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Abstract: Kundu and Gupta [1] proposed to use the importance sampling method to com-

pute the Bayesian estimation of the unknown parameters of the Marshall-Olkin bivariate Weibull

distribution. However, we find that the performance of the importance sampling method becomes

worse as the sample size gets larger. In this paper, we introduce latent variables to simplify the

likelihood function, and use MCMC algorithm to estimate the unknown parameters. Numerical

simulations are carried out to assess the performance of the proposed method by comparing with

the maximum likelihood estimation, and we find that the Bayesian estimates perform better even

for the case of small sample size. A real data is also analyzed for illustrative purpose.
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§1. Introduction

Weibull distribution plays a crucial role in reliability theory and life testing experi-

ments. It reduces to exponential distribution when the shape parameter is one. A uni-

variate Weibull distribution with the shape parameter α and the scale parameter λ has

the following probability density function (PDF),

fW (x |α, λ) = αλxα−1e−λx
α
, x, α, λ > 0, (1)

denoted as W (α, λ). Thus, the cumulative distribution function (CDF) and survival func-

tion (SF) are

FW (x |α, λ) = 1− e−λx
α

and SW (x |α, λ) = e−λx
α
, (2)
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respectively. Marshall and Olkin [2] proposed the Marshall-Olkin bivariate Weibull (MOB-

W) distribution and it can be described as follows: W0, W1 and W2 are supposed to three

independent random variables, and

W0 ∼W (α, λ0), W1 ∼W (α, λ1), W2 ∼W (α, λ2),

where ‘∼’ means follows in the distribution, and α is the common shape parameter, λ0,

λ1, λ2 are the corresponding scale parameters. Let

X1 = min(W0,W1) and X2 = min(W0,W2). (3)

Then the bivariate random vector (X1, X2) follows a MOBW distribution with parameters

α, λ0, λ1, λ2, denoted as MOBW(α, λ0, λ1, λ2). Thus, the joint SF of (X1, X2) has the

following form

SX1,X2(x1, x2) = P(X1 > x1, X2 > x2) = P(W1 > x1,W0 > x1,W2 > x2,W0 > x2)

= P(W1 > x1,W2 > x2,W0 > max(x1, x2))

= SW (x1 |α, λ1)SW (x2 |α, λ2)SW (max(x1, x2) |α, λ0)

=


SW (x1 |α, λ1)SW (x2 |α, λ0 + λ2), if 0 < x1 < x2 <∞;

SW (x1 |α, λ0 + λ1)SW (x2 |α, λ2), if 0 < x2 < x1 <∞;

SW (x |α, λ0 + λ1 + λ2), if 0 < x1 = x2 = x <∞.

(4)

Obviously, when α = 1, it reduces to the Marshall-Olkin bivariate exponential (MOBE)

distribution with parameters λ0, λ1, λ2. For more details about MOBE distribution, see

[3] and the references therein. From (4), we can write the joint PDF of (X1, X2) as

fX1,X2(x1, x2) =


f1(x1, x2), if 0 < x1 < x2 <∞;

f2(x1, x2), if 0 < x2 < x1 <∞;

f0(x), if 0 < x1 = x2 = x <∞.

(5)

where

f1(x1, x2) = fW (x1 |α, λ1)fW (x2 |α, λ0 + λ2),

f2(x1, x2) = fW (x1 |α, λ0 + λ1)fW (x2 |α, λ2),

f0(x) =
λ0

λ0 + λ1 + λ2
fW (x |α, λ0 + λ1 + λ2).

The MOBW distribution has both an absolute continuous part and a singular part. See

[4], [5] for more detailed discussion.
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Assume that we have a bivariate sample of size n from MOBW(α, λ0, λ1, λ2). The

observed data is as follows:

D = {(x11, x21), (x12, x22), . . . , (x1n, x2n)}. (6)

According to the relationship of x1i and x2i (i = 1, 2, . . . , n), the random sample of the

MOBW distribution can be divided into three parts, and they are as follows: D1 = {(x1i,
x2i) |x1i < x2i}, D2 = {(x1i, x2i) |x1i > x2i} and D0 = {xi |x1i = x2i = xi}. Obviously,

D = D1 ∪D2 ∪D0. Let I1 = {i |x1i < x2i}, I2 = {i |x1i > x2i}, I0 = {i |x1i = x2i = xi},
I = {1, 2, . . . , n}, I = I1 ∪ I2 ∪ I0 and |I1| = n1, |I2| = n2, |I0| = n0, where |Im| (m =

0, 1, 2) denotes the number of elements in the set Im. Thus, the likelihood function based

on the observed data D is

L(D |α, λ0, λ1, λ2) =
∏
i∈I1

f1(x1i, x2i)
∏
i∈I2

f2(x1i, x2i)
∏
i∈I0

f0(xi). (7)

It should be mentioned that if nm = 0, for some m = 0, 1, 2, then the maximum likelihood

estimation (MLE) does not exist. Then we assume nm > 0 for m = 0, 1 and 2. Kundu and

Dey [5] have discussed the computation of the MLE of the unknown parameters using EM

algorithm, but the convergence speed of the algorithm is slow, and it is highly dependent on

the initial value. By assigning a Gamma-Dirichlet distribution as the prior of λ = λ0+λ1+

λ2, λ1 and λ2, and a log-concave prior for α, Kundu and Gupta [1] used the importance

sampling method to obtain the Bayesian estimators of α, λ0, λ1 and λ2 based on the

likelihood function (7). However, Neal [6] indicated that the efficiency of the importance

sampling method depends on the choice of the proposed density function. If the proposed

density function is close to the target function, then the approximation is reasonably

accurate even with thousands of random samples from the proposed density function.

Otherwise, there needs much more random samples. Thus, the computational efficiency

will be encountered. Besides, we show by numerical study that the method of [1] behaves

worse as the sample size becomes larger, which will be discussed in Section 2. Then a

data-augmented method is used to simplify the likelihood function (7), and MCMC is

implemented easily, these details are introduced in Section 3. We compare the proposed

Bayesian method with EM algorithm via simulations in Section 4. Section 5 is devoted to

a real data analysis. Finally, some concluding remarks are made in Section 6.

§2. The Method of [1]

Unlike [1], we assumed that the parameters are independent, and that the prior of all
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the parameters are Gamma distributions, that is,

π0(λ0 | a0, b0) =
ba00

Γ(a0)
λa0−10 e−b0λ0 ,

π1(λ1 | a1, b1) =
ba11

Γ(a1)
λa1−11 e−b1λ1 ,

π2(λ2 | a2, b2) =
ba22

Γ(a2)
λa2−10 e−b2λ2 ,

π(α | a, b) =
ba

Γ(a)
αa−1e−bλ.

(8)

Based on (7) and (8), the joint posterior density function of (α, λ0, λ1, λ2) can be

written as

L(α, λ0, λ1, λ2 |D) = π0(λ0 | a0, b0)π1(λ1 | a1, b1)π2(λ2 | a2, b2)π(α | a, b)L(D |α, λ0, λ1, λ2)

∝
∏
i∈I1

(x1ix2i)
α−1 ∏

i∈I2
(x1ix2i)

α−1 ∏
i∈I0

xα−1i (λ0 + λ2)
n1(λ0 + λ1)

n2e−bα

× αn0+2n1+2n2+a−1Gamma(λ0; a0 + n0, T0(α) + b0)

×Gamma(λ1; a1 + n1, T1(α) + b1)

×Gamma(λ2; a2 + n2, T2(α) + b2), (9)

where T0(α) =
∑
i∈I2

xα1i+
∑
i∈I1

xα2i+
∑
i∈I0

xαi , T1(α) =
∑

i∈I1∪I2
xα1i+

∑
i∈I0

xαi , T2(α) =
∑

i∈I1∪I2
xα2i+

∑
i∈I0

xαi .

Then, the marginal posterior of α is

l(α |D) =

αn0+2n1+2n2+a−1e−bα
∏
i∈I1

(x1ix2i)
α−1 ∏

i∈I2
(x1ix2i)

α−1 ∏
i∈I0

xα−1i

(T0(α) + b0)a0+n0(T1(α) + b1)a1+n1(T2(α) + b2)a2+n2
. (10)

Denote that θ = (α, λ0, λ1, λ2). Then, the Bayesian estimator of θ under the squared

error loss function is

θ̂B =

∫ ∞
0

∫ ∞
0

∫ ∞
0

θL(α, λ0, λ1, λ2 |D) dλ0 dλ1 dλ2∫ ∞
0

∫ ∞
0

∫ ∞
0

L(α, λ0, λ1, λ2 |D) dλ0 dλ1 dλ2

. (11)

Kundu and Gupta [1] proposed the following importance sampling procedure to obtain

θ̂B:

1. Generate α1 from the log-concave density l(α |D) as given in (10), using the method

proposed by [7].
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2. Generate

λ01 |α,D ∼ Gamma(λ0; a0 + n0, T0(α) + b0),

λ11 |α,D ∼ Gamma(λ1; a1 + n1, T1(α) + b1),

λ21 |α,D ∼ Gamma(λ2; a2 + n2, T2(α) + b2).

3. Repeat steps 1 and 2 to obtain {(αi, λ0i, λ1i, λ2i); i = 1, 2, . . . , N}.

4. A consistent estimator of (11) can be obtained as

N∑
i=1

θih(λ0i, λ1i, λ2i)

N∑
i=1

h(λ0i, λ1i, λ2i)

,

where θi = (αi, λ0i, λ1i, λ2i), and h(λ0, λ1, λ2) = (λ0 + λ2)
n1(λ0 + λ1)

n2 .

Suppose for 0 < p < 1, θp satisfies P(θ 6 θp |D) = p. Let

wi =
h(λ0i, λ1i, λ2i)
N∑
i=1

h(λ0i, λ1i, λ2i)

.

Rearrange {(θ1, w1), (θ2, w2), . . . , (θN , wN )} as {(θ(1), w(1)), (θ(2), w(2)), . . . , (θ(N), w(N))},
here θ(1) < θ(2) < · · · < θ(N), and w(i)s are associated with θ(i), which are not ordered.

Then a consistent Bayesian estimator of θ̂p = θNp , where Np is the integer satisfying

Np∑
i=1

w(i) 6 p <
Np+1∑
i=1

w(i). (12)

Then using the above procedure, a 100(1− γ)% credible interval of θ can be obtained.

In the process of data simulation, we take parameters (α, λ0, λ1, λ2) = (2, 1, 1, 1), and

assign a = b = 0.001, a0 = b0 = 1, a1 = b1 = 1, a2 = b2 = 1. We get the relative

bias (RB), mean squared error (MSE), 95% coverage probability of the parameters (CP)

over 10,000 replications to explore the effectiveness of the method. In addition, we also

compute the probabilities of X1 < X2, X1 > X2, X1 = X2 in the simulations, that is,

p1 = P(X1 < X2) = λ1/(λ0 + λ1 + λ2), p2 = P(X1 > X2) = λ2/(λ0 + λ1 + λ2), p0 =

P(X1 = X2) = λ0/(λ0+λ1+λ2). p0, p1 and p2 are usually considered in the stress-strength

models. See for example [8]. The results are shown in the Table 1. From Table 1, we can

see that the importance sampling performs well when the sample size is small, i.e., n = 15.

However, as the sample size get larger, the estimates of the parameters, especially the CPs

of the parameters are much farther to the nominal level. This is because the efficiency of
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the importance sampling method depends on the choice of the proposed density function.

Kundu and Gupta [1] used the gamma density function as the proposed density function

(see step 2 of the importance sampling procedure), and the ratio between the proposed

density function and the target density function is proportional to h(λ0, λ1, λ2), which is a

function of sample size and the parameters. Thus, large sample size will make the proposed

density function be far away from target density function. We show all the weights wis

based on a simulated sample in Figure 1. From Figure 1, we see that the weight wi based

on a certain posterior sample of the parameters is extremely big, which makes the other

weights negligible. Thus, the credible interval estimation will fail according to (12).

Table 1 The RB(%), MSE and 95% CP of the parameters based on 10,000

replications based on the method of [1] when (α, λ0, λ1, λ2) = (2, 1, 1, 1)

n α λ0 λ1 λ2 p0 p1 p2

RB(%) 1.10 8.71 10.97 16.30 1.34 0.64 0.43

15 CP 0.959 0.877 0.931 0.934 0.952 0.952 0.945

MSE 0.122 0.805 0.309 0.271 0.016 0.013 0.013

RB(%) 2.44 3.20 4.66 5.39 0.63 0.29 1.15

25 CP 0.951 0.810 0.922 0.893 0.947 0.950 0.947

MSE 0.066 0.500 0.146 0.224 0.010 0.008 0.009

RB(%) 4.88 5.39 0.70 3.43 2.04 2.91 2.44

50 CP 0.922 0.595 0.850 0.807 0.955 0.947 0.943

MSE 0.039 0.274 0.067 0.216 0.006 0.005 0.006

RB(%) 5.91 15.41 6.11 10.69 4.47 6.07 4.19

100 CP 0.860 0.219 0.661 0.606 0.958 0.933 0.940

MSE 0.028 0.116 0.038 0.234 0.004 0.004 0.004

§3. Main Results

3.1 Latent Variables

From (3), there is a missing data (w0i, w1i, w2i) observed from (W0,W1,W2) for each

(x1i, x2i) from MOBW(α, λ0, λ1, λ2). For (x1i, x2i) ∈ D1, that is, x1i < x2i, there are two

cases of order for w0i, w1i and w2i: w1i < w0i < w2i and w1i < w2i < w0i. Thus, we

introduce yi, which is defined as

yi =

0, if w1i < w0i < w2i;

1, if w1i < w2i < w0i.
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Figure 1 Trace plot of the weight based on the importance sampling

If yi = 0, w1i = x1i, w0i = x2i and w2i > x2i; otherwise, w1i = x1i, w2i = x2i and

w0i > x2i. Thus, the likelihood function of the complete data (x1i, x2i, yi) is

g1i = [fW (x1i |α, λ1)fW (x2i |α, λ0)SW (x2i |α, λ2)]1−yi

× [fW (x1i |α, λ1)fW (x2i |α, λ2)SW (x2i |α, λ0)]yi ,

Hence, the likelihood function of the augmented data {(x1i, x2i, yi), i ∈ I1} is G1 =
∏
i∈I1

g1i.

Similarly, for (x1i, x2i) ∈ D2, a latent variable zi is defined as

zi =

0, if w2i < w0i < w1i;

1, if w2i < w1i < w0i.

The likelihood function of (x1i, x2i, zi) is

g2i = [fW (x2i |α, λ2)fW (x1i |α, λ0)SW (x1i |α, λ1)]1−zi

× [fW (x2i |α, λ2)fW (x1i |α, λ1)SW (x1i |α, λ0)]zi ,

Then we could know the likelihood function of the augmented data {(x1i, x2i, zi), i ∈ I2}
is G2 =

∏
i∈I2

g2i. If (x1i, x2i) ∈ D0, then from (5), the likelihood function of (x1i, x2i) is

g0i =
λ0

λ0 + λ1 + λ2
fW (xi |α, λ0 + λ1 + λ2).
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Therefore, the likelihood function of the observed data D0 is

G0 =
∏
i∈I0

g0i =
∏
i∈I0

λ0α exp{−(λ0 + λ1 + λ2)x
α
i }.

Thus, we can obtain the likelihood function of the complete data D = {(x1i, x2i, yi), i ∈
I1; (x1i, x2i, zi), i ∈ I2; (x1i, x2i), i ∈ I0} is

L(D |α, λ0, λ1, λ2) = G0 ·G1 ·G2 =
∏
i∈I0

g0i
∏
i∈I1

g1i
∏
i∈I2

g2i

= λ

n0+
∑
i∈I1

(1−yi)+
∑
i∈I2

(1−zi)

0 λ

n1+
∑
i∈I2

zi

1 λ

n2+
∑
i∈I1

yi

2 αn0+2(n1+n2)

×
∏
i∈I1

(x1ix2i)
α−1 ∏

i∈I2
(x1ix2i)

α−1 ∏
i∈I0

xα−1i

× exp{−λ0 · T0(α)− λ1 · T1(α)− λ2 · T2(α)}. (13)

3.2 Gibbs Sampling

Based on (13) and (8), we have the joint posterior density function of (α, λ0, λ1, λ2)

is

L(α, λ0, λ1, λ2 |D) = π0(λ0 | a0, b0)π1(λ1 | a1, b1)π2(λ2 | a2, b2)π(α | a, b)L(D |α, λ0, λ1, λ2)

∝ λ
n0+

∑
i∈I1

(1−yi)+
∑
i∈I2

(1−zi)+a0−1

0 λ

n1+
∑
i∈I2

zi+a1−1

1 λ

n2+
∑
i∈I1

yi+a2−1

2

× αn0+2(n1+n2)+a−1

×
∏
i∈I1

(x1ix2i)
α−1 ∏

i∈I2
(x1ix2i)

α−1 ∏
i∈I0

xα−1i exp{−bα}

× exp{−λ0(T0(α) + b0)− λ1(T1(α) + b1)− λ2(T2(α) + b2)}. (14)

It is observed that the Bayesian estimators cannot be obtained easily in explicit forms

in general. We propose to use the Gibbs sampling to compute the Bayesian estimators.

Before using the Gibbs sampling to do the corresponding calculation, we have to prove

that l(α |D) is log-concave, where l(α |D) denotes that the posterior density function of

α, when λ0, λ1, λ2 is known in (14). See the proof in the Appendix.

Let Y =
∑
i∈I1

yi, Z =
∑
i∈I2

zi. Then the full conditional posterior densities of Y , Z, and

θ are as follows.

1. The full conditional posterior densities of Y and Z, given α, λ0, λ1 and λ2, are

Binomial distributions. That is

Y ∼ Binom
(
n1,

λ2
λ0 + λ2

)
, Z ∼ Binom

(
n2,

λ1
λ0 + λ1

)
.
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2. The full conditional posterior densities of λ0, λ1 and λ2 are gamma distributions.

That is,

λ0 | θ−λ0 ∼ Gamma(n− Y − Z + a0, T0(α) + b0),

λ1 | θ−λ1 ∼ Gamma(n1 + Z + a1, T1(α) + b1),

λ2 | θ−λ2 ∼ Gamma(n2 + Y + a2, T2(α) + b2),

where θ−η denotes θ excluding η.

3. The full conditional posterior density of α is log-concave. Thus, the adaptive rejec-

tion sampling ([7]) can be used to generate α.

Then the Gibbs sampling can be implemented based on the above full conditional poste-

rior densities, and we find that the convergence is attained by only 500 iterations in the

simulations.

§4. Numerical Simulations

In this section, in order to verify the performance of the proposed Bayesian method,

simulations are carried out to compare the Bayesian method with the MLEs obtained by

EM algorithm ([5]).

In the process of simulation, we assume that the prior distributions of λ0, λ1 and

λ2 are Gamma(1, 1). And the prior distribution of α is Gamma(α; 0.001, 0.001), which is

same as [1]. (α, λ0, λ1, λ2) = (0.8, 1, 1.2, 2), (1, 1, 1, 1) and (2, 1.2, 1, 0.8). The RB, MSE,

CP of the parameters have been computed over 10,000 replications. In the simulations,

the Gibbs sampling algorithm converges after 500 iterations. Thus, we run the Gibbs

sampling 2,000 iterations, discard the initial 500 burn-in iterations. The thinning interval

is 3. Thus, 500 posterior samples are used to calculate the estimates of the parameters.

The results are listed in Tables 2–4. From Tables 2–4, we see that

1. Both Bayesian method and maximum likelihood method perform better when the

sample size increases.

2. When the sample size is small or moderate, both the RBs and the MSEs of the

parameters based on the Bayesian method are smaller than these based on EM

algorithm.

3. The CPs based on Bayesian method are much more close to the nominal level 0.95

even in the case of small sample size. While the CPs based on the EM algorithm

are not so satisfying when the sample size n = 15 or 25.
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4. When p0, p1 and p2 are of interest, both Bayesian method and EM algorithm perform

well even for the case of small sample size.

Table 2 The RB(%), MSE and 95% CP of the parameters based on 10,000

replications when (α, λ0, λ1, λ2) = (0.8, 1, 1.2, 2)

n α λ0 λ1 λ2 p0 p1 p2

RB(%) 3.96 10.91 3.10 3.56 11.58 1.46 6.67

Bayes CP 0.956 0.974 0.967 0.951 0.971 0.971 0.954

15
MSE 0.018 0.175 0.201 0.361 0.008 0.007 0.010

RB(%) 7.23 6.94 14.02 15.22 1.76 0.72 0.45

MLE CP 0.954 0.867 0.921 0.916 0.814 0.868 0.878

MSE 0.024 0.344 0.487 1.031 0.016 0.013 0.014

RB(%) 2.33 7.25 2.33 1.50 7.36 0.87 4.20

Bayes CP 0.954 0.956 0.958 0.953 0.957 0.958 0.954

25
MSE 0.010 0.120 0.136 0.256 0.006 0.005 0.006

RB(%) 4.59 5.14 7.75 9.58 0.98 0.12 0.56

MLE CP 0.950 0.896 0.932 0.920 0.863 0.892 0.898

MSE 0.013 0.194 0.237 0.494 0.009 0.008 0.008

RB(%) 1.30 3.49 1.45 0.66 3.73 0.61 2.23

Bayes CP 0.951 0.952 0.950 0.950 0.949 0.954 0.950

50
MSE 0.005 0.061 0.075 0.144 0.003 0.003 0.003

RB(%) 2.13 2.15 4.05 4.26 0.63 0.37 0.09

MLE CP 0.954 0.910 0.940 0.907 0.893 0.919 0.908

MSE 0.005 0.083 0.103 0.201 0.004 0.004 0.004

RB(%) 0.67 2.06 0.84 0.35 2.11 0.36 1.27

Bayes CP 0.946 0.950 0.952 0.947 0.948 0.952 0.950

100
MSE 0.002 0.030 0.036 0.074 0.002 0.002 0.002

RB(%) 1.09 1.13 1.93 1.94 0.22 0.22 0.02

MLE CP 0.951 0.918 0.947 0.906 0.914 0.926 0.916

MSE 0.003 0.038 0.046 0.088 0.002 0.002 0.002

§5. Data Analysis

A data set from [9] is reanalyzed for illustration. The data is from the UEFA Cham-

pion’s League, and includes two variables: X1 represents the time in minutes of the first

kick goal scored by any team and X2 represents the first goal of any type scored by the

home team. Meintanis [9] analyzed this data by using MOBE distribution. Kundu and

Dey [5], Kundu and Gupta [1] suggested MOBW distribution to fit this data. As Kundu

and Gupta [1] suggested, all the data points have been divided by 100 so that the shape
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Table 3 The RB(%), MSE and 95% CP of the parameters based on 10,000

replications when (α, λ0, λ1, λ2) = (1, 1, 1, 1)

n α λ0 λ1 λ2 p0 p1 p2

RB(%) 6.58 7.40 7.35 6.83 1.90 0.73 1.17

Bayes CP 0.948 0.955 0.957 0.957 0.962 0.962 0.958

15
MSE 0.035 0.149 0.166 0.166 0.010 0.009 0.009

RB(%) 7.90 10.62 11.52 10.73 1.52 0.57 0.96

MLE CP 0.948 0.911 0.922 0.909 0.873 0.883 0.881

MSE 0.040 0.271 0.314 0.294 0.019 0.015 0.015

RB(%) 3.83 4.09 5.06 5.08 0.66 0.34 0.32

Bayes CP 0.944 0.949 0.956 0.953 0.955 0.954 0.952

25
MSE 0.019 0.087 0.104 0.104 0.007 0.006 0.006

RB(%) 4.68 5.57 6.68 6.82 0.34 0.24 0.10

MLE CP 0.951 0.920 0.935 0.920 0.904 0.909 0.905

MSE 0.020 0.133 0.155 0.153 0.011 0.009 0.009

RB(%) 1.95 2.58 2.65 2.33 0.80 0.25 0.56

Bayes CP 0.946 0.950 0.947 0.949 0.948 0.950 0.948

50
MSE 0.009 0.044 0.052 0.052 0.004 0.003 0.003

RB(%) 2.18 3.09 3.07 2.70 0.66 0.16 0.50

MLE CP 0.950 0.934 0.946 0.929 0.925 0.928 0.927

MSE 0.009 0.056 0.064 0.063 0.005 0.004 0.004

RB(%) 0.79 0.93 1.17 0.95 0.31 0.04 0.26

Bayes CP 0.948 0.952 0.949 0.949 0.952 0.950 0.951

100
MSE 0.004 0.021 0.025 0.025 0.002 0.002 0.002

RB(%) 1.12 1.40 1.54 1.19 0.27 0.04 0.32

MLE CP 0.950 0.936 0.952 0.935 0.939 0.943 0.935

MSE 0.004 0.026 0.029 0.030 0.003 0.002 0.002

and scale parameters are of the same order. Then we use the proposed method to analyze

the data set. 2,000 iterations are run, which is shown in Figure 2. And the corresponding

Bayesian posterior means and 95% credible intervals of the parameters are listed in Table

5. We also list the estimates based on the EM algorithm ([5]) and Bayesian method ([1]),

which are denoted as KD09 and KG13 in Table 5.

From the Table 5, we see that the point estimates based on the EM algorithm and

the proposed Bayesian method are very close to each other. However, the lengths of in-

terval estimates based on the proposed Bayesian method are much shorter. The estimates

based on KG13 are much different, and the lengths of interval estimates are the shortest.

However, as we have indicated in Section 2, the interval estimates of [1] are not reliable
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Table 4 The RB(%), MSE and 95% CP of the parameters based on 10,000

replications when (α, λ0, λ1, λ2) = (2, 1.2, 1, 0.8)

n α λ0 λ1 λ2 p0 p1 p2

RB(%) 6.71 3.79 8.64 13.17 2.32 0.57 4.18

Bayes CP 0.941 0.959 0.960 0.969 0.962 0.960 0.973

15
MSE 0.154 0.165 0.178 0.143 0.011 0.009 0.008

RB(%) 6.64 11.01 12.86 12.51 0.65 0.55 0.29

MLE CP 0.964 0.934 0.924 0.906 0.896 0.886 0.875

MSE 0.139 0.331 0.344 0.251 0.020 0.015 0.014

RB(%) 3.86 2.67 5.29 8.07 1.20 0.51 2.44

Bayes CP 0.942 0.950 0.953 0.954 0.954 0.953 0.950

25
MSE 0.079 0.105 0.108 0.088 0.007 0.006 0.006

RB(%) 4.55 6.55 6.74 5.74 1.09 0.47 1.05

MLE CP 0.957 0.943 0.938 0.919 0.921 0.920 0.900

MSE 0.080 0.149 0.158 0.123 0.011 0.009 0.008

RB(%) 2.10 1.58 2.87 3.64 0.34 0.21 0.77

Bayes CP 0.945 0.951 0.951 0.947 0.951 0.952 0.948

50
MSE 0.036 0.052 0.054 0.044 0.004 0.003 0.003

RB(%) 2.26 3.39 3.07 1.83 0.90 0.13 1.18

MLE CP 0.953 0.942 0.950 0.930 0.932 0.933 0.924

MSE 0.036 0.067 0.066 0.052 0.006 0.004 0.004

RB(%) 1.05 0.70 1.58 2.31 0.39 0.11 0.73

Bayes CP 0.944 0.950 0.950 0.950 0.948 0.948 0.949

100
MSE 0.017 0.026 0.027 0.022 0.002 0.002 0.002

RB(%) 1.12 1.40 1.33 1.12 0.31 0.14 0.29

MLE CP 0.948 0.946 0.952 0.937 0.942 0.943 0.937

MSE 0.017 0.030 0.031 0.025 0.003 0.002 0.002

Table 5 Parameter estimates based on three methods

method α λ0 λ1 λ2

KD09
MLE 1.695 2.692 1.219 2.805

95% confidence interval (1.328, 2.062) (1.500, 3.885) (0.270, 2.141) (1.202, 4.448)

KG13
Posterior mean 1.705 2.075 0.957 3.037

95% credible interval (1.328, 1.892) (1.485, 2.357) (0.505, 1.482) (2.190, 3.557)

Ours
Posterior mean 1.670 2.577 1.209 2.625

95% credible interval (1.386, 1.999) (1.666, 3.749) (0.530, 2.061) (1.573, 4.023)
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when sample size is moderate or large.
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Figure 2 Trace plot of the posterior samples of the parameters

§6. Conclusions

In this paper, due to inefficiency of importance sampling method by [1], we have

proposed a Bayesian method to estimate the parameters of MOBW distribution. We use

Gamma prior of the parameters, and introduce latent variables to simplify the likelihood

function. Then a MCMC procedure is given to obtain the Bayesian estimates. The

proposed method is compared with EM algorithm via simulations. We find that the

Bayesian estimates perform much better when the sample size is small or moderate.

Appendix

The conditional posterior density function of α is log-concave.

Proof

∂2l(α |D)

∂α2
= − λ0

( ∑
i∈I2

xα1i(lnx1i)
2 +

∑
i∈I1

xα2i(lnx2i)
2 +

∑
i∈I0

xαi (lnxi)
2
)
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− λ1
( ∑
i∈I1∪I2

xα1i(lnx1i)
2 +

∑
i∈I0

xαi (lnxi)
2
)

− λ2
( ∑
i∈I1∪I2

xα2i(lnx2i)
2 +

∑
i∈I0

xαi (lnxi)
2
)
< 0.

Thus, the result holds. �
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