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Abstract: Clustered interval-censored failure time data often arises in medical studies when
study subjects come from the same cluster. Furthermore, the failure time may be related to the
cluster size. A simple and common approach is to simplify interval-censored data due to the lack
of proper inference procedures for direct analysis. For this reason, we proposed the within-cluster
resampling-based method to consider the case II interval-censored data under the additive hazards
model. With-cluster resampling is simple but computationally intensive. A major advantage of
the proposed approach is that the estimator can be easily implemented when the cluster size is
informative. Asymptotic properties and some simulation results are provided and indicate that the
proposed approach works well.
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81. Introduction

Case II interval-censored data is commonly encountered in biomedicine where the
event time of interest is not observed directly but known only to lie between the two mon-
itoring times. A few methods have been proposed for regression analysis of the interval-
censored data. Zeng et al.l!! discussed regression analysis of case II interval-censored
data, using the additive hazards model. Wang et al.2) developed an approach which is
easy to implement for case Il interval-censored data and allows that the monitoring times
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are random and continuous. It assumes that the failure time of interest follows Cox-type
modelsBl. However, these methods do not take into account the clustered data. In some
cases, failure time data certainly comes from the same cluster. For example, failure time
can be the time to disease occurrence for the patients in the same family or the same
clinic. Li et al.[ proposed an estimating equation-based approach for regression analysis
of clustered interval-censored failure time data generated from the additive hazards model
which does not involve the estimation of any baseline hazard function.

Another commonly used statistical method to analyse clustered failure time data is
the gamma-frailty model, incorporating an unobserved random effect known as frailty into
the Cox proportional hazards model. Li et al.5l proposed a sieve estimation procedure
for fitting a Cox frailty model to clustered interval-censored failure time data. A two-step
algorithm for parameter estimation was developed and the asymptotic properties of the re-
sulting sieve maximum likelihood estimators were established. Kor et al.[8 gave a method
for analyzing clustered interval-censored data based on Cox’s model. As pointed out in
[7] that the additive hazards model describes a different aspect of the association between
the failure time and covariates compared with the Cox’s model and the additive model
could be more plausible than the Cox’s model in many applications. This is especially the
situation when one is interested in the risk difference as often the case in epidemiology
and public health 8.

In this paper, we consider case II interval-censored data under the additive hazards
model and the situation where the correlated failure time of interest may be related to
cluster size. We assume that there exist only two monitoring times independent of the
failure time of interest under the given covariate process. We then use the within-cluster
resampling (WCR) procedure under the additive hazards model. WCR is a method for
analyzing clustered data in the presence of informative cluster size when estimation of
marginal effects weighted at the cluster level is of interest. Parameter estimation with
WCR is based on resampling replicate data sets, each containing one observation from
each cluster. In the following, we present the approach under the additive hazards model.

The rest of the paper is organized as follows. Section 2 proposes the model and some
notations used in this paper. Section 3 gives a method based on the WCR method by
using the inference procedure proposed by [2] under the additive hazards model for case II
failure time data, and Section 4 presents some extensive simulation studies to assess the

performance of the proposed approach.

§2. Notation and Model

Suppose that there are n independent clusters and each cluster has n;; exchangeable

subjects for i =1,2,...,nand j =1,2,...,n,. Let U;; and V;; denote the two monitoring
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times for the j-th subject in the i-th cluster. Let Z;;(t) be the corresponding p-dimensional
vector of covariates that may depend on time ¢, and 7;; denote the failure time of interest
for subject j in the cluster ¢ which is independent of monitoring times U;; and V;; given
covariate Z;;j(t). For each (i, ), define 6155 = I(Ti; < Uij), 02:5 = 1(Us; < Tij < Vij) and
d3ij = 1 — 0145 — 02i5. The observed data are (Ui, Vij, 01i5, 025, 03i5, Zij(+))-

It just as pointed out in [9], the cause for cluster sizes being informative can be
complicated and usually unknown, and some latent variables may implicitly affect the
baseline hazard for each cluster and/or covariates. For example, the marginal hazard

function may be associated with the cluster size through the following frailty mode
Nij (] Zij) = Mo(t) + wiBZij(t),

where [y is the unknown vector of p-dimensional regression coefficient, w; is the cluster-
specific random effect to account for within-cluster correlation in cluster ¢, and A\o(t) is
the unknown baseline hazard function. If cluster sizes are ignorable (noninformative to

survival), the usual marginal additive hazards model (19 is applicable, given by

Nij(t] Zij) = Xo(t) + By Zij(t). (1)

Motivated by the work of [2], we model the monitoring variables using Cox-type hazard

functions

Nt Zig) = M (t)er0 %) @)
( ’UZ]a Zzg) = I(t > UZJ))‘Q( )e’YO ’L](t) (3)

where A;(t) and Aa(t) denote unspecified baseline functions, g is the unknown vector
of regression parameters. For each i and j, define Ni(jl)(t) = (1 = 0135)I(Ui; < t), and
conditional on Ujj;, define N( )( t) = 0351 (Vi; < t)if t > U and 0 if t < U;5. We also
define

)\5]1) (t ‘ Zl]) _ )\1(t)e—Ao(t)ef,B(’)Z;‘j(t)Jr'y(/)Zij(t) — )\lo(t)efﬁ(’)Z;‘j(t)Jr’y{)Zij(t) (4)
and

APt Usj, Zig) = 1(t > Uyg)da(t)e o0 HZ5 (0476251
= I(t > Uyj) Agge 0750070, (5)

where Z7;(t) = [) Zij(s)ds, Ao(t) = [y Xo(s)ds, Ao = A1(t)e™20® and Agg = Ag(t)e™ 0.
Clearly models (4) and (5) sat1sfy the Cox proportional hazards model.
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83. The WCR-Based Procedure

When cluster sizes are informative, to estimate the unknown parameter vectors Sy
and 7, the estimates and inference based on equation (2) may be incorrect. To account
for informative cluster sizes, this section will propose a method based on the within-cluster
resampling (WCR) technique. The basic idea behind the WCR-based procedure is that
one observation is randomly sampled with replacement from each of the n clusters using
the WCR approach (refer to [11]). For this, let @ be a positive integer, we randomly
sample one subject with replacement from each of the n clusters and suppose that the
resampling process is repeated ) times. Let 7 denote a known time for the length of
study period, define 6, = I(T} < Uf), 63, = (U} < T} < V%) and 83, =1 — 6, — 3., the
g-th resampled data set denoted by {Uf,V?, 67,63, 0%, Z1(t);i =1,2,...,n,0 <t < 7},
consists of n independent observations, which can be analyzed using the models (4) and
(5) for independent data set.

The within-cluster resampling estimate is constructed as the average of the Q) re-
sample-based estimates. For the ¢-th resampled data, to estimate By and -, motivated
by [2], we first estimate -y, and for this, for ¢ = 1,2,...,n and ¢ = 1,2,...,Q, we define
Nt = (U < t) and NUt) = I(VE < ) if t > U? and 0 if t < UZ given the

]

observed U/. For j = 0 and 1, also define

j 1z / ;
S(t7) = 1 3 10 <UD HO(Z10) ™,

j 1z / ;
S4(07) = o T < £ < VO HOZ11),

where a® =1 and a for j = 0 and 1. We construct an estimating function Ui () for vo

as

é { /0 ) (Zf (t) — W)dﬁfl)q(zﬁ) + /O h (Zg(t) - S%Zvj’q(t"”)d ﬁl@)q(t)}

Sﬁ)ﬂg,q (t’ 7) SQ,’y,q (t7 ’}/)
n S ULy & S5ma (Vi)
= s {zwh - g+ s {zivn - et
=1 Sl,’y,q(Uiq’ ’7) =1 SZ,'y,q(‘/iq7 ’7)

Let 5, be the solution to Uj(y) = 0. Next we estimate 3y given 7,. For this, we also define
N = (1= ) IU? < t), NPI(t) = LT(VI < t) for i =1,2,...,n, ¢ =1,2,...,Q,

K3 K3

and for j = 0,1, let

NgE
~
-
N
-
)

Yo B ZE O ZEO) (7% (1)) 8

9

S:E{%’q(t) /87 ’Y) =

~
—

S~ 3

~

(U] <t < Ve AT O B0 (71 (1),

NgE

S9) (4, 8,7) =

[y
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We propose the estimating equation U g(ﬁ ,7q) = 0, where Ug(ﬁ ,7) is defined as

n * Sé ) ( z‘qu 6)7)
)+ nen(zron -t )
( 7ﬁ fY) i=1 SQﬁ (‘/1767'7)
where Zq* fo Z](s)ds. Then we can estimate 3 by Bq defined as the root of Uﬁ (B,7)
=0. Furthermore, Wang et al.[?l showed that \/n (Bq — fo) can be asymptotically approx-

. 5
> (1= 88) (2 () - P14 U0 00)
s©)

imated by a normal vector with mean zero and a covariance matrix of Bq that can be
consistently estirnate:i by f]q = (g%)*lfq(gqﬁ)*l /m, where ﬁqﬁ and fq will be defined in
the Appendix, thus 3, is consistent.

As it is known to all that sample mean can reduce the system error, after repeating
this procedure @ times, the WCR estimator for £y can be constructed as the average of

the @) resample-based estimators, which is
B = 5 38
wer = Q = q-

Under some regularity conditions, it can be shown that \/n(Bwc — o) converges in distri-
bution to a zero-mean normal random vector, and the variance-covariance matrix of Sycr

can be consistently estimated by

/\ ~

Q Q —~ ~ o~
A 2 Z:: ( chr)(ﬁq - ﬁwcr)/-

@
@ \

The proof of this result is sketched in the Appendix.

84. Simulation

An extensive simulation study was conducted to assess the finite sample performance
of the estimates proposed in the previous sections. For simplicity, here only consider
noninformative cases. In the simulation study, the true covariate Z;; generated from the
Bernoulli distribution B(1,0.5). Given the Z;;’s, the failure times of interest were assumed
to follow model (1) with Ao(t) = 2 or Ag(t) = 4, the observation times Uj;’s and Vj;’s,
generated from (2) and (3) with A\i(f) =4, \a(t) = 2 or A\i(t) = 8, A2(t) = 4. The cluster
size n; was randomly generated from uniform distribution U{1,2,3,4,5,6,7}. The results
given below are based on 400 replications with ) = 400 resamples and the number of
clusters n = 200 or 400.

Table 1 and Table 2 present the results on estimation of (7o, 39) with true values
(70, Bo) = (0,0), (0,0.2), (0, —-0.2),(0.2,0), (0.2,0.2) or (0.2,—0.2). The results include the
estimated biases (Bias) given by the averages of the point estimates minus the true values,

the averages of the standard error estimates (SEE), the sampling standard errors of the
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point estimates (SSE) and the 95% percent empirical coverage probabilities (CP). The
results indicate that the proposed estimate seems to be approximately unbiased and the
proposed variance estimate also seems to be reasonable, and all estimates become better

when the sample size increases.

Table 1 Simulation results for estiamtion of 5y, and ¢ with A\g =2, A\; =4, Ay =2

n = 200 n = 400

(Y0, Bo) BIAS SEE SSE Cp BIAS SEE SSE CPp
(0,0) ~ 0.0010 0.0603 0.0610 0.9575 0.0001  0.0436  0.0427 0.9475
B -0.0015 0.2360 0.2381 0.9475 0.0020  0.1704 0.1708 0.9475
(0,0.2) ~ -0.0029 0.0580 0.0602 0.9550 0.0037  0.0424 0.0430 0.9475
B 0.0245 0.2485 0.2442 0.9375 -0.0020  0.1767  0.1780 0.9450
(0,-0.2) 5 0.0005 0.0619 0.0604 0.9475 0.0001  0.0436  0.0427 0.9475
B 0.0034 0.2463 0.2283 0.9375 0.0040  0.1642 0.1639 0.9425
(0.2,0) ~ -0.0030 0.0612 0.0606 0.9500 -0.0018 0.04180 0.0429 0.9475
B 0.0061  0.2447 0.2405 0.9450 0.0037  0.1760 0.1734 0.9475
(0.2,0.2) & 0.0026 0.0640 0.0611 0.9400 -0.0008  0.0431 0.0430 0.9450
B 0.0050 0.2654 0.2556  0.9400 0.0027  0.1808  0.1819 0.9450
(0.2,-0.2) 7 -0.0030 0.0612 0.0606 0.9500 -0.0008  0.0431 0.0430 0.9450
B 0.0012  0.2282 0.2316 0.9500 -0.0048  0.1681 0.1667 0.9500

Table 2 Simulation results for estiamtion of 8y and ~y with A\g =4, A1 =8, Ao =4

n = 200 n = 400

(0, Bo) BIAS SEE SSE CP BIAS SEE SSE CP
(0,0) 4 -0.0017 0.0635 0.0602 0.9400 0.0001  0.0436 0.0427 0.9475
B -0.0021  0.5167 0.4735 0.9350 0.0041 0.3401 0.3417 0.9475
(0,0.2) & -0.0017 0.0603 0.0602 0.9400 0.0001  0.0436 0.0427 0.9475
3 -0.0017 0.5323 0.4837 0.9375 0.0081 0.3491 0.3492 0.9475
(0,-0.2) 5 -0.0047 0.0612 0.0603 0.9550 0.0037  0.0424 0.0430 0.9475
B 0.0135 0.4807 0.4626 0.9425 -0.0163  0.3340 0.3317 0.9475
(0.2,0) 4 0.0026 0.0640 0.0611 0.9400 -0.0008 0.0436 0.0431 0.9450
B -0.0012 0.5143 0.4891 0.9450 0.0027  0.3459 0.3480 0.9450
(0.2,0.2) & -0.0030 0.0612 0.0606 0.9500 -0.0018 0.0418 0.0429 0.9475
B 0.0172 0.5036 0.4913 0.9425 -0.0202 0.3610 0.3549 0.9425
(0.2,-0.2) 7% -0.0030 0.0612 0.0606 0.9500 -0.0008 0.0431 0.0432 0.9450
B 0.0066 0.4712 0.4721 0.9400 0.0011  0.3396 0.3404 0.9475

For comparison, we also consider the correlated failure times model used in [4], that
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is,
Nij(t| Zij, bi) = Xo(t) + BoZij + bi (6)

with Ag(¢) = 2. The latent variables b;’s were assumed to follow a normal distribution
with zero mean and variance equal to 1/4. The covariates Z;;’s were generated from the
Bernoulli distribution with success probability p = 0.5. The monitoring variables U;;’s and
Vi;’s were generated from (2) and (3) with A1 (t) = 4 and Aa(t) = 2. The cluster size n; was
generated from the uniform distribution U{2, 3,4} and the number of clusters n = 200.
The results based on 1000 replications and the WCR method with @ = 400 resamples
for each step. The true regression parameter vg was taken to be 0.25, 0 and 5y was 0.25,
0 and -0.25. Simulated results are listed in Table 3, and all the results listed below “Li,
Wang and Sun” are extracted directly from the paper of [4]. These results indicate that
the proposed procedure actually better performance than the method given by [4]. The
proposed method seems to give smaller biases and standard errors. This is because the
individuals are related and the WCR method take into account the correlation compared
with the method given by [4]. So the WCR method is more effective.

Table 3 Compared simulation results for estiamtion with \y =2, \; =4, Ay = 2,

n = 200
Li, Wang and Sun WCR

(Y0, Bo) BIAS SEE SSE CP BIAS SEE SSE CP
(0,0) ~ 0.0019 0.1106 0.1081 0.948 0.0020 0.0602 0.0597 0.951
B 0.0315 0.8804 0.8273 0.975 -0.0047 0.2460 0.2298 0.937
(0,0.25) ~ 0.0073 0.1102 0.1065 0.946 0.0020 0.0602 0.0597 0.951
B -0.0225 0.8835 0.8303 0.973 0.0030 0.2618 0.2430 0.936
(0,-0.25) 4 -0.0051 0.1126 0.1100 0.952 -0.0050 0.0590 0.0595 0.950
B 00172 0.8776 0.8255 0.938 -0.0055 0.2257 0.2191 0.941
(0.25,0) ~ 0.0035 0.1154 0.1126 0.941 0.0007 0.0594 0.0603 0.946
B 0.0850 0.9610 0.9150 0.940 0.0044 0.2454 0.2393 0.943
(0.25,0.25) & 0.0122 0.1138 0.1107 0.948 0.0007 0.0594 0.0603 0.946
B 00731 09634 09133 0.971 0.0107 0.2609 0.2526 0.942
(0.25,-0.25) % -0.0036 0.1177 0.1151 0.941 0.0007 0.0594 0.0603 0.946
B 0.0992 0.9643 0.9112 0.963 -0.0013  0.2309 0.2271 0.952

Finally, it can be seem from the Tables 1—-3 that 7 seems to have smaller standard
error than that of B for all the estimates. This is because that completely observed data

can be used for the estimate of -, while only incompletely observed data for the estimate

of (.
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Appendix: Proofs of the Asymptotic Normality of SByer
Proof Fori=1,2,...,n, we first define
t
M%) = Ne) [T < U Ap(e B O g,
0

t
M) = NPUt) - / I(Uf < s < VD) Ago(s)e 7 (9021 () g
0

~ t !
M) = N{V(e) — / I(s < U ()07 s,
0

. t
M) = NP(t) - / I(U] < s < Vi)Ag(s)e™ % (9ds,
0

(2

which are martingales.
Since Bq is the solution of the estimating equation Ug(ﬁ,%) = 0. By the Taylor’s

expansion, we have

OUE(B*Aq) , ~

~US(B0:7a) = U§(Bas3a) = U3 (B0 3) = — 5

(By — Bo),

where 8* is on the line segment between Bq and fy. Rewriting the above equation yields

that
N OUL(B* ) - .
Vn(Bq — Bo) = (_ % ﬂéﬂ* ’Yq)) 1(\/1%[]/‘31([30,7(1)).

Note that —nilaUq(B, v)/0p is equal to
g / <s§gq<t,5, 7) <s§gq< LT e
0 (ta y Y ) (Slﬁq(t ﬁ 7))2

1o [ sggqa,w <26q< B,7))%*
1 ,
z/o <§/§q(t,ﬁ,7) (S3).,(t, B.7))?

> dNi(Q)q(t)

n [e'S) ~(Da
- l Z/ (Zg*( ) — Zl(ll (8,7, ))®2I(Uiq > t)efﬁfzg*(t)%y/Zf(t)(d]\fi()
ni=iJo 5)(t,8,7)
7 (2)a
1 n oo . _ * / dN t
2 [T = Ty <o < Ve o g
= 2,5 q( 755’}/)
where
1) (t, (1)
9 77) — S (t') ) ) —(1 1 n
Zly(B,71) = <5y Z{o)(B.y,1) = —o5* N = = 5 N,
1 ,B,q (t Ba ) 52’/5,(1(15767 ) i=1

and W(Q)q( t)=n"! Z N(Q)q(t). It can be easily seen that — *16Uq(50 ~?) /0B is pos-

itive definite and —n 18Uﬁ(ﬁg,70) /OB converges in probability to a deterministic and
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positive definite matrix denoted by Ag, which can be consistently estimated by A\% =
—n_l(?Ug(,B*ﬁq)/aﬂ*.
Averaging over ¢ = 1,2, ..., Q) resamples, it yields that

_ Q N
wwmrww—ézvmm—m>
q=1
1@, 10UNB A1 1 )
= éqgl ( — Eiﬁﬂ* ) (%Ug(/&)v’yq)>
4,1 & ~
= Aﬁlm q;l UE(BO’ ’)/q) —|— Op(l).

Use the Taylor series expansions of U§(6o,7,) and U5 (7,) around 7o, we have

OUL(Bo, "
Ug(ﬂo;%) - Ug(50770) = W<:Y\q - 70)7

oUS(7*) ~
= g")/s (7(1 - 70)7

~U2(0) = U4(3) — U3(0)

where both 7% and ~* are on the line segment between 7, and ~y. By the consistency of

7q and rewriting the above equations yields that \/ﬁflU g(ﬁo, Aq) is equal to

1 aUq(ﬂ ) t) ~
%{Ug(ﬁoﬁo) + /88727(% - 70)}

. 10UL(Bo,7") / 10U%(v*)y~1
i A )
= = U860, 0) + AY(B) U0} + o)

1 n
= n ;{at{i(/g& Y0) + a5;(Bo,70) + A%(Bg)_l<b(11i(70) + b5;(70))} + 0p(1),

where
o0 s (t,8,7)
o (B,7) = 70 () — 22 P gDy,
! /(; < Sg’%’q(t7677)>
x S5 4t B,7)
aql(IB’ry) — Zlq*(t) — 254 0 dMZ(Z)q(t)u
2 A ( £%AL@VQ
o0 s BN~
i) = [ (20 - et ) a V),
! /o < sg?%7q(t,7)>
o0 50 oY
qu(’}/) _ Z;;* (t) _ 729,q\7 dMZ@)q(t),
? /o < s 4(t) )
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A% and BY are limits of A%(8,7) = n~'0U}(8,7)/d7 and éq( ) = —n LU (y) /0y
at (Bo,70)- slﬁq( B,7) and sl(]) (t,v) denote the limits of Slﬁq(t B,7) and Sl(,y)q(t v),

respectively, for [ = 1,2 and 7 = 0,1. Note that
Ug(ﬁ()a ’YO) = Z:l{a({i(ﬁm 70) + ag’i(ﬁ(h ’YO)} + Op(l)a
1=

U0) = 3 {8:000) + B0} + 0,1,

Q
It is easy to show that (/nQ)™t 3 U4 (Bo,Aq) converge to a normal distribution as n — oo,
q=1
changing the order of summation as

- 3=
D
s

= > {U§(Bo, %) + AL(BY) ™ UL (70)} + 0p(1)

)
i

Q
0 Z::l{a(f,i(ﬁo,’yo) +ad,(Bo,70) + AL(BY) (B ,(70) + b2, (70))} + 0p(1)
U;

i(Bo,70) + 0p(1),

-

il
.le

-
I
—

where U;(Bo,70), ¢ = 1,2,...,n are independent with mean zero and finite variance. It

Q
thus follows from the multivariate Central Limit Theorem that (v/nQ)™! > Ug(ﬁgﬁq) is
q=1

asymptotically normal with zero mean. Combining with Slutsky’s theorem, /n( Ewcr —bo)
converges in distribution to a zero-mean normal random vector and covariance matrix can
be consistently estimated by niwcr.

Wang et al. 2] showed that \/H(B\q — Bp) can be asymptotically approximated by a

normal vector with mean zero and a covariance matrix that can be consistently estimated

by n¥, = (Aqﬁ)’qu(A%)*l, where

L ORI

7

3\*—‘

with
a7 (Bg, 7q) = @13 (BgsAa) + @8;(Bas Va) + AL(Bg, 1) (BL(39)) {0, ) + 05, (F) }-
For each resampled data, Var (Bq) can be consistently estimated by iq. Average over the
Q .
Q resamples, the resulting estimator denoted by Q! > %9 is also consistent. For the

q=1
consistent estimator of the covariance matrix of SBycr, similar to [11], we first write

Var (8,) = E(Var (B, | data)) + Var (E(3, | data)).
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By the fact of E(Eq | data) = chr, it yields that

Var (Byer) = Var (B\q) — E(Var (B\q | data)).

Since

~

N 1 Q@ ~ s
E(Var (5 | data)) = E( gy 32 (B — Buer) (B — Buer) ).
q:

it can be estimated as the covariance matrix based on the () resampling estimators qu

q:

1,2,...,Q, that is
1 Q@ ~ ~ o~
Q= 6 Z (ﬁq - chr)(ﬁq - ﬁwcr),-
q=1

Thus the estimated variance-covariance matrix of By is

~ 1 @ - 1 Q - ~ s
2Wcr = A Z Eq - A (/Bq - chr)(ﬁq - chr) .

q=1 Q q=1

To show the consistency of /X\lwcr, it is easy to see that Q — E(2) — 0 in probability as

n — 0o. Actually, this can be easily shown by applying the same arguments as those in

the proof of [9]. This completes the proof. O
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