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Abstract
Let X; ~ F )Y, ~ F7" i=1,2,...,n, be all independent PRHR variables. Firstly, we show
that (a1, @2,...,an) =m (Y1,72,---,7n) implies (Yiin, Yain, ... Yan) Zst (X1, Xomy ooy Xnin)-
Secondly, we consider the comparison of convolutions of independent heterogeneous PRHR variables
with respect to the usual stochastic ordering. Suppose a1 znag > % apand y1 > 2 > -0 > Y,

we prove that (a1, @2, ..., an) =m (1,72, -.,7n) implies > Y, > > X, forall1 <k < n. The
r=k r=k
results established here strengthen some of the results known in the literature.
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81. Introduction

Order statistics play an important role in statistical inference, life testings, reliability
theory and many other areas. Let X7, Xs,...,X, be n random variables and let Xj.,
denotes their ith order statistic, ¢ = 1,2, ..., n. In reliability theory, the kth order statistic
Xk corresponds to the lifetime of a (n — k + 1)-out-of-n system. Parallel and series
systems are the building blocks of more complex coherent systems, wherein the lifetime
of a series system corresponds to the smallest order statistic Xi., and the lifetime of
a parallel system corresponds to the largest order statistic X,.,. Many authors have
studied stochastic comparisons of lifetimes of series and parallel systems, for example, see
Khaledi and Kochar (2000, 2006), Dykstra et al. (1997), Fang and Zhang (2011, 2012),
and references cited therein.
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Proportional reversed hazard rates (PRHR) model and proportional hazard rates
(PHR) model are two important models in reliability theory. Let Xi, X, ..., X, denote
the lifetimes of n components of a system with distribution functions Fi, Fs, ..., F,, re-
spectively. If there exist positive constants a;, ag,. .., a, and a distribution function F(x)

with corresponding density function f(z) and survival function F(z) such that
Fi(z) = F¥(x), i=1,2,...,n,

we say that random variables X1, X, ..., X,, follow the PRHR model. Meanwhile, F'(z)
and 7(z) = f(z)/F(x) are called the baseline distribution and baseline reversed hazard
functions, respectively, and a1, ao, . . ., ay, are the proportional reversed hazard rate param-
eters. We all know that generalized exponential distribution and exponentiated Weibull
distribution are special cases of this model. This model have discussed in Chapter 7 of

Marshall and Olkin (2007). If there exist positive constants A1, Ae, ..., A, such that

Fi(x) = [F(x)]M, i=1,2,...,n, (1.1)
we say that random variables X1, X, ..., X, follow the PHR model. In this case, r(z) =
f(x)/F(x) is the hazard rate corresponding to the baseline distribution F(x), then the

hazard rate of X; is \jr(x),i=1,2,...,n. So, (1.1) can be expressed as
Fi(z)=cME@ i =12 .  n,

where R(x) = [ r(t)dt, is the cumulative hazard rate of X. For example, exponential
random variables with hazard rates A1, Ag, ..., A, is follows the PHR model with R(x) = x.
Many interesting results have been obtained about the PHR model in the literature.
Pledger and Proschan (1971) have proved that if (X3, Xs,...,X,,) and (Y1,Ys,...,Y},)

have proportional hazard rate vectors (p1, 2, ..., iyn) and (v1,va,...,y,), then

(/’L17/’L27"'7,un) tm <V17V27'-'7V77»)7

implies that, X;.,, >s Yim, ¢ = 1,2,...,n. Subsequently, Proschan and Sethuraman
(1976) generalized the above result from componentwise stochastic ordering to multivariate
stochastic ordering, that is, (X1.n, Xoum, -« s Xnm) st (Yim, Yo, -« s Youn)-

Recently, Balakrishnan et al. (2014) studied stochastic comparison of vectors of order
statistics in the PRHR model with respect to usual multivariate stochastic order. Let
Xi~ F% Y, ~ F7 ¢=1,2, be all independent PRHR variables, then

(a1, 02) =m (71,72)



N JiteAt %75 PRHREZLUF Gt IS 2 JoiiiLUT 541

implies

(Y12, Y2:2) =5t (X122, X2:2)-
The above result only consider stochastic comparison of vectors of order statistics between
two PRHR variables. In this paper, we obtain some new results about stochastic compar-

ison of vector of order statistics in the PRHR model. Specifically, let X; ~ F® Y; ~ F7i,

i =1,2,...,n, be all independent variables. We will prove that

(011,012, o ,O[n) im (fyl)’}Qv cee 7’Yn)

implies
(Yi:n, Y2:na o aYn:n) zst (X1:n7 X2:na .. aXn:n)-

Furthermore, suppose
ap>ag > 2o, and 1 272> 2 Y,

we show that
(Oél,OéQ,' T 7an) tm (717727"‘)771)

implies
n n

Z Y;“ zst Z Xra
r=k r=k

forall 1 <k <n.

§2. Preliminaries and Main Results

First, we give the definition of the usual multivariate stochastic ordering.

Definition 2.1 Let X = (X1, Xy,...,X,) and Y = (Y1,Y5,...,Y,) be two ran-
dom vectors, X is said to be larger than Y in the usual stochastic order if f(X) > f(Y)
for all increasing function f(z1,z2,...,zy,) (i.e. increasing in each coordinate); in symbols,
X>4Y.

Majorization is a very interesting topic in statistics, which is a pre-ordering on vectors
by sorting all components in decreasing order.

Definition 2.2 Let A = (A1, \2,..., An), A" = (AT, A\5,...,AF) denote two n-
dimensional real vectors. Let Aj;j > Apg) > -+ 2 Ay, )\E‘H > )\’["2] > e > /\’["n] be their
ordered components. A* is said to be majorized by A, in symbols A =, A*, if Zk:l/\m >

i=

k n n
Z)\E;]; fork=1,2,...,n—1,and Y \j= > AL
i=1 i=1 i=1
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The following four results will be needed to prove our main results.

Lemma 2.1 (Shaked and Shanthikumar, 2007; p.273) Let X and Y be two n-
dimensional random vectors. If X >4 Y and h : R"* — R* is any k-dimensional increasing
(decreasing) function, then for any positive integer k, the k-dimensional vectors h(X ) and
h(Y) satisfy the multivariate ordering h(X) >4 (<s) h(X).

Lemma 2.2 (Proschan and Sethuraman, 1976) Let X; ~ [F(x)]*, Y; ~ [F(z)]“,
1=1,2,...,n, be all independent. Then

(,U,l, M2, ... 7,“11) ~m (Vly Va,... aVn) — (Xlzna X2:na cee aXn:n) st (Yizny YZ:na cen aYn:n)-

Lemma 2.3 Let Xi,X5s,...,X, be independent random variables with X; ~
beta (1,;), i =1,2,...,n. Then X1, Xo,..., X, follow the PHR model.

Proof From X; ~ beta(1,q;),7=1,2,...,n, we can obtain, for Vz € (0, 1),
Fi(e) = (1- 2y,

So, the result is hold according to the definition of PHR model. g
From the definition of beta distribution, we have the following result.

Lemma 2.4 Let X, Xs,...,X,, be independent random variables with X; ~
beta (a;,1), i =1,2,...,n. Then 1 — X; ~beta(1,q;),i=1,2,...,n.

Now, we give a sufficient condition for the usual multivariate stochastic ordering

between vectors of order statistics from two sets of heterogeneous beta random variables.

Theorem 2.1 Let X; ~ beta(ay, 1), Y; ~ beta (v, 1), i = 1,2,...,n, be all inde-

pendent random variables. If

(a1, @2, am) Zm (71,7255 7n),

then
(}/LTM Y2:na cee aYn:n) Zst (X1:n7 X2:n7 cee 7Xn:n)-

Proof Firstly, from Lemma 2.4, we get
1—X; ~beta(l,a;), 1 —-Y; ~beta(1,v), 1=1,2,...,n.
So, from Lemmas 2.2 and 2.3,

(a17a27 s 7a7‘b) Zm (717'727 s 7771)
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implies
(1 —Xim, 1 — Xogpy oo, 1 = X)) =6t (1= Y1, 1L = Youu, ..o, 1 = Y. (2.1)
Now, let us consider the function
h(zi,z9,...,2p) = (1 — 21,1 —x9,...,1 — ),

where 0 < z; < 1, @« = 1,2,...,n. Obviously, the function h(z1,x2,...,z,) is a n-

dimensional decreasing function. Therefore, from Lemma 2.1 and the ordering in (2.1),

we have
(}/1:n7 YQ:na e 7Yn:n) = h(l - Yl:na 1-— Y2:n7 ey 1— Ynn)
Zst h(1 - Xl:rw 1— XQ:TM sy 1— Xnn) = (Xlzna X2zn7 o 7Xn:n)-
Secondly, we extend the above result to the PRHR model. U

Theorem 2.2 Let X; ~ F*, Y, ~ F% ¢=1,2,... n, be all independent random

variables. Then
(1,02, ..y 0m) Zm (V1,72 -+, Tn)
implies
(Y1, Yo, -, Youn) Zst (Xiin, X2y -« oy Xien)-
Proof Let X} ~ beta(a;,1) and Y* ~ beta(;,1), i =1,2,...,n, be all indepen-

dent. Then, according to Theorem 2.1, we get

(alaoQa “e ,Oén) tm (’717727 cee 7711)
implies

(}/l*n’ Y;nv N ) st (Xin’ X;:nv s 7X7*L:n)'

ryTnn
Since the baseline distribution function F(x) is increasing in x, F~1(z) is also an

increasing function, and so from Lemma 2.1, we have
(Oél, a2, ... 7an) tm (717727 e 7771)
implies

(Fﬁl(}/ﬁn%Fil(Yan)v ce 7F71(Y*

nmn

)) st (Fﬁl(Xik:n% Fﬁl(Xék:n)ﬂ s 7F71(X7>::n))‘
Note that,

(X1, Xoos ooy Xnm) = (F7YXT,), F7UXS,), - FHXEL))
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and

(Yins Yaims ooy Yon) = (F7 Y00 F 7 (Vo) F 7 (Vi)

Therefore, the required result follows immediately. O
An interesting and useful special case of Theorem 2.2 is given in the following corollary.
Corollary 2.1  Under the conditions of Theorem 2.2, " Y,.,, >4 > Xy, for each

rel rel
subset I of {1,2,...,n}. Thus, for k =1,2,...,n, we have

k k
Z Y;":n Zst Z Xr:n (22)
r=1 r=1
holds; in particular,
n n
Z 1/r:n zst Z Xr:n- (23)
r=1 r=1
Proof Since ) x,., is an increasing function of (Xi.,, Xoum, ..., Xym), we imme-
rel
diately obtain the results according to Theorem 2.2 and Definition 2.1. O

Let X; ~ F*,Y; ~ F7 ¢=1,2,...,n, be all independent random variables. Suppose
ap > ag > > apand yp > 2 > -+ > y,. Thus, we can obtain X; >4 Xo >4 -+ >4
Xy and Y] >4 Yo >4t - -+ >t Yy, holding from the definition of distribution function. Next,
we consider the comparison of convolutions of independent heterogeneous PRHR variables

with respect to the usual stochastic order.

Theorem 2.3 Let X; ~ F* Y, ~ F% ¢=1,2, ... n, be all independent random
variables, where vy > a9 > -+ >« and 1 > 9 > -+ > 7,. Then if

(a17a27 e 7a7’b) tm (’717’727 e 7fyn)7

we have
n n

DY >a XX, (2.4)
r=k r=k
forall 1 <k <n.
Proof For k=1, (2.4) coincides with (2.3). Let 2 < k < n. Since (a1, aa,...,ay)
n n

=m (71,72, -+, V), we denote = > v, — > a, > 0. Define
r=k r=k

O = A\, + 0, 0 = A, i=k+1,k+2,...,n,

we have (8g, Ok11s--+50n) =m Yk, Vhtl,--->7n)- Let Z; ~ F%. By (2.3), we get

n n

Z }/’r Zst Z Zr- (25)

r=~k r=~k
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n n
Since 0 = g + 6 > Ag, then Zp >y Xji. Also X and > X,, Zx and > Z, are

r=k+1 r=k+1
independent, respectively. Therefore, we have
n n
Z Zr Zst Z Xr- (26)
r=k r=k
Combining (2.5) and (2.6) yields the desired result (2.4). O

Last, we give a typical direct application of Theorem 2.2.
A random variable X is said to have the exponentiated Weibull (EW) distribution if

its cumulative distribution function and probability density function are given by

F(z;0, 8, )

(176_(,\1)13)04’ x>0, a>0, >0, A>0,
and
flz;a,B,\) = aﬁ/\ﬁxﬂfle*(m)ﬁ (1 — e*(/\x)ﬁ)a_l, x>0, a>0, >0, A>0.

Here, a and [ are shape parameters and \ is a scale parameter, respectively. EW(5, a, A)
would be used to denote a EW distribution. The EW distribution including many distri-
butions as special cases, for example, the standard two-parameter Weibull distribution,

the generalized exponential (GE) distribution, the Burr type X distribution.

Corollary 2.2 Let X; ~ EW(8,a;,A), Vi ~ EW(5,7v,A), i = 1,2,...,n, be all
independent random variables. For all 5 > 0, A > 0, if

(a17a27 R 7a7’b) tm (’717’727 e 7’Yn)7

we have (Ylsna Yé:na cee 7Yn:n) >t (Xlsna XQ:nv cee ,Xn:n)-
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PRHRR AR FF it = 018 % T hEHL

FRE M F
(ZROTER A AT PR 20, T8, 241002)

WX~ F, Y ~ FY i =1,2,...,n, HREMIZMPRARBENZRR. HG, WA (a1,az,...,0n) =m
(717 Y25 .- 7777,)7 ﬂ"/f%(yl:n, Y2:n7 ey Ynn) Zst (Xl:n, X2:n7 LRI 7Xnn)ﬁjzj ;E\:Yk’ ﬁi1f]%f§75ﬂjE@PRHR
BEHLAR BRI — BUP AL BEar > a2 > - > anfllyn > 92 > o0 >y, HATIEW] T HI (01, @2, .., )

Zm (Y5925 ), AR <k <n, B Y Ye 20 3 X O ASCH@SIHYERET T O S0k
r==k r==k

O PSR
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