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Abstract: For a financial or insurance entity, the problem of finding the optimal dividend

distribution strategy and optimal firm value function is a widely discussed topic. In the present

paper, it is assumed that the firm faces two types of liquidity risks: a Brownian risk and a Poisson

risk. The firm can control the time and amount of dividends paid out to shareholders. By suffi-

ciently taking into account the safety of the company, bankruptcy is said to take place at time t if

the cash reserve of the firm runs below the linear barrier b + kt (not zero), see [1]. We deal with

the problem of maximizing the expected total discounted dividends paid out until bankruptcy. The

optimal dividend return (or, firm value) function is identified as the classical solution of the associ-

ated Hamilton-Jacobi-Bellman (HJB) equation where a second-order differential-integro equation

is involved. By solving the corresponding HJB equation, the analytical solution of the optimal firm

value function is obtained, the optimal dividend strategy is also characterized, which is of linear

barrier type: at time t the firm keeps cash inside when the cash reserves level is less than a critical

linear barrier x0 + kt and pays cash in excess of this linear barrier as dividends.
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§1. Introduction

This paper represents a model for financial valuation of a firm which has control of the

dividend payment as well as potential profit by choosing different business activities among

those available to it. We associate the value of the company with the expected present

value of the net dividend payouts since, according to [2], the value of a company in a world

of perfect capital markets is exactly the expected present value of future dividends. Our

objective is to find a dividend payout scheme that maximizes the expected total discounted
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dividends payment until bankruptcy, i.e., until the capital runs below the linear barrier

b+ kt for the first time.

During the recent decades, there has been an upsurge in dealing with market models

that take into account dividend strategies, owing to the recent development of mathemati-

cal tools in finance. Højgaard and Taksar [3] allow the company to control its risk exposure

by choosing its business activity and to invest in a risky asset. They show that the optimal

value function is concave and find that the optimal policy is of a barrier type. Cadenillas

et al. [4] provide the solution of an optimization problem where the cash reserves follow a

mean reverting process. Li [5] analyzes the distribution of dividends payments of a com-

pound risk model perturbed by diffusion for barrier strategy. Optimal dividend problems

are also treated in [6–13] and the references therein.

However, most of these works are based on pure diffusion models. It has been observed

that pure diffusion models are not robust enough to capture the appearance of jumps in

the cash reserves. As a result, jump-diffusion processes have been gaining popularity for

modelling finance. Belhaj [14] considered the problem of optimal dividend pay-outs for a

firm of which the cash reserves follow a jump-diffusion process: the firm faces two types

of risks, a Brownian risk that represents small movements in the cash flow and a Poisson

risk that represents large movements in the cash flow and that corresponds to losses due

to unexpected events. The optimal dividend payout policies (subject to maximization of

the expected total discounted dividend payments until bankruptcy) with and with out

insurance was obtained, which turned out to be barrier strategy.

In this paper, we will continue the study in this direction. Namely, we deal with the

dividend optimization problem in the jump-diffusion financial model, while a linear barrier

b+ kt is present, i.e., bankruptcy takes place at time t if the cash reserve of the firm runs

below the linear barrier b+kt. The presence of the linear barrier b+kt can be retrospected

to [1] and can be explained as follows: the firm has to keep some cash reserves in order to

protect itself against future losses since it’s financially constrained. It turns out that the

optimal firm value function is a classical solution to a Hamilton-Jacobi-Bellman (HJB)

equation, and, the optimal dividend policy is a linear barrier strategy: at time t the firm

keeps cash inside when the cash reserves level is less than a critical linear barrier x0 + kt

and pays cash in excess of this linear barrier to shareholders as dividends.

We mention that, although a similar outline parallel to that of [14] is present in this

paper, our new definition of bankruptcy requires a more delicate mathematical treatment,

especially in the proof of the main result, i.e., Theorem 2. We also mention that, when

our model degenerates to that of the existing literatures, our results coincides with the
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existing results, see Remarks 3–5.

The rest of this paper is organized as follows. In Section 2, we present the mathemat-

ical model. Section 3 is devoted to address the problem of finding the optimal firm value

function and the optimal dividend distribution strategy.

§2. The Mathematical Model

We start with a probability space (Ω,F ,P) endowed with a filtration {Ft; t > 0}
satisfying the usual condition, a standard Brownian motion {wt; t > 0} and a Poisson

process {Nt; t > 0} which is independent of {wt; t > 0}. It is assumed that both {wt; t > 0}
and {Nt; t > 0} are adapted to the filtration {Ft; t > 0}. Our state variable is the reserve

process which represents the liquid assets of the firm. In the absence of control, the

reserves evolve according to

Xt = x+ ct+ σwt −
Nt∑
n=1

Yn,

where x > 0 is the initial capital, c is the expected cash flow, σ is the volatility of the

cash flow, {Yn;n > 1} are a sequence of i.i.d. positive random variables with cumulative

distribution function F (y) =̂
∫ y

0 βe−βzdz. We denote the intensity and the n-th jump time

of the Poisson process {Nt; t > 0} by λ and Tn, respectively. According to [14], the

Brownian motion represents small movements of the cash reserves and corresponds to the

continuous part in the cash flow, while the Poisson process represents large movements in

the cash reserves and corresponds to big losses.

The manager can control the timing and the amount of dividends paid out to the

shareholders. Under the manager’s control the reserves evolve according to

XL
t = x+ cdt+ σwt −

Nt∑
n=1

Yn − Lt,

where Lt represents the cumulated dividend paid up to time t. Lt is said to be admissible if

it is an adapted right-continuous nondecreasing process, and, 0 6 ∆Lt 6 XL
t−−(b+kt), i.e.,

the manager cannot pay an amount of dividends which bring the reserve level below the

linear barrier b+kt. Here, we get the linear dividend barrier b+kt (b is a constant dividend

barrier and k is a constant linear slope) involved in our model, in order to sufficiently take

into account the safety of the company. Actually, the presence of the constant dividend

barrier b is natural, since the constant dividend barrier strategy has already been proved

the optimal dividend strategy in a large number of risk models. While, if k = 0, then it
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would probably result to an ultimate ruin probability (probability of the event that the

value of the objective risk process drops below 0 in finite time) of 1. Hence, we would

rather have a positive slope k in our present risk model, which do good to protecting the

insurer from going bankruptcy.

Let the time of bankruptcy be defined by τL := inf{t > 0; XL
t 6 b + kt}. With

this definition of bankruptcy, it’s natural to assume that c > k, in which case we have a

positive net cash flow per unit of time.

With each admissible dividend strategy, the associated firm value function is defined

as follows

VL(x) := Ex
[ ∫ τL

0−
e−δtdLt

]
,

i.e., the expected discounted net dividends paid out to shareholders until the time of

bankruptcy. We mention that δ > 0 is a discount factor, which can also be interpreted

as a measure of the preference of shareholders to receive dividend payments earlier rather

than later.

Denote the class of all admissible dividend policies by Π. Then the optimal firm value

function of the maximization problem can be defined through V (x) := sup
L∈Π

VL(x). Hence,

V (x) = 0, for all x 6 b. Our objective is to characterize the optimal firm value function

V (x) and find an admissible optimal dividend policy {L∗t ; t > 0} such that V (x) = VL∗(x).

It needs to be mentioned that, throughout the paper, the positive safety loading condition

(the expected cash flow per unit of time is larger than the expected loss: c > λ/β) is not

needed.

§3. Constructing Optimal Firm Value Function and

Optimal Dividend Distribution Strategy

The computation of the optimal return function V (x) and the optimal dividend policy

is based on some Hamilton-Jacobi-Bellman (HJB) equation. Before motivating the HJB

equation, let us define an operator which would be important in overlapping the main

results of the present paper.

Suppose that v ∈ C2(R) : R 7→ R is a candidate optimal return function. Let A be

defined as follows.

A v(x) :=
σ2

2
v′′(x) + (c− k)v′(x)− λv(x) + λ

∫ x

0
v(x− y)dF (y).
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Using similar arguments as used in [3], we can verify that V satisfies the following

dynamic programming principle.

V (x) = sup
L∈Π

Ex
[ ∫ τ∧τL

0−
e−δtdLt + I(τ<τL)e

−δτV (XL
τ − kτ)

]
, x > b, (1)

for any stopping time τ .

For any h > 0 and admissible strategy {Lt; t > 0} associated with initial capital

x > b, define vLh = h∧ inf{t > 0; XL
t −kt /∈ (x−h, x+h)}, then vLh → 0 as h→ 0. Choose

h < x− b, we get from (1) that

V (x) > Ex
[
e−δv

L
h V
(
XL
vLh
− kvLh

)]
, x > b,

since vLh < τL. Applying Itô’s formula and noting that XL
s 6= XL

s− only at the arrival of a

claim, we get

V (x) > V (x)−
∫ vLh

0−
δe−δsV (XL

s − ks)ds+

∫ vLh

0−
(c− k)e−δsV ′(XL

s − ks)ds

+

∫ vLh

0−
σe−δsV ′(XL

s − ks)dws +

∫ vLh

0−

σ2

2
e−δsV ′′(XL

s − ks)ds

+
∆Xs 6=0∑
s6vLh

e−δs[V (XL
s− − ks+ ∆XL

s )− V (XL
s− − ks)]

− λ
∫ vLh

0−

∫ ∞
0

e−δs[V (XL
s− − ks− y)− V (XL

s− − ks)]dF (y)ds

+ λ

∫ vLh

0−

∫ ∞
0

e−δs[V (XL
s− − ks− y)− V (XL

s− − ks)]dF (y)ds

= V (x) +

∫ vLh

0−
e−δs(A − δ)V (XL

s − ks)ds+

∫ vLh

0−
σe−δsV ′(XL

s − ks)dws

+

∫ vLh

0−

∫ ∞
0

e−δs[V (XL
s− − ks− y)− V (XL

s− − ks)](N(ds, dy)− λdF (y)ds), (2)

where ∆Xs = Xs −Xs− and N(t, A) :=
∑
s6t

I{Ns−Ns−=1, YNs∈A}, A ∈ B(R+), t > 0, is the

Poisson random measure associated with the compound Poisson process
{ Nt∑
k=1

Yk, t > 0
}

.

By [15; page 62, line 19],{∫ t

0

∫ ∞
0

e−δs[V (XL
s− − ks− y)− V (XL

s− − ks)](N(ds, dy)− λdF (y)ds); t > 0
}

is a martingale with mean zero. Also,{∫ t

0−
σe−δsV ′(XL

s − ks)dws; t > 0
}
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is a martingale with zero mean. Taking expectations in (2) leads to

V (x) > V (x) + Ex
[ ∫ vLh

0−
e−δs(A − δ)V (XL

s − ks)ds
]
. (3)

Subtracting V (x) from both sides of (3), dividing them by E[vLh ] and letting h tends to

zero, we have

(A − δ)V (x) 6 0, x > b.

In addition, for any 0 < h < x−b we can find strategy {Lht ; t > 0} corresponding to initial

reserve x − h such that VLh(x − h) > V (x − h) − h2, define a strategy corresponding to

initial reserve x as {Lt =̂ h+ Lht ; t > 0}. This corresponds to an initial payout of size h,

and then following an h2-optimal strategy. Then,

V (x) > VL(x) = h+ VLh(x− h) > h+ V (x− h)− h2, x > b.

Subtracting V (x− h) from both sides, dividing by h, and letting h ↓ 0 yields

V ′(x) > 1, x > b.

Definition 1 A continuous and increasing function v ∈ C2((b,∞)) : (b,∞) 7→ (b,∞)

satisfies the HJB equation of the optimal dividend problem if

(A − δ)v(x) 6 0, x > b, (4)

v′(x) > 1, x > b, (5)

max{(A − δ)v(x), 1− v′(x)} = 0, x > b. (6)

The following Theorem 2 devotes to motivating a classical solution to the HJB equa-

tion, and, verifying that the candidate dividend strategy characterized in (22) bellow is

the optimal dividend strategy.

Theorem 2 Let v(x) be given by (17) with x0 given by (18) or (19), then it charac-

terizes a classical C2((b,∞)) solution to the HJB equations (4)–(6). In addition, if we define

a dividend strategy as in (22), then this dividend strategy is the optimal dividend strategy,

and the corresponding dividend return function is exactly v(x).

Proof of Theorem 2 For any solution of the HJB equation v(x), define x0 =̂

sup{z > b | (A −δ)v(x) > 1−v′(x) for all x ∈ [b, z]}, then we claim that x0 > b. If it is not

the case, then for any ε > 0, there exist xε ∈ [b, b+ ε) such that 1− v′(xε) > (A − δ)v(xε).

By the continuity of the functions 1−v′(x) and (A −δ)v(x) (since v(x) ∈ C2((b,∞))), there

exists % > 0 such that 1− v′(x) > (A − δ)v(x) for all x ∈ (xε−%, xε+%) ⊆ [b, b+ ε), hence
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(A −δ)v(x) < 1−v′(x) = max{(A −δ)v(x), 1−v′(x)} = 0, for all x ∈ (xε−%, xε+%) ⊆ [b,

b+ ε), which implies v(x) = v(xε− %) +x− (xε− %), for all x ∈ (xε− %, xε + %) ⊆ [b, b+ ε).

Now we choose the above ε > 0 small enough such that v(b+ ε) < (c− k)/(λ+ δ), so, by

the increasing property of v(x),

v(x) 6 v(b+ ε) <
c− k
λ+ δ

, for all x ∈ (xε − %, xε + %) ⊆ [b, b+ ε),

therefore, for all x ∈ (xε − %, xε + %) ⊆ [b, b+ ε) we have

0 = 1− v′(x) > (A − δ)v(x) >
1

2
σ2v′′(x) + (c− k)v′(x)− (λ+ δ)v(x)

> (c− k)− (λ+ δ)
c− k
λ+ δ

= 0,

which is a contradiction. Thus x0 > b.

In what follows immediately, we motivate solution of the HJB equation by considering

the cases b < x0 < +∞ and b < x0 = +∞, respectively.

Case 1: b < x0 < +∞. In this case, we consider the following system of integro-

differential equation:
(A − δ)v(x) = 0, x ∈ [b, x0];

1− v′(x) = 0, x ∈ [x0,+∞];

max{(A − δ)v(x), 1− v′(x)} = 0, x > b.

(7)

Simple algebraic manipulations turn the first equation of (7) into

1

2
σ2v′′(x) + (c− k)v′(x)− (λ+ δ)v(x) + λβe−βx

∫ x

b
v(y)eβydy = 0, x ∈ [b, x0]. (8)

Multiplying both sides of (8) by eβx gives rise to[1

2
σ2v′′(x) + (c− k)v′(x)− (λ+ δ)v(x)

]
eβx = −λβ

∫ x

b
v(y)eβydy, x ∈ [b, x0]. (9)

Taking derivatives on both sides of (9) and then rearranging yields

1

2
σ2v′′′(x) +

[1

2
σ2β + (c− k)

]
v′′(x) + [(c− k)β − (λ+ δ)]v′(x)− βδv(x) = 0,

x ∈ [b, x0]. (10)

Let P (θ) = σ2θ3/2 + [σ2β/2 + (c − k)]θ2 + [(c − k)β − (λ + δ)]θ − βδ. Then it can be

verified that

lim
θ→−∞

P (θ) = −∞; P (−β) = βλ > 0; P (0) = −βδ < 0, lim
θ→+∞

P (θ) = +∞.

《
应
用
概
率
统
计
》
版
权
所
有



No. 4 Maiwuludai, WANG W. Y.: Dividend Optimization in a Risk Model with Constraint 383

Hence, P (θ) has three zeroes θ1, θ2, θ3 with −∞ < θ1 < −β < θ2 < 0 < θ3 < +∞.

Additionally,

θ1 + θ2 + θ3 = −β − 2(c− k)

σ2
.

Thus, the solution of the HJB equation can be expressed as

v(x) = C1eθ1x + C2eθ2x + C3eθ3x,

with boundary condition

v(b) = 0, (11)

and
1

2
σ2v′′(b) + (c− k)v′(b) = 0, (12)

the latter of which is derived from letting x = b in (8). Combining (11) and (12) we get

C1eθ1b + C2eθ2b + C3eθ3b = 0, (13)

C1eθ1b
[1

2
σ2θ2

1 + (c− k)θ1

]
+ C2eθ2b

[1

2
σ2θ2

2 + (c− k)θ2

]
+ C3eθ3b

[1

2
σ2θ2

3 + (c− k)θ3

]
= 0.

(14)

Solving (13)–(14), we arrive at

C1eθ1b = C3eθ3b
[σ2θ2

3/2 + (c− k)θ3]− [σ2θ2
2/2 + (c− k)θ2]

[σ2θ2
2/2 + (c− k)θ2]− [σ2θ2

1/2 + (c− k)θ1]
,

C2eθ2b = C3eθ3b
[σ2θ2

1/2 + (c− k)θ1]− [σ2θ2
3/2 + (c− k)θ3]

[σ2θ2
2/2 + (c− k)θ2]− [σ2θ2

1/2 + (c− k)θ1]
.

Let

ri =
1

2
σ2θ2

i + (c− k)θi, i = 1, 2, 3,

then the solution of the first equation of the HJB equation (7) can be expressed as

v(x) = C3eθ3b
1

r2 − r1
[(r3 − r2)eθ1(x−b) + (r1 − r3)eθ2(x−b) + (r2 − r1)eθ3(x−b)],

x ∈ [b, x0].

Solving (7) we arrive at

v(x) =


C3eθ3b

1

r2 − r1
[(r3 − r2)eθ1(x−b) + (r1 − r3)eθ2(x−b) + (r2 − r1)eθ3(x−b)],

x ∈ [b, x0];

v(x0) + x− x0, x ∈ [x0,+∞).

(15)
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Due to the continuity of v′(x) at x0, we have v′(x0−) = 1, which implies,

C3eθ3b
1

r2 − r1
[(r3 − r2)θ1eθ1(x0−b) + (r1 − r3)θ2eθ2(x0−b) + (r2 − r1)θ3eθ3(x0−b)] = 1. (16)

With (16), v(x) in (15) can be re-expressed as

v(x) =


(r3 − r2)eθ1(x−b) + (r1 − r3)eθ2(x−b) + (r2 − r1)eθ3(x−b)

(r3 − r2)θ1eθ1(x0−b) + (r1 − r3)θ2eθ2(x0−b) + (r2 − r1)θ3eθ3(x0−b)
,

x ∈ [b, x0];

v(x0) + x− x0, x ∈ [x0,+∞).

(17)

Since v ∈ C2((b,∞)), the solution v(x) in (23) must satisfy also v′′(x0−) = 0, which

implies

(r3 − r2)θ2
1eθ1(x0−b) + (r1 − r3)θ2

2eθ2(x0−b) + (r2 − r1)θ2
3eθ3(x0−b)

(r3 − r2)θ1eθ1(x0−b) + (r1 − r3)θ2eθ2(x0−b) + (r2 − r1)θ3eθ3(x0−b)
= 0, (18)

that is,

(r3 − r2)θ2
1eθ1(x0−b) + (r1 − r3)θ2

2eθ2(x0−b) + (r2 − r1)θ2
3eθ3(x0−b) = 0. (19)

In fact, the existence and uniqueness of solution x0 of the equation (19) can be verified as

follows. Facts that

r2 − r1 =
1

2
σ2(θ2

2 − θ2
1) + (c− k)(θ2 − θ1) =

[1

2
σ2(θ2 + θ1) + (c− k)

]
(θ2 − θ1)

= −1

2
σ2(β + θ3)(θ2 − θ1) < 0;

r3 − r2 = −1

2
σ2(β + θ1)(θ3 − θ2) > 0;

r1 − r3 = −1

2
σ2(β + θ2)(θ1 − θ3) > 0,

lead to

eθ3b
1

r2 − r1
[(r3 − r2)θ1eθ1(x−b) + (r1 − r3)θ2eθ2(x−b) + (r2 − r1)θ3eθ3(x−b)] > 0, (20)

and

eθ3b
1

r2 − r1
[(r3 − r2)θ3

1eθ1(x−b) + (r1 − r3)θ3
2eθ2(x−b) + (r2 − r1)θ3

3eθ3(x−b)] > 0, (21)

In addition, from (12) and (20), we get

1

2
σ2
[
eθ3b

1

r2 − r1
[(r3 − r2)θ2

1eθ1(x−b) + (r1 − r3)θ2
2eθ2(x−b) + (r2 − r1)θ2

3eθ3(x−b)]
]
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= − (c− k)
[
eθ3b

1

r2 − r1
[(r3 − r2)θ1eθ1(x−b) + (r1 − r3)θ2eθ2(x−b) + (r2 − r1)θ3eθ3(x−b)]

]
< 0.

While (21) implies that the function

l(x) =̂ eθ3b
1

r2 − r1
[(r3 − r2)θ2

1eθ1(x−b) + (r1 − r3)θ2
2eθ2(x−b) + (r2 − r1)θ2

3eθ3(x−b)]

is strictly increasing with lim
x→+∞

l(x) = +∞. Hence there exist a unique x0 such that (18)

holds.

Fortunately, with the solution (17) with x0 given by (18) or (19) (if it is indeed a

solution to the HJB equation), we can propose a candidate dividend strategy as follows:

∆L∗t =

XL∗
t− − (x0 + kt), if XL∗

t− > kt+ x0;

0, otherwise.
(22)

Hence, we can for the moment put aside the arguments of the case b < x0 = ∞ and

forward with the verification of the optimality of strategy (22).

We now first check that the function given by (17) with x0 given by (18) or (19) is

exactly a solution to the HJB equations (4)–(6). By construction it is easy to see that

v(x) satisfy (A − δ)v(x) = 0 on (b, x0] and

v′(x) =
(r3 − r2)θ1eθ1(x−b) + (r1 − r3)θ2eθ2(x−b) + (r2 − r1)θ3eθ3(x−b)

(r3 − r2)θ1eθ1(x0−b) + (r1 − r3)θ2eθ2(x0−b) + (r2 − r1)θ3eθ3(x0−b)
> 1,

x ∈ (b, x0], (23)

since we have already checked that the function

g(x) = −[(r3 − r2)θ1eθ1(x−b) + (r1 − r3)θ2eθ2(x−b) + (r2 − r1)θ3eθ3(x−b)],

attains it’s minimum on (b, x0] at x0, during the construction of solution (17) of case 1.

We need still to check that (A − δ)v(x) 6 0 on [x0,+∞). Actually, for x ∈ [x0,+∞),

(A − δ)v(x) =
1

2
σ2v′′(x) + (c− k)v′(x)− (λ+ δ)v(x) + λβe−βx

∫ x

b
v(y)eβydy

= (c− k)− (λ+ δ)v(x) + λβe−βx
∫ x

b
v(y)eβydy

= (c− k)− (λ+ δ)[v(x0) + x− x0] + λβe−βx
∫ x

b
v(y)eβydy,

which implies

λβe−βx
∫ x

b
v(y)eβydy = (A − δ)v(x)− (c− k) + (λ+ δ)v(x), (24)

《
应
用
概
率
统
计
》
版
权
所
有



386 Chinese Journal of Applied Probability and Statistics Vol. 32

and

[(A − δ)v(x)]′ = −(λ+ δ)− β
[
λβe−βx

∫ x

b
v(y)eβydy

]
+ λβv(x)

= −(λ+ δ)− β(A − δ)v(x) + β(c− k)− δβ[v(x0) + x− x0], (25)

where we have used (24) in the latter equation. Rearranging (25) yields

[(A − δ)v(x)]′ + β(A − δ)v(x) = −(λ+ δ) + β(c− k)− δβv(x0)− δβ(x− x0)

= −1

2
σ2v′′′(x0−)− δβ(x− x0) < 0, (26)

where we have used (10) (let x ↑ x0 in (10), v′′(x0) = 0) and the fact that v′′′(x0−) > 0.

With (26) we see that [(A − δ)v(x)]′ < 0 whenever (A − δ)v(x) = 0. Together with

(A − δ)v(x0) = 0, it is obvious that (A − δ)v(x) 6 0, for any x ∈ [x0,+∞). Therefore,

the function defined by equation (17) is indeed a solution of the HJB equations (4)–(6).

In the sequel, we will check the optimality of the dividend strategy given by (22). For

a given dividend strategy L ∈ L, define the following set.

DL
t = {s 6 t; ∆Ls 6= 0}/{Tn;n > 1},

which represents the jumps up to time t in the dividend process, that do not occur at the

same time as a jump in the compound Poisson process. Let the continuous part of the

processes {XL
t − kt; t > 0} and {Lt; t > 0} be denoted by {XL,c

t ; t > 0} and {Lct ; t > 0},
respectively. From Theorem 4.57 (Itô’s formula) in page 57 of [16], we have

e−δ(t∧τ
L)v(XL

t∧τL − k(t ∧ τL))

= v(x)−
∫ t∧τL

0−
δe−δsv(XL

s − ks)ds+

∫ t∧τL

0−
e−δsv′(XL

s − ks)d(XL
s − ks)

+
1

2

∫ t∧τL

0−
e−δsv′′(XL

s − ks)d〈XL,c
· , XL,c

· 〉s

+
∑

s6t∧τL
e−δs[v(XL

s− − ks+ ∆XL
s )− v(XL

s− − ks)− v′(XL
s− − ks)∆XL

s ]

= v(x)−
∫ t∧τL

0−
δe−δsv(XL

s − ks)ds+

∫ t∧τL

0−
(c− k)e−δsv′(XL

s − ks)ds

+

∫ t∧τL

0−
σe−δsv′(XL

s − ks)dws +

∫ t∧τL

0−

σ2

2
e−δsv′′(XL

s − ks)ds

−
∫ t∧τL

0−
e−δsv′(XL

s − ks)dLcs +
∑

s∈D
t∧τL

e−δs[v(XL
s− − ks+ ∆XL

s )− v(XL
s− − ks)]
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+

∫ t∧τL

0−

∫ ∞
0

e−δs[v(XL
s− − ks− y)− v(XL

s− − ks)]N(ds, dy)

+

∫ t∧τL

0−

∫ ∞
0

e−δs[v(XL
s − ks)− v(XL

s− − ks− y)]N(ds, dy)

= v(x) +

∫ t∧τL

0−
e−δs(A − δ)v(XL

s − ks)ds+

∫ vLh

0−
σe−δsv′(XL

s − ks)dws

+

∫ t∧τL

0−

∫ ∞
0

e−δs[v(XL
s − ks)− v(XL

s− − ks− y)]N(ds, dy)

+

∫ t∧τL

0−

∫ ∞
0

e−δs[v(XL
s− − ks− y)− v(XL

s− − ks)](N(ds, dy)− λβe−βydyds)

−
∫ t∧τL

0−
e−δsv′(XL

s − ks)dLcs −
∑

s6t∧τL
e−δs∆Ls

+
∑

s∈D
t∧τL

e−δs[v(XL
s− − ks+ ∆XL

s )− v(XL
s− − ks) + ∆Ls]

+

∫ t∧τL

0−

∫ ∞
0

e−δs[−(XL
s − (XL

s− − y))]I{∆Ls 6=0}N(ds, dy).

Since v′(x) > 1 we have v(XL
s −ks)+(XL

s−−XL
s ) 6 v(XL

s−−ks) and v(XL
s −ks)+(XL

s−−
y −XL

s ) 6 v(XL
s− − ks− y), we conclude that∑

s∈D
t∧τL

e−δs[v(XL
s− − ks+ ∆XL

s )− v(XL
s− − ks) + ∆Ls]

=
∑

s∈D
t∧τL

e−δs[v(XL
s− − ks+ ∆XL

s )− v(XL
s− − ks) + (XL

s− −XL
s )] 6 0,

and∫ t∧τL

0−

∫ ∞
0

e−δs{v(XL
s −ks)−v(XL

s−−ks−y)+[−(XL
s −(XL

s−−y))]I{∆Ls 6=0}}N(ds, dy) 6 0.

Therefore, we have

e−δ(t∧τ
L)v(XL

t∧τL − k(t ∧ τL))

6 v(x) +

∫ t∧τL

0
e−δs(A − δ)v(XL

s − ks)ds

+

∫ t∧τL

0

∫ ∞
0

e−δs[v(XL
s− − ks− y)− v(XL

s− − ks)](N(ds, dy)− λβe−βydyds)

+

∫ vLh

0−
σe−δsv′(XL

s − ks)dws −
∫ t∧τL

0−
e−δsv′(XL

s − ks)dLcs −
∑

s6t∧τL
e−δs∆Ls

6 v(x) +

∫ t∧τL

0
e−δs(A − δ)v(XL

s − ks)ds
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+

∫ t∧τL

0

∫ ∞
0

e−δs[v(XL
s− − ks− y)− v(XL

s− − ks)](N(ds, dy)− λβe−βydyds)

+

∫ vLh

0−
σe−δsv′(XL

s − ks)dws −
∫ t∧τL

0−
e−δsdLcs −

∑
s6t∧τL

e−δs∆Ls. (27)

Additionally, it follows from [15; page 62, line 19] that the compensated sum:

t 7−→
∫ t

0

∫ ∞
0

e−δs[v(XL
s− − ks− y)− v(XL

s− − ks)](N(ds, dy)− λβe−βydyds)

is an (Ft)-martingale. Taking expectations on both sides of (27) and recalling (A − δ)
· v(XL

s − ks) 6 0 results in

v(x) > Ex
[
e−δ(t∧τ

L)v
(
XL
t∧τL − k(t ∧ τL)

)]
+ Ex

[ ∫ t∧τL

0−
e−δsdLcs +

∑
s6t∧τL

e−δs∆Ls

]
> Ex

[ ∫ t∧τL

0−
e−δsdLcs +

∑
s6t∧τL

e−δs∆Ls

]
= Ex

[ ∫ t∧τL

0−
e−δsdLs

]
. (28)

Finally, taking limits as t→∞ in (28), we have

v(x) > Ex
[ ∫ τL

0−
e−δsdLs

]
= VL(x). (29)

Since the strategy L is arbitrary, it follows that

v(x) > V (x). (30)

In addition, if we replace L with L∗ and noting the condition

lim
t→+∞

Ex
[
e−δ(t∧τ

L∗ )v
(
XL∗

t∧τL∗ − k(t ∧ τL∗)
)]

= lim
t→+∞

Ex
[
e−δtv(XL∗

t − kt)I{t<τL∗} + e−δτ
L∗
v
(
XL∗

τL∗ − kτ
L∗
)
I{t>τL∗}

]
= lim

t→+∞
Ex
[
e−δtv(XL∗

t − kt)I{t<τL∗}
]
6 lim

t→+∞
Ex
[
e−δtv(XL∗

t − kt)
]

(since v(XL∗

τL∗ − kτ
L∗) = 0 and v(XL∗

t − kt) is bounded due to XL∗
t − kt 6 x0),

then the inequalities in (27)–(30) are all equalities, hence

v(x) = VL∗(x) 6 V (x),

which together with (30) leads to v(x) = V (x) = VL∗(x). Theorem 2 is proved. �
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Remark 3 If b = k = 0, then the corresponding optimal return function is,

v(x) =


(r3 − r2)eθ1x + (r1 − r3)eθ2x + (r2 − r1)eθ3x

(r3 − r2)θ1eθ1x0 + (r1 − r3)θ2eθ2x0 + (r2 − r1)θ3eθ3x0
, x ∈ [0, x0];

v(x0) + x− x0, x ∈ [x0,+∞),

(31)

with x0 being the unique solution of the following equation,

(r3 − r2)θ2
1eθ1x0 + (r1 − r3)θ2

2eθ2x0 + (r2 − r1)θ2
3eθ3x0 = 0,

{θi, i = 1, 2, 3} satisfying −∞ < θ1 < −β < θ2 < 0 < θ3 < +∞ being the set of zeroes of

the following equation,

1

2
σ2θ3 +

[1

2
σ2β + c

]
θ2 + [cβ − (λ+ δ)]θ − βδ = 0,

and ri = σ2θ2
i /2 + cθi, i = 1, 2, 3. And, the corresponding optimal dividend strategy is

∆L∗t =

XL∗
t− − x0, if XL∗

t− > x0;

0, otherwise.
(32)

Equations (31)–(32) coincides with the corresponding results of Theorem 3.3 in [14].

Remark 4 If b = k = σ = 0, then by the fact that v′(x0) = 1 the corresponding

optimal return function is,

v(x) =


[cθ2 − (λ+ δ)]eθ1x − [cθ1 − (λ+ δ)]eθ2x

[cθ2 − (λ+ δ)]θ1eθ1x0 − [cθ1 − (λ+ δ)]θ2eθ2x0
, x ∈ [0, x0];

v(x0) + x− x0, x ∈ [x0,+∞),

with {θi, i = 1, 2} satisfying −β < θ1 < 0 < θ2 < (λ + δ)/c < +∞ being the set of zeroes

of the following equation,

cθ2 + [cβ − (λ+ δ)]θ − βδ = 0.

In addition, x0 is the unique minimizer of the function [cθ2− (λ+ δ)]θ1eθ1x− [cθ1− (λ+ δ)]

· θ2eθ2x, i.e.,

[cθ2 − (λ+ δ)]θ2
1eθ1x0 − [cθ1 − (λ+ δ)]θ2

2eθ2x0 = 0

or x0 =
1

θ2 − θ1
log
{ [cθ2 − (λ+ δ)]θ2

1

[cθ1 − (λ+ δ)]θ2
2

}
, (33)

or x0 = 0 if the solution of (33) does not exist. Note that there should be a unique solution

of (33) if it’s solution does exist, since for all x > 0 we have

{[cθ2 − (λ+ δ)]θ2
1eθ1x − [cθ1 − (λ+ δ)]θ2

2eθ2x}′
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= [cθ2 − (λ+ δ)]θ3
1eθ1x − [cθ1 − (λ+ δ)]θ3

2eθ2x > 0,

by the facts that [cθ2 − (λ + δ)] < 0, [cθ1 − (λ + δ)] < 0, θ1 < 0 and θ2 > 0. Further, the

corresponding optimal dividend strategy is

∆L∗t =

XL∗
t− − x0, if XL∗

t− > x0;

0, otherwise.
(34)

Equations (33)–(34) coincides well with the corresponding results of Theorem 2.39, Theorem

2.41 and (2.34) in [17], or coincides with the corresponding results of [18] if we additionally

let the interest rate i = 0 in that paper.

Remark 5 If b = k = 0 and β ↑ ∞ which means the compound poisson term vanishes

in our model, in this case (8) degenerates to

1

2
σ2v′′(x) + cv′(x)− (λ+ δ)v(x) = 0, x ∈ [0, x0],

with boundary conditions v(0) = 0, v′(x0) = 1 and v′′(x0) = 0. Then the corresponding

optimal return function is,

v(x) =


eθ1x − eθ2x

θ1eθ1x0 − θ2eθ2x0
, x ∈ [0, x0];

v(x0) + x− x0, x ∈ [x0,+∞),

(35)

with x0 being the unique solution of the following equation,

θ2
1eθ1x0 − θ2

2eθ2x0 = 0 or x0 =
2

θ2 − θ1
log
{∣∣∣θ1

θ2

∣∣∣},
{θi, i = 1, 2} satisfying −∞ < θ1 < 0 < θ2 < +∞ being the set of zeroes of the following

equation,

1

2
σ2θ2 + cθ − (λ+ δ) = 0.

And, the corresponding optimal dividend strategy is

∆L∗t =

XL∗
t− − x0, if XL∗

t− > x0;

0, otherwise.
(36)

Equations (35)–(36) coincides with the corresponding results of Theorem 3.2 in [19].
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§4. Conclusion

For a financially constrained firm with both small and large movements of cash flow,

we use a jump-diffusion model with exponentially distributed jumps to characterize it’s

asset process. Meanwhile, a linear barrier is present in the model in order to characterize

risk aversion of the firm, bankruptcy takes place whenever the reserve of the firm runs

below the linear barrier. It’s found that the optimal dividend policy is of a linear barrier

type: whenever the firm’s cash accumulates beyond a target linear barrier, the amount

in excess of this linear ascending line is distributed to shareholders as dividends. As to

our knowledge, this is different from the results of existing literature, where the optimal

dividend strategy is mostly of barrier type. We also characterize the optimal firm value

function, where the firm value function or the value of a firm is exactly the expected

present value of future dividends according to [2].
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