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Abstract: This paper considers the expected penalty functions for a discrete semi-Markov

risk model, which includes several existing risk models such as the compound binomial model (with

time-correlated claims) and the compound Markov binomial model (with time-correlated claims) as

special cases. Recursive formulae and the initial values for the discounted free penalty functions are

derived in the two-state model by an easy method. We also give some applications of our results.
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§1. Introduction

Survival probability in a semi-Markov risk model was first investigated by Janssen and

Reinhard [1], where they assumed that the surplus process not only depend on the current

state but also depend on the next state of an environmental Markov chain. Albrecher and

Boxma [2] and Cheung and Landriault [3] further studied the discounted penalty function

in such a risk model by some generalized methods.

For the discrete-time semi-Markov risk model, Reinhard and Snoussi [4, 5] derived re-

cursive formulae for the distribution of the surplus just prior to ruin and that of the deficit

at ruin in a special case, where a strict restriction was imposed on the total claim sizes.

Chen et al. [6, 7] removed the restriction of [4,5] and derived recursive formulae for comput-

ing the expected discounted dividends and survival probabilities for the model. As was

mentioned in [7], the discrete-time semi-Markov risk model without restriction embraces

some existing discrete-time risk models including the compound binomial model (with
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time-correlated claims) and the compound Markov binomial model (with time-correlated

claims). So it is interesting to consider some further problems in this model.

The compound (Markov) binomial model (with time-correlated claims) has been ex-

tensively studied by various authors. For example, ruin problems in the compound bino-

mial model were considered by Gerber [8], Shiu [9], Willmot [10], Dickson [11], Cheng et al. [12]

and so on. Ruin problems in the compound binomial model with time-correlated claims

were investigated by Yuen and Guo [13] and Xiao and Guo [14], the discounted free Gerber-

Shiu penalty function for the compound binomial model with randomized dividends were

treated in [15] and [16]. Ruin probability and the Gerber-Shiu penalty function for the

compound Markov binomial model were studied by Cossette et al. [17, 18] and Yuen and

Guo [19]. Ruin problems in some other modified compound binomial risk model can be

found in [20].

In this paper, we consider the discounted free Gerber-Shiu penalty function for the

discrete-time semi-Markov risk model. Recursive formulae and the initial values are de-

rived by an easy method in the two-state model.

The rest of the paper is organized as follows. In Section 2, we present the mathe-

matical formulation of the discrete semi-Markov model. In Section 3, we derive recursive

formulae for computing the discounted free Gerber-Shiu penalty function for the model.

Section 4 is devoted to finding the initial values of the penalty function for applying the

recursive formula. Some applications of our model are considered in Section 5.

§2. The Model

The model considered in this paper is the same as that in [6, 7]. For the reader’s

convenience, we also give some details here. Let (Jn, n ∈ N) be a homogeneous, irreducible

and aperiodic Markov chain with finite state space M = {1, 2, . . . ,m} (1 6 m < ∞). Its

one-step transition probability matrix is given by

P = (pij)i,j∈M , pij = P(Jn = j | Jn−1 = i, Jk, k 6 n− 1),

with a unique stationary distribution π = (π1, π2, . . . , πm). The insurer’s surplus at the

end of the t-th period (t ∈ N+) is given by

Ut = u+ t−
t∑
i=1

Yi, t ∈ N+, (1)
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where u ∈ N is the initial surplus and Yi denotes the total amount of claims in the i-

th period. We further assume that a premium of 1 is received at the beginning of each

time period and Yt’s are nonnegative integer-valued random variables. The distribution of

Yt’s is influenced by the environmental Markov chain (Jn, n ∈ N) in the way that (Jt, Yt)

depends on {Jk, Yk; k 6 t− 1} only through Jt−1. Define

gij(l) = P(Yt = l, Jt = j | Jt−1 = i, Jk, Yk, k 6 t− 1), l ∈ N,

which describes the conditional joint distribution of Yt and Jt given the previous state

Jt−1 and plays a key role in the following derivations.

Let τ = inf{t ∈ N+ : Ut < 0} be the time of ruin. The Gerber-Shiu expected discount

-ed penalty function given the initial surplus u and the initial environment state i is defined

as

mi(u) = E(vτω(Uτ−, |Uτ |)1(τ<∞) |U0 = u, J0 = i), i ∈M, u ∈ N, (2)

where ω(x, y) is a nonnegative bounded function and 0 < v 6 1 is the discounted factor.

Assume that for all i and j,

µij =
∞∑
k=0

kgij(k) <∞,

and define

µi =
m∑
j=1

µij , i ∈M.

We further assume that the positive safety loading condition holds, that is,

m∑
i=1

πiµi < 1, (3)

which ensures that ruin is not certain.

Here, we only consider the case with v = 1 and m = 2. The rest of this paper aims

to derive a recursive formula for computing mi(u). Obviously, the result obtained in this

paper is an extension of [7]. Besides, as was shown in Section 5 of [7], our result is also an

extension of [14], [19] and [21] in some aspect.

§3. Recursive Formula for mi(u)

This section devotes to the derivation of the recursive formulae for mi(u), i = 1, 2.

Let

gi(k) =
2∑
j=1

gij(k), ξi(u) =
∞∑

k=u+2

gi(k)ω(u+ 1, k − u− 1), i = 1, 2.
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Considering the first time period, it is easy to see that

mi(u) =
2∑
j=1

u+1∑
k=0

gij(k)mj(u+ 1− k) + ξi(u), i = 1, 2, u ∈ N. (4)

Now we employ the technique of generating functions to derive the recursive formulae for

mi(u). Let m̃i(s), g̃ij(s) and ξ̃i(s) denote the generating functions of mi(u), gij(u) and

ξi(u) respectively. By multiplying both sides of (4) by su+1 and summing over u from 0

to ∞, we obtain

sm̃i(s) =
2∑
j=1

g̃ij(s)m̃j(s) + sξ̃i(s)−
2∑
j=1

gij(0)mj(0), i = 1, 2. (5)

Let ei =
2∑
j=1

gij(0)mj(0), i = 1, 2. Then we have

[g̃11(s)− s]m̃1(s) + g̃12(s)m̃2(s) = e1 − sξ̃1(s),

g̃21(s)m̃1(s) + [g̃22(s)− s]m̃2(s) = e2 − sξ̃2(s).
(6)

It follows from (6) that

[(g̃11(s)− s)(g̃22(s)− s)− g̃21(s)g̃12(s)]m̃1(s)

= [e1 − sξ̃1(s)](g̃22(s)− s)− [e2 − sξ̃2(s)]g̃12(s). (7)

For notational convenience, we define

gii(1) = gii(1)− 1, gii(k) = gii(k), i = 1, 2, k ∈ N\{1},

hi(0) = ei, hi(k) = −ξi(k − 1), i = 1, 2, k ∈ N\{0},

fk =
k∑

n=0
[g11(n)g22(k − n)− g21(n)g12(k − n)], g

(1)
k =

k∑
n=0

m1(n)fk−n,

A
(1)
k =

k∑
n=0

[h1(n)g22(k − n)− h2(n)g12(k − n)], k ∈ N.

Let g̃(1)(s), f̃(s) and Ã(1)(s) denote the generating functions of g
(1)
k , fk and A

(1)
k respec-

tively. Note that for any two sequences {a(n), n = 0, 1, . . .} and {b(n), n = 0, 1, . . .} with

generating functions ã(s) and b̃(s), we have the following property

ã(s)̃b(s) =
∞∑
n=0

a ∗ b(n)sn =
∞∑
n=0

n∑
k=0

a(k)b(n− k)sn.

Applying this property to (7) yields

g̃(1)(s) = f̃(s)m̃1(s) = Ã(1)(s), (8)
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where Ã(1)(s) is the expression on the right hand side of equation (7). Then comparing

the coefficients of sk in both sides of the above equation gives g
(1)
k = A

(1)
k , k ∈ N, that is,

k∑
n=0

m1(n)fk−n = A
(1)
k , k ∈ N. (9)

Similarly, one can obtain

k∑
n=0

m2(n)fk−n = A
(2)
k , k ∈ N, (10)

where A
(2)
k =

k∑
n=0

[−h1(n)g21(k − n) + h2(n)g11(k − n)], k ∈ N.

According to Proposition 1 of [7], we know that f1 6= 0 if f0 = 0. Hence, from (9)

and (10), we obtain the following recursive formula

mi(k) =


1

f0

[
A

(i)
k −

k−1∑
n=0

mi(n)fk−n

]
if f0 6= 0;

1

f1

[
A

(i)
k+1 −

k−1∑
n=0

mi(n)fk+1−n

]
if f0 = 0 and f1 6= 0,

(11)

for i = 1, 2 and k ∈ N+.

§4. The Initial Value for mi(u)

After obtaining recursive formula (11) for mi(u), we need to determine the initial

values mi(0), i = 1, 2. So we should make an effort to find two equations associated with

them in this section.

4.1 The First Equation

Assume that

lim
s→1

m̃i(s) =
∞∑
u=0

mi(u) <∞, i = 1, 2,

then it follows from (6) that
p12

( ∞∑
u=0

m1(u)−
∞∑
u=0

m2(u)
)

= −
2∑
j=1

g1j(0)mj(0) +
∞∑
u=0

ξ1(u),

p21

( ∞∑
u=0

m1(u)−
∞∑
u=0

m2(u)
)

=
2∑
j=1

g2j(0)mj(0)−
∞∑
u=0

ξ2(u),

which yields

m1(0)(g11(0)p21 + g21(0)p12) +m2(0)(g12(0)p21 + g22(0)p12)
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= p21

∞∑
u=0

ξ1(u) + p12

∞∑
u=0

ξ2(u). (12)

Remark 1 Assume that ω(x, y) 6 K for some constant K, then we can see that

∞∑
u=0

ξi(u) 6 K
∞∑
u=0

∞∑
k=u+2

gi(k) = K
∞∑
k=2

k−2∑
u=0

gi(k) 6 Kµi <∞, i = 1, 2.

4.2 The Second Equation

In this subsection, we use an alternative method to find another relation between

m1(0) and m2(0). To do it, we consider several cases of f0 = g11(0)g22(0)− g12(0)g21(0).

Case 1: If f0 = 0, it follows from (9) that f1m1(0) = A
(1)
1 , which yields

K1m1(0) +K2m2(0) = g12(0)ξ2(0)− g22(0)ξ1(0), (13)

where

K1 = g22(0)g11(1)− g12(0)g21(1)− g22(0) 6 0,

K2 = g22(0)g12(1)− g12(0)g22(1) + g12(0) > 0.

Furthermore,

K1 = K2 = 0 ⇐⇒ g12(0) = g22(0) = 0.

In this case, we have e1 = g11(0)m1(0), e2 = g21(0)m1(0), and by (10),

f1m2(0) = {g21(0)g11(1)− g11(0)g21(1)− g21(0)}m1(0)

+ g21(0)ξ1(0)− g11(0)ξ2(0). (14)

Case 2: If f0 > 0, then f̃(0) = f0 > 0. Note that

f̃ ′(s) = (g̃′11(s)− 1)(g̃22(s)− s) + (g̃11(s)− s)(g̃′22(s)− 1)

− [g̃′12(s)g̃21(s) + g̃12(s)g̃′21(s)],

we have

f̃ ′(1) = −p21(µ11 − 1)− p12(µ22 − 1)− p21µ12 − p12µ21

= p21(1− µ1) + p12(1− µ2).

It is easy to see that the unique stationary distribution is

π = (π1, π2) =
( p21

p21 + p12
,

p12

p21 + p12

)
.
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Then according to the positive safety loading condition (3), we obtain that f̃ ′(1) > 0.

On the other hand, since f̃(1) = 0, then there exists a δ > 0 such that f̃(s) < 0 for any

s ∈ (1− δ, 1). As a consequence, there exists a ρ ∈ (0, 1) such that f̃(ρ) = 0, which in turn

implies that Ã(1)(ρ) = 0, that is,

{g11(0)(g̃22(ρ)− ρ)− g21(0)g̃12(ρ)}m1(0)

+ {g12(0)(g̃22(ρ)− ρ)− g22(0)g̃12(ρ)}m2(0)

= ρ(ξ̃1(ρ)[g̃22(ρ)− ρ]− ξ̃2(ρ)g̃12(ρ)). (15)

Case 3: If f0 < 0, then f̃(0) = f0 < 0. Besides,

f̃(−1) = [g̃11(−1) + 1][g̃22(−1) + 1]− g̃21(−1)g̃12(−1)

> (1− g̃11(1))(1− g̃22(1))− g̃21(1)g̃12(1)

= (1− p11)(1− p22)− p21p12 = 0.

So there exists a ρ ∈ (−1, 0) such that f̃(ρ) = 0, which yields that Ã(1)(ρ) = 0. That is,

(15) also holds in this case.

Remark 2 For Case 2, the method used in [7] is invalid in this paper.

§5. Applications

In this section, we discuss a few special cases of the model (1) which have been

considered in the literature.

5.1 The Compound Markov Binomial Model

As stated in [7], for i = 1, 2, if we let

gi1(k) =

pi1, k = 0;

0, k > 0,
gi2(k) =

0, k = 0;

pi2f(k), k > 0,

then one can see that the compound Markov binomial model is a special case of model

(1). In this case, we have

f0 = 0,

f1 = p11(p22f(1)− 1)− p21p12f(1) = −p11 + (p11 − p21)f(1),
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f2 = p11p22f(2) + 1− p22f(1)− p21p12f(2)

= 1− p22f(1) + (p11 − p21)f(2),

fk = p11p22f(k)− p22f(k − 1)− p21p12f(k)

= −p22f(k − 1) + (p11 − p21)f(k), k > 3,

A
(2)
k+1 = p12θ(k), where θ(k) =

∞∑
n=k+2

f(n)ω(k + 1, n− k − 1), k > 0.

For u = 1, 2, . . ., it follows from (11) that

[p11 − (p11 − p21)f(1)]m2(u)

= m2(u− 1) +
u−1∑
n=0

m2(n)[(p11 − p21)f(u+ 1− n)− p22f(u− n)]− p12θ(u). (16)

By (12) and (14), it is easy to see that

m2(0) =

(p11 − p21)θ(0) + p12

∞∑
u=0

θ(u)

p11 − (p11 − p21)f(1)
,

which is the same as (2.17) of [21]. Besides, by mathematical induction, we can prove that

(16) is equivalent to (2.16) of [21].

5.2 Some Important Actuarial Quantities

Survival (or ruin) probability for the model has been studied in [7]. Here we consider

the joint probability function of the surplus immediately before ruin and the deficit at

ruin, and the probability function of the claim causing ruin.

5.2.1 The Surplus Immediately before Ruin and the Deficit at Ruin

For x = 0, 1, . . . and y = 1, 2, . . ., let ω(z1, z2) = 1(z1=x,z2=y) in (2). Then

mi(u) = fi(u, x, y) = P(Uτ− = x, |Uτ | = y, τ <∞|U0 = u, J0 = i),

which is the joint probability function of the surplus immediately before ruin and the

deficit at ruin. In this case, for i = 1, 2, we have

ξi(u) =
∞∑

k=u+2

gi(k)1(u+1=x,k−u−1=y) = gi(x+ y)1(u=x−1), u ∈ N,

hi(0) =
2∑
j=1

gij(0)fj(0, x, y), hi(u) = −1(u=x)gi(x+ y), u ∈ N\{0}.
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Let θk = h1(0)g22(k)− h2(0)g12(k). Then

A
(1)
k =



f0f1(0, x, y), k = 0;

θk, 1 6 k < x;

θk − [g1(x+ y)g22(0)− g2(x+ y)g12(0)], k = x;

θk − [g1(x+ y)g22(k − x)− g2(x+ y)g12(k − x)], k > x.

A
(2)
k can be obtained similarly and the recursive formula for fi(u, x, y) follows from (11).

Besides, it is easy to see that

∞∑
u=0

ξi(u) = gi(x+ y)1(x>1), i = 1, 2.

Then the right hand side of (12) becomes

[p21g1(x+ y) + p12g2(x+ y)]1(x>1).

Finally, the initial values fi(0, x, y) can be derived from (12) and (13) (or (14), (15)).

5.2.2 The Probability Function of the Claim Causing Ruin

Now, consider ω(z1, z2) = 1(z1+z2=x) in (2) for x = 1, 2, . . .. Then

mi(u) = qi(x |u) = P(Uτ− + |Uτ | = x, τ <∞|U0 = u, J0 = i),

which is the probability function of the claim causing ruin. In this case, for i = 1, 2, we

have

ξi(u) =
∞∑

k=u+2

gi(k)1(k=x) = gi(x)1(u6x−2), u ∈ N,

hi(0) =
2∑
j=1

gij(0)qi(x|0), hi(u) = −1(u6x−1)gi(x), u ∈ N\{0}.

Let θk = h1(0)g22(k)− h2(0)g12(k). Then

A
(1)
k =



f0q1(x | 0), k = 0;

θk −
k∑

n=1
[g1(x)g22(k − n)− g2(x)g12(k − n)], 1 6 k < x;

θk −
x−1∑
n=1

[g1(x)g22(k − n)− g2(x)g12(k − n)], k > x.

A
(2)
k can be obtained similarly and the recursive formula for qi(x |u) follows from (11).
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Besides, it is easy to see that

∞∑
u=0

ξi(u) = (x− 1)gi(x)1(x>2), i = 1, 2.

Then the right hand side of (12) becomes

[p21g1(x) + p12g2(x)](x− 1)1(x>2).

Finally, the initial values qi(x | 0) can be derived from (12) and (13) (or (14), (15)).
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