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Abstract: The hybrid censoring scheme is a mixture of type-I and type-II censoring schemes. It

is a popular censoring scheme in the literature of life data analysis. Mixed exponential distribution

(MED) models is a class of favorable models in reliability statistics. Nevertheless, there is no much

discussion to focus on parameters estimation for MED models with hybrid censored samples. We

will address this problem in this paper. The EM (Expectation-Maximization) algorithm is em-

ployed to derive the closed form of the maximum likelihood estimators (MLEs). Finally, Monte

Carlo simulations and a real-world data analysis are conducted to illustrate the proposed method.
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§1. Introduction

The type-I and type-II censoring schemes are the two most popular schemes in life

testing. In type-I censoring scheme, the experiment can not terminate until a pre-specified

time reaches. On the other hand, the type-II censoring scheme requires the experiment
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to continue until a pre-specified number of failures occurs. Combining the type-I censor-

ing with type-II censoring, the hybrid censoring scheme performs flexible and has become

quite eye-catching in the literature of life testing. For example, Ebrahimi [1] discussed the

prediction intervals of future failures for exponential distribution under hybrid censoring

scheme, Childs et al. [2] investigated the exact likelihood inference of the exponential dis-

tribution based on the hybrid censored samples, Kundu [3] considered statistical inference

of Weibull distribution under hybrid censoring, Kundu and Pradhan [4] discussed param-

eters estimation of generalized exponential distribution in presence of hybrid censored

data, Dube et al. [5] considered estimation of the hybrid censored log-normal distributions.

Recently, Balakrishnan and Kundu [6] presented a review on hybrid censoring, Dey and

Pradhan [7] discussed generalized inverted exponential distribution under hybrid censoring.

Mixture model is an important class of statistical models in reliability analysis. Mix-

ture models under the complete samples, conventional type-I and type-II censoring schemes

have been studied by many authors. Many literatures can be referred, such as [8–13]. In

this paper, we are interested in parameters estimation of MED based on hybrid censoring

scheme. The pdf (probability density function) and cdf (cumulative distribution function)

of MED with K components can be given respectively as follows

f(x; p, λ) =
K∑
k=1

pkλke
−λkx, x > 0, (1)

F (x; p, λ) = 1−
K∑
k=1

pke
−λkx, x > 0, (2)

where p = (p1, p2, . . . , pK−1), λ = (λ1, λ2, . . . , λK); 0 < pk < 1, k = 1, 2, . . . ,K − 1,

pK = 1−
K−1∑
k=1

pk; λk > 0, k = 1, 2, . . . ,K. The remaining sections are arranged as follows.

In Section 2, we consider the MLEs of MED models under the hybrid censoring. In Section

3, we propose estimation procedure of the EM algorithm. In Section 4, some simulations

are implemented to illustrate the proposed procedures. In Section 5, a real-world data

analysis is provided for further illustration purpose. In the last section, we draw some

conclusions.

§2. The Likelihood Function

2.1 The Censoring Scheme

The life-testing experiment of hybrid censoring scheme can be described as follows:

Suppose that n identical units are put on test. The experiment is terminated when a pre-
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assigned number r, out of n units have failed or a pre-determined time T has been reached.

Therefore, in the hybrid censoring scheme, the experimental time and the number of

failures will not exceed T and r, respectively. Let X1, X2, . . . , Xn be n lifetimes from model

(1) and X1:n 6 X2:n 6 · · · 6 Xn:n be the corresponding order statistics. The number of

failures and observation times are denoted by D and C = min(Xr:n, T ), respectively.

Thus, the observed sample is represented by (X1:n, X2:n, . . . , XD:n, C,D). Note that when

D = 0, no failure information is observed. It is obvious that X(D+1):n, X(D+2):n, . . . , Xn:n

are not can be observed. The experimental time T is supposed to be bounded, and it

depends on the maximum experimental time for the experimenter to afford.

2.2 The Likelihood

Under the hybrid censoring scheme, we consider the maximum likelihood estimators

of model (1). Let c and d be the observed values of C and D, respectively. The likelihood

function is

l(p, λ) =
d∏
i=1

f(xi:n; p, λ) · (1− F (c; p, λ))n−d

=
d∏
i=1

( K∑
k=1

pkλke
−λkxi:n

)
·
( K∑
k=1

pke
−λkc

)n−d
.

However, the MLEs of parameters in this case are hard to obtained directly due to

its complex likelihood. The EM algorithm [14] is employed to address this problem.

§3. The Proposed Procedure

Suppose X1, X2, . . . , Xn are n identical independent samples from model (1). Denote

fkj = λke
−λkxj , skj = e−λkxj , k = 1, 2, . . . ,m,

fj =
K∑
k=1

pkfkj , sj =
K∑
k=1

pkskj , j = 1, 2, . . . , n.

Let Ij = (Ij1, Ij2, . . . , IjK) be an indicator vector of Xj , where Ijk is dichotomous

variable only taking 1 if Xj comes from the k-th component, and 0 otherwise. Denote

I = (I1, I2, . . . , In) as a big indictor vector composed of n indictor vectors of each life

variable Xj . We notice that random vector Ij = (I1, I2, . . . , IjK) follows a multinomial

distribution. Ij is not observable which can be deemed as the missing data. Denote

I
(1)
j = (I

(1)
j1 , I

(1)
j2 , . . . , I

(1)
jK) and I

(2)
j = (I

(2)
j1 , I

(2)
j2 , . . . , I

(2)
jK) as the indictor vectors of the

complete data and the censored data, respectively.
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For the failure observation Xj , the joint density of Xj and I
(1)
j is

g(xj , I
(1)
j | p, λ) =

K∏
k=1

[pkfkj ]
I
(1)
jk .

For the censored variable Xj , the joint density of Xj and I
(2)
j is

g(xj , I
(2)
j | p, λ) =

K∏
k=1

[pkskj ]
I
(2)
jk .

According to the Bayesian theorem, the conditional probabilities of I
(1)
j and I

(2)
j on

Xj are, respectively

P(I
(1)
jk = 1 |xj , p, λ) =

pkfkj
fj

, P(I
(2)
jk = 1 |xj , p, λ) =

pkskj
sj

, k = 1, 2, . . . ,K.

For the above life variables X1, X2, . . . , Xn, we conduct the life-testing experiment

of hybrid censoring in Section 2. The complete failure times of D units are denoted as

X1:n, X2:n, . . . , XD:n. The observed data can be denoted as X = (X1:n, X2:n, . . . , XD:n).

Denote Z = {Zj , j = 1, 2, . . . , n −D}, where Zj stands for the j-th censored variable at

the failure time C. Z is not observable variable which can also be deemed as the missing

data. The whole missing data can be denoted as (I, Z) and the complete data can be

denoted as W = (X, I, Z). Next, we employ the EM algorithm to obtain the MLEs of the

unknown parameters.

The joint pdf of the complete data W can be obtained as follows

f(p, λ |W ) ∝
d∏
i=1

K∏
k=1

(pkλke
−λkxi:n)I

(1)
ik ·

n−d∏
j=1

K∏
k=1

(pkλke
−λkzj )I

(2)
jk .

The log-likelihood function of the above complete data is

ln f(p, λ |W ) =
K∑
k=1

[ d∑
i=1

I
(1)
ik (ln pk + lnλk − λkxi:n) +

n−d∑
j=1

I
(2)
jk (ln pk + lnλk − λkzj)

]
.

The EM algorithm is described as follows:

Given initial values p(0), λ(0) of parameters p, λ, we can obtain parameter estimators

via the following two steps:

E step: Given the (h−1)-th iteration values p(h−1), λ(h−1), the Q function of the h-th

iteration is

Q(p, λ | p(h−1), λ(h−1),W )

= E[ln f(p, λ |W ) | p(h−1), λ(h−1),W ]
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=
K∑
k=1

[ d∑
i=1

(ln pk + lnλk − λkxi:n) · E(E(I
(1)
ik | p

(h−1), λ(h−1), Z))

+
n−d∑
j=1

((ln pk + lnλk) · E(E(I
(2)
jk | p

(h−1), λ(h−1), Z))

− λk · E(E(zjI
(2)
jk | p

(h−1), λ(h−1), Z)))
]

=
K∑
k=1

[ d∑
i=1

(ln pk + lnλk − λkxi:n) · a(h−1)
ki (xi:n)

+
n−d∑
j=1

((ln pk + lnλk) · E(b
(h−1)
kj (zj))− λk · E(zj · b(h−1)

kj (zj)))
]
,

where

a
(h−1)
ki (x) =

p
(h−1)
k · f (h−1)

ki (x)

f
(h−1)
i (x)

, f
(h−1)
ki (x) = λ

(h−1)
k e−λ

(h−1)
k x,

f
(h−1)
i (x) =

K∑
k=1

p
(h−1)
k · f (h−1)

ki (x), k = 1, 2, . . . ,K, i = 1, 2, . . . , d,

b
(h−1)
kj (x) =

p
(h−1)
k · s(h−1)

kj (x)

s
(h−1)
j (x)

, s
(h−1)
kj (x) = e−λ

(h−1)
k x,

s
(h−1)
j (x) =

K∑
k=1

p
(h−1)
k · s(h−1)

kj (x), k = 1, 2, . . . ,K, j = 1, 2, . . . , n− d.

In the above Q function, the conditional pdf(s) of all censored data Zj are

pj(z) = pj(z | p(h−1), λ(h−1),W )

=
[ K∑
k=1

p
(h−1)
k λ

(h−1)
k e−λ

(h−1)
k z

]/[ K∑
k=1

p
(t−1)
k e−λ

(h−1)
k ·c

]
,

z ∈ [c,+∞), j = 1, 2, . . . , n− d.

Then, we have

Q(p, λ | p(h−1), λ(h−1),W )

=
K∑
k=1

[( d∑
i=1

ln pk + lnλk − λkxi:n
)
· a(h−1)

ki (xi:n) + (n− d)(ln pk + lnλk)

·
∫ ∞
c

b
(h−1)
kj (x) · pj(x)dx− λk(n− d) ·

∫ ∞
c

x · b(h−1)
kj (x) · pj(x)dx

]
=

K∑
k=1

(ln pk + lnλk)
( d∑
i=1
41

(h−1)
ki + (n− d)42

(h−1)
k

)
− λk

( d∑
i=1

xi:n · 41
(h−1)
ki + (n− d)43

(h−1)
k

)
,



196 Chinese Journal of Applied Probability and Statistics Vol. 33

where

41
(h−1)
ki = a

(h−1)
ki (xi:n),

42
(h−1)
k =

∫ ∞
c

b
(h−1)
kj (x) · pj(x)dx,

43
(h−1)
k =

∫ ∞
c

x · b(h−1)
kj (x) · pj(x)dx.

M step: We optimize numerically the Q function of E-step regarding to p and λ to

derive the updated estimators p(h) and λ(h). Let

∂Q

∂λk
=

1

λk

( d∑
i=1
41

(h−1)
ki + (n− d)42

(h−1)
k

)
−
( d∑
i=1

xi:n41
(h−1)
ki + (n− d)43

(h−1)
k

)
= 0, k = 1, 2, . . . ,K, (3)

∂Q

∂pk
=

1

pk

[ d∑
i=1
41

(h−1)
ki + (n− d)42

(h−1)
k

]
− 1
/(

1−
K−1∑
l=1

pl

)
·
( d∑
i=1
41

(h−1)
Ki + (n− d)42

(h−1)
K

)
= 0, k = 1, 2, . . . ,K − 1. (4)

From (3), we obtain

λ̂
(h)
k =

[ d∑
i=1
41

(h−1)
ki + (n− d)42

(h−1)
k

]/[ d∑
i=1

xi:n · 41
(h−1)
ki + (n− d)43

(h−1)
k

]
,

k = 1, 2, . . . ,K. (5)

From (4), we have

pk

( d∑
i=1
41

(h−1)
Ki + (n− d)42

(h−1)
K

)
+
K−1∑
l=1

pl

( d∑
i=1
41

(h−1)
ki + (n− d)42

(h−1)
k

)
=

d∑
i=1
41

(h−1)
ki + (n− d)42

(h−1)
k ,

where k = 1, 2, . . . ,K − 1.

From the above equations, the h-th iteration values in M-step with respect to param-

eters p1, p2, . . . , pK−1 are the solution vector of the linear equation group AP = b, where

P , A, b are given as follows

P = (p1, p2, . . . , pK−1)T, AK−1 = (als),

als =


d∑
i=1

(41
(h−1)
li +41

(h−1)
Ki ) + (n− d)(42

(h−1)
l +42

(h−1)
K ), l = s;

d∑
i=1
41

(h−1)
li + (n− d)42

(h−1)
l ), l 6= s,
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b =
( d∑
i=1
41

(h−1)
1i + (n− d)42

(h−1)
1 , . . . ,

d∑
i=1
41

(h−1)
K−1,i + (n− d)42

(h−1)
K−1

)T

.

If
d∑
i=1
41

(h−1)
li +(n−d)42

(h−1)
li > 0, l = 1, 2, . . . ,K, we can easily prove that rank(A) =

K − 1. Thus, the only solution of parameter vector P of the h-th iteration in the M-step

is

p̂(h) = (p̂
(h)
1 , p̂

(h)
2 , . . . , p̂

(h)
m−1)T = A−1b. (6)

From the above (5) and (6), we can update (p(h), λ(h)) by repeating E-step and M-step

till the total errors approach the pre-assigned constraints. It needs to be emphasized that,

in practical applications, we can try to run the EM algorithm several times at different

starting values for obtaining more stable estimates.

§4. Simulations

In this section, some simulations are conducted to illustrate the performance of the

proposed method. Suppose Xi, i = 1, 2, . . . , n are n identical independently distributed

samples generated from model (1), we consider MED models with two mixture components

under the hybrid censoring scheme. In order to compare results between different censoring

schemes, the true values of parameters are uniformly set as p1 = 0.4, λ1 = 2.4, λ2 = 0.8,

whereas the initial values are supposed to be p
(0)
1 = 0.3, λ

(0)
1 = 2, λ

(0)
2 = 0.5 for simplicity.

Table 1 Mean(s) and RMSE(s) when T = 0.8

Mean RMSE

n r p1 λ1 λ2 p1 λ1 λ2

30 15 0.330 3.869 0.997 0.089 2.126 0.434

20 0.340 3.877 0.749 0.085 1.922 0.246

30 0.341 3.891 0.699 0.085 1.928 0.183

50 20 0.344 3.597 1.025 0.071 1.363 0.330

30 0.343 3.666 0.761 0.070 1.448 0.198

40 0.345 3.709 0.683 0.070 1.498 0.163

50 0.345 3.709 0.683 0.070 1.498 0.163

80 40 0.345 3.377 0.804 0.063 1.126 0.195

50 0.341 3.303 0.671 0.067 1.059 0.182

60 0.340 3.285 0.635 0.068 1.041 0.179

70 0.340 3.286 0.635 0.068 1.042 0.179
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Consider three different censoring schemes for T = 0.8, 1.5, 3. Repeat the estimation

process 1 000 times for distinct sample sizes n = 30, 50, 80 with pre-assigned failure num-

ber r. The estimated means and root mean square errors (RMSEs) over s = 1 000 times

simulations are presented in Table 1 – 3. All simulations are carried out via Matlab2013.

Table 2 Mean(s) and RMSE(s) when T = 1.5

Mean RMSE

n r p1 λ1 λ2 p1 λ1 λ2

30 15 0.374 2.681 1.212 0.050 0.834 0.509

20 0.376 2.731 1.019 0.049 0.742 0.381

30 0.384 2.835 0.788 0.051 0.827 0.225

50 20 0.379 2.639 1.269 0.039 0.508 0.523

30 0.378 2.661 1.043 0.039 0.521 0.356

40 0.378 2.712 0.798 0.042 0.581 0.224

50 0.379 2.727 0.737 0.044 0.596 0.168

80 40 0.380 2.590 1.001 0.032 0.358 0.312

50 0.377 2.586 0.886 0.034 0.344 0.215

60 0.373 2.597 0.773 0.036 0.332 0.158

70 0.372 2.610 0.710 0.037 0.336 0.141

Table 3 Mean(s) and RMSE(s) when T = 3

Mean RMSE

n r p1 λ1 λ2 p1 λ1 λ2

30 15 0.376 2.368 1.082 0.048 0.585 0.351

20 0.376 2.387 1.035 0.047 0.580 0.320

30 0.386 2.484 0.850 0.047 0.612 0.235

50 20 0.379 2.379 1.965 0.034 0.403 0.317

30 0.379 2.387 1.019 0.034 0.398 0.280

40 0.380 2.419 0.940 0.034 0.410 0.228

50 0.383 2.442 0.814 0.036 0.404 0.156

80 40 0.383 2.377 0.982 0.027 0.251 0.224

50 0.382 2.377 0.955 0.028 0.249 0.202

60 0.381 2.380 0.918 0.029 0.243 0.174

70 0.381 2.389 0.862 0.027 0.241 0.147

From Table 1 – 3, it can be seen that, the EM algorithm is relatively effective for

estimating MED model (1) under different hybrid censored schemes. We can see that for

fixed n and r, as T increases, the biases, the RMSEs for most of estimated parameters
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decline as expected. Similarly, we also observe that for fixed n and T as r increases,

overall, the biases and the RMSEs become smaller for all parameters. And for fixed r and

T as n increases, the biases and the RMSEs of all parameters decline.

§5. Data Analysis

In this example, we analyze a set of failure times of the air conditional system. This

data set has been utilized by many authors such as [15], [16] and [13]. Mokhtari et al. [16]

asserted that the Weibull distribution can provide a good fit to the failure data. Tian

et al. [13] fitted this data better by using MED model with two mixture components. In

their results, the MLEs are p̂1 = 0.346, λ̂1 = 0.065, λ̂2 = 0.012. The p-value is 0.697 with

the K-S distance 0.124 by Kolmogorov-Smirnov goodness-of-fit test. Figure 1 provides the

empirical survival function and the fitted failure rate function.
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Figure 1 Fitted survival function and failure rate function

Next, we generate the artificially hybrid censored data from the above data set by

taking r = 20, 25 and T = 75, 150 which result in a total of 4 censoring schemes. Based

on the proposed estimation procedure, the estimates (Est) and estimated standard errors

(S.E.), 95% quantile confidence intervals (C.I.) of 500 times Bootstrap samples [17] under

4 set-ups are listed in Table 4.

From the Table 4, we can see that, for fixed censoring value T as r increases (the
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Table 4 Est (S.E.) and 95% C.I. under 4 set-ups

T = 75 T = 150

r = 20 r = 25 r = 20 r = 25

Est (S.E.) p1 0.185(0.057) 0.330(0.081) 0.099(0.049) 0.200(0.087)

λ1 0.080(0.032) 0.071(0.017) 0.085(0.053) 0.077(0.024)

λ2 0.018(0.007) 0.012(0.003) 0.020(0.005) 0.016(0.004)

95% C.I. p1 (0.085,0.325) (0.065,0.497) (0.023,0.243) (0.069,0.451)

λ1 (0.041,0.127) (0.041,0.111) (0.026,0.158) (0.031,0.131)

λ2 (0.008,0.037) (0.007,0.021) (0.013,0.031) (0.008,0.025)

bigger r means lower censoring rate), the estimated S.E. decrease and the 95% C.I. of

scales λ1 and λ2 parameters become shorter. However, for mixing rate p1, the conclusion

seems somewhat inconsistent. And for fixed r as T increases, overall, the estimated S.E.

decrease for most of parameters but the trends of the 95% C.I. are not very uniform for

smaller r and bigger r. The fitted failure rate functions under different censoring set-ups

are provided in Figure 2. From Figure 2, we can see the estimated hazard functions are

different for different r and T . For example, for the same r, as T becomes bigger, the

hazard function also gets higher. For the same T , the bigger r (higher censoring rate),

the lower failure rate function we can suffer. The opposite is also true in practical lifetime

analysis.
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Figure 2 Fitted failure rate function under different censoring set-ups
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§6. Conclusion

We investigate the parameters estimation of MED models (1) under the hybrid cen-

sored data. The MLEs via the EM-Algorithm are obtained and some Monte Carlo simula-

tions are carried out to investigate the performance of the proposed estimation technique.

Finally, a real-world data analysis is conducted to issustrate the developed method. An-

other important issue for mixture models is to select proper model order (the number

of mixture components). In this paper, the number of mixture components K of MED

model is assumed to be known and we do not discuss too much on how to select the order.

However, in practical applications, K is really unknown. Estimating the order is a chal-

lenging job in modeling mixture models. Many statistical methods for selecting K have

been proposed, for instance, AIC (Akaike’s information criterion), BIC (Bayesian informa-

tion criterion), graph clustering approach. In addition, some new penalized log-likelihood

methods (such as [18] and [19]) have also been employed to conduct order selection of

mixture models. In future work, we will carry out order selection via incorporating the

above methods into of mixture lifetime models under complex censoring schemes.
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