∇f |2(x)σ2(x)2qπ(dx)

]1/q
.

Let γ be the minimal geodesic satisfying γ(t) = expx (tv) and v = ∇̃f(x). So we have

γ(0) = x, γ′(0) = ∇̃f(x). Thus,

|∇f |2 = ϕ−2|∇̃f |2g̃ = ϕ−2
∣∣∣ lim
t→0

f(γ(t))− f(x)

ρ(γ(t), x)

∣∣∣2 ≤ V (f)ϕ−2(x)|F ′(0)|2.

Then we obtain

‖f − π(f)‖2 ≤ 4D(f)1/pV (f)1/q
{∫

ϕ−2(x)|F ′(0)|2σ2(x)2qπ(dx)
}1/q

.
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According to Theorem 3.1, Corollary 2.1 is proved. �

Proof of Corollary 2.2 From the conditions of Lemma 2.1, using comparison the-

orem (see Cheeger and Ebin, 1992), we deduce that A(r, θ)/η(r)d−1 is the non-increasing

function of r when R̃ic ≥ (d − 1)k0 for some k0 ≤ 0, which means A(r, θ)/A(ρ(y), θ) ≤
(η(r)/η(ρ(y)))d−1 for r ≥ ρ(y). Thus we have δ1(x) ≥ σ1(x) and δ2(x) ≥ σ2(x). Using

this inequality, we can replace σ1(x) by δ1(x) in Theorem 2.1. Similarly, for σ2(x) in The-

orem 2.2, we can replace it with δ2(x) to determine whether the processes have algebraic

convergence. �
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