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Abstract: Clustered interval-censored failure time data often arises in medical studies when

study subjects come from the same cluster. Furthermore, the failure time may be related to the

cluster size. A simple and common approach is to simplify interval-censored data due to the lack

of proper inference procedures for direct analysis. For this reason, we proposed the within-cluster

resampling-based method to consider the case II interval-censored data under the additive hazards

model. With-cluster resampling is simple but computationally intensive. A major advantage of

the proposed approach is that the estimator can be easily implemented when the cluster size is

informative. Asymptotic properties and some simulation results are provided and indicate that the

proposed approach works well.
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§1. Introduction

Case II interval-censored data is commonly encountered in biomedicine where the

event time of interest is not observed directly but known only to lie between the two mon-

itoring times. A few methods have been proposed for regression analysis of the interval-

censored data. Zeng et al. [1] discussed regression analysis of case II interval-censored

data, using the additive hazards model. Wang et al. [2] developed an approach which is

easy to implement for case II interval-censored data and allows that the monitoring times
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are random and continuous. It assumes that the failure time of interest follows Cox-type

models [3]. However, these methods do not take into account the clustered data. In some

cases, failure time data certainly comes from the same cluster. For example, failure time

can be the time to disease occurrence for the patients in the same family or the same

clinic. Li et al. [4] proposed an estimating equation-based approach for regression analysis

of clustered interval-censored failure time data generated from the additive hazards model

which does not involve the estimation of any baseline hazard function.

Another commonly used statistical method to analyse clustered failure time data is

the gamma-frailty model, incorporating an unobserved random effect known as frailty into

the Cox proportional hazards model. Li et al. [5] proposed a sieve estimation procedure

for fitting a Cox frailty model to clustered interval-censored failure time data. A two-step

algorithm for parameter estimation was developed and the asymptotic properties of the re-

sulting sieve maximum likelihood estimators were established. Kor et al. [6] gave a method

for analyzing clustered interval-censored data based on Cox’s model. As pointed out in

[7] that the additive hazards model describes a different aspect of the association between

the failure time and covariates compared with the Cox’s model and the additive model

could be more plausible than the Cox’s model in many applications. This is especially the

situation when one is interested in the risk difference as often the case in epidemiology

and public health [8].

In this paper, we consider case II interval-censored data under the additive hazards

model and the situation where the correlated failure time of interest may be related to

cluster size. We assume that there exist only two monitoring times independent of the

failure time of interest under the given covariate process. We then use the within-cluster

resampling (WCR) procedure under the additive hazards model. WCR is a method for

analyzing clustered data in the presence of informative cluster size when estimation of

marginal effects weighted at the cluster level is of interest. Parameter estimation with

WCR is based on resampling replicate data sets, each containing one observation from

each cluster. In the following, we present the approach under the additive hazards model.

The rest of the paper is organized as follows. Section 2 proposes the model and some

notations used in this paper. Section 3 gives a method based on the WCR method by

using the inference procedure proposed by [2] under the additive hazards model for case II

failure time data, and Section 4 presents some extensive simulation studies to assess the

performance of the proposed approach.

§2. Notation and Model

Suppose that there are n independent clusters and each cluster has nij exchangeable

subjects for i = 1, 2, . . . , n and j = 1, 2, . . . , ni. Let Uij and Vij denote the two monitoring
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times for the j-th subject in the i-th cluster. Let Zij(t) be the corresponding p-dimensional

vector of covariates that may depend on time t, and Tij denote the failure time of interest

for subject j in the cluster i which is independent of monitoring times Uij and Vij given

covariate Zij(t). For each (i, j), define δ1ij = I(Tij < Uij), δ2ij = I(Uij 6 Tij < Vij) and

δ3ij = 1− δ1ij − δ2ij . The observed data are (Uij , Vij , δ1ij , δ2ij , δ3ij , Zij(·)).
It just as pointed out in [9], the cause for cluster sizes being informative can be

complicated and usually unknown, and some latent variables may implicitly affect the

baseline hazard for each cluster and/or covariates. For example, the marginal hazard

function may be associated with the cluster size through the following frailty mode

λij(t |Zij) = λ0(t) + ωiβ
′
0Zij(t),

where β0 is the unknown vector of p-dimensional regression coefficient, ωi is the cluster-

specific random effect to account for within-cluster correlation in cluster i, and λ0(t) is

the unknown baseline hazard function. If cluster sizes are ignorable (noninformative to

survival), the usual marginal additive hazards model [10] is applicable, given by

λij(t |Zij) = λ0(t) + β′0Zij(t). (1)

Motivated by the work of [2], we model the monitoring variables using Cox-type hazard

functions

λUij(t |Zij) = λ1(t)eγ
′
0Zij(t), (2)

λVij(t |Uij , Zij) = I(t > Uij)λ2(t)eγ
′
0Zij(t), (3)

where λ1(t) and λ2(t) denote unspecified baseline functions, γ0 is the unknown vector

of regression parameters. For each i and j, define N
(1)
ij (t) = (1 − δ1ij)I(Uij 6 t), and

conditional on Uij , define N
(2)
ij (t) = δ3ijI(Vij 6 t) if t > Uij and 0 if t < Uij . We also

define

λ
(1)
ij (t |Zij) = λ1(t)e−Λ0(t)e−β

′
0Z
∗
ij(t)+γ′0Zij(t) := λ10(t)e−β

′
0Z
∗
ij(t)+γ′0Zij(t) (4)

and

λ
(2)
ij (t |Uij , Zij) = I(t > Uij)λ2(t)e−Λ0(t)e−β

′
0Z
∗
ij(t)+γ′0Zij(t)

:= I(t > Uij)λ20e−β
′
0Z
∗
ij(t)+γ′0Zij(t), (5)

where Z∗ij(t) =
∫ t

0 Zij(s)ds, Λ0(t) =
∫ t

0 λ0(s)ds, λ10 = λ1(t)e−Λ0(t) and λ20 = λ2(t)e−Λ0(t).

Clearly models (4) and (5) satisfy the Cox proportional hazards model.
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§3. The WCR-Based Procedure

When cluster sizes are informative, to estimate the unknown parameter vectors β0

and γ0, the estimates and inference based on equation (2) may be incorrect. To account

for informative cluster sizes, this section will propose a method based on the within-cluster

resampling (WCR) technique. The basic idea behind the WCR-based procedure is that

one observation is randomly sampled with replacement from each of the n clusters using

the WCR approach (refer to [11]). For this, let Q be a positive integer, we randomly

sample one subject with replacement from each of the n clusters and suppose that the

resampling process is repeated Q times. Let τ denote a known time for the length of

study period, define δq1i = I(T qi < U qi ), δq2i = I(U qi 6 T
q
i < V q

i ) and δq3i = 1− δq1i − δ
q
2i, the

q-th resampled data set denoted by {U qi , V
q
i , δ

q
1i, δ

q
2i, δ

q
3i, Z

q
i (t); i = 1, 2, . . . , n, 0 6 t 6 τ},

consists of n independent observations, which can be analyzed using the models (4) and

(5) for independent data set.

The within-cluster resampling estimate is constructed as the average of the Q re-

sample-based estimates. For the q-th resampled data, to estimate β0 and γ0, motivated

by [2], we first estimate γ0, and for this, for i = 1, 2, . . . , n and q = 1, 2, . . . , Q, we define

Ñ
(1)q
i (t) = I(U qi 6 t) and Ñ

(2)q
i (t) = I(V q

i 6 t) if t > U qi and 0 if t < U qi given the

observed U qi . For j = 0 and 1, also define

S
(j)
1,γ,q(t, γ) =

1

n

n∑
i=1

I(t 6 U qi )eγ
′Zq

i (t)(Zqi (t))⊗j ,

S
(j)
2,γ,q(t, γ) =

1

n

n∑
i=1

I(U qi < t 6 V q
i )eγ

′Zq
i (t)(Zqi (t))⊗j ,

where a⊗j = 1 and a for j = 0 and 1. We construct an estimating function U qγ (γ) for γ0

as

n∑
i=1

[ ∫ ∞
0

(
Zqi (t)−

S
(1)
1,γ,q(t, γ)

S
(0)
1,γ,q(t, γ)

)
dÑ

(1)q
i (t) +

∫ ∞
0

(
Zqi (t)−

S
(1)
2,γ,q(t, γ)

S
(0)
2,γ,q(t, γ)

)
dÑ

(2)q
i (t)

]

=
n∑
i=1

{
Zqi (U qi )−

S
(1)
1,γ,q(U

q
i , γ)

S
(0)
1,γ,q(U

q
i , γ)

}
+

n∑
i=1

{
Zqi (V q

i )−
S

(1)
2,γ,q(V

q
i , γ)

S
(0)
2,γ,q(V

q
i , γ)

}
.

Let γ̂q be the solution to U qγ (γ) = 0. Next we estimate β0 given γ̂q. For this, we also define

N
(1)q
i (t) = (1 − δq1i)I(U qi 6 t), N

(2)q
i (t) = δq3iI(V q

i 6 t) for i = 1, 2, . . . , n, q = 1, 2, . . . , Q,

and for j = 0, 1, let

S
(j)
1,β,q(t, β, γ) =

1

n

n∑
i=1

I(t 6 U qi )e−β
′Zq∗

i (t)+γ′Zq
i (t)(Zq∗i (t))⊗j ,

S
(j)
2,β,q(t, β, γ) =

1

n

n∑
i=1

I(U qi < t 6 V q
i )e−β

′Zq∗
i (t)+γ′Zq

i (t)(Zq∗i (t))⊗j .
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We propose the estimating equation U qβ(β, γ̂q) = 0, where U qβ(β, γ) is defined as

n∑
i=1

(1− δq1i)
(
Zq∗i (U qi )−

S
(1)
1,β,q(U

q
i , β, γ)

S
(0)
1,β,q(U

q
i , β, γ)

)
+

n∑
i=1

δq3i

(
Zq∗i (V q

i )−
S

(1)
2,β,q(V

q
i , β, γ)

S
(0)
2,β,q(V

q
i , β, γ)

)
,

where Zq∗i (t) =
∫ t

0 Z
q
i (s)ds. Then we can estimate β0 by β̂q defined as the root of U qβ(β, γ̂q)

= 0. Furthermore, Wang et al. [2] showed that
√
n(β̂q−β0) can be asymptotically approx-

imated by a normal vector with mean zero and a covariance matrix of β̂q that can be

consistently estimated by Σ̂q := (Âqβ)−1Γ̂q(Â
q
β)−1/n, where Âqβ and Γ̂q will be defined in

the Appendix, thus β̂q is consistent.

As it is known to all that sample mean can reduce the system error, after repeating

this procedure Q times, the WCR estimator for β0 can be constructed as the average of

the Q resample-based estimators, which is

β̂wcr =
1

Q

Q∑
q=1

β̂q.

Under some regularity conditions, it can be shown that
√
n(β̂wcr− β0) converges in distri-

bution to a zero-mean normal random vector, and the variance-covariance matrix of β̂wcr

can be consistently estimated by

Σ̂wcr =
1

Q

Q∑
q=1

Σ̂q −
1

Q

Q∑
q=1

(β̂q − β̂wcr)(β̂q − β̂wcr)
′.

The proof of this result is sketched in the Appendix.

§4. Simulation

An extensive simulation study was conducted to assess the finite sample performance

of the estimates proposed in the previous sections. For simplicity, here only consider

noninformative cases. In the simulation study, the true covariate Zij generated from the

Bernoulli distribution B(1, 0.5). Given the Zij ’s, the failure times of interest were assumed

to follow model (1) with λ0(t) = 2 or λ0(t) = 4, the observation times Uij ’s and Vij ’s,

generated from (2) and (3) with λ1(t) = 4, λ2(t) = 2 or λ1(t) = 8, λ2(t) = 4. The cluster

size ni was randomly generated from uniform distribution U{1, 2, 3, 4, 5, 6, 7}. The results

given below are based on 400 replications with Q = 400 resamples and the number of

clusters n = 200 or 400.

Table 1 and Table 2 present the results on estimation of (γ0, β0) with true values

(γ0, β0) = (0, 0), (0, 0.2), (0,−0.2), (0.2, 0), (0.2, 0.2) or (0.2,−0.2). The results include the

estimated biases (Bias) given by the averages of the point estimates minus the true values,

the averages of the standard error estimates (SEE), the sampling standard errors of the
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point estimates (SSE) and the 95% percent empirical coverage probabilities (CP). The

results indicate that the proposed estimate seems to be approximately unbiased and the

proposed variance estimate also seems to be reasonable, and all estimates become better

when the sample size increases.

Table 1 Simulation results for estiamtion of β0 and γ0 with λ0 = 2, λ1 = 4, λ2 = 2

n = 200 n = 400

(γ0, β0) BIAS SEE SSE CP BIAS SEE SSE CP

(0,0) γ̂ 0.0010 0.0603 0.0610 0.9575 0.0001 0.0436 0.0427 0.9475

β̂ -0.0015 0.2360 0.2381 0.9475 0.0020 0.1704 0.1708 0.9475

(0,0.2) γ̂ -0.0029 0.0580 0.0602 0.9550 0.0037 0.0424 0.0430 0.9475

β̂ 0.0245 0.2485 0.2442 0.9375 -0.0020 0.1767 0.1780 0.9450

(0,-0.2) γ̂ 0.0005 0.0619 0.0604 0.9475 0.0001 0.0436 0.0427 0.9475

β̂ 0.0034 0.2463 0.2283 0.9375 0.0040 0.1642 0.1639 0.9425

(0.2,0) γ̂ -0.0030 0.0612 0.0606 0.9500 -0.0018 0.04180 0.0429 0.9475

β̂ 0.0061 0.2447 0.2405 0.9450 0.0037 0.1760 0.1734 0.9475

(0.2,0.2) γ̂ 0.0026 0.0640 0.0611 0.9400 -0.0008 0.0431 0.0430 0.9450

β̂ 0.0050 0.2654 0.2556 0.9400 0.0027 0.1808 0.1819 0.9450

(0.2,-0.2) γ̂ -0.0030 0.0612 0.0606 0.9500 -0.0008 0.0431 0.0430 0.9450

β̂ 0.0012 0.2282 0.2316 0.9500 -0.0048 0.1681 0.1667 0.9500

Table 2 Simulation results for estiamtion of β0 and γ0 with λ0 = 4, λ1 = 8, λ2 = 4

n = 200 n = 400

(γ0, β0) BIAS SEE SSE CP BIAS SEE SSE CP

(0,0) γ̂ -0.0017 0.0635 0.0602 0.9400 0.0001 0.0436 0.0427 0.9475

β̂ -0.0021 0.5167 0.4735 0.9350 0.0041 0.3401 0.3417 0.9475

(0,0.2) γ̂ -0.0017 0.0603 0.0602 0.9400 0.0001 0.0436 0.0427 0.9475

β̂ -0.0017 0.5323 0.4837 0.9375 0.0081 0.3491 0.3492 0.9475

(0,-0.2) γ̂ -0.0047 0.0612 0.0603 0.9550 0.0037 0.0424 0.0430 0.9475

β̂ 0.0135 0.4807 0.4626 0.9425 -0.0163 0.3340 0.3317 0.9475

(0.2,0) γ̂ 0.0026 0.0640 0.0611 0.9400 -0.0008 0.0436 0.0431 0.9450

β̂ -0.0012 0.5143 0.4891 0.9450 0.0027 0.3459 0.3480 0.9450

(0.2,0.2) γ̂ -0.0030 0.0612 0.0606 0.9500 -0.0018 0.0418 0.0429 0.9475

β̂ 0.0172 0.5036 0.4913 0.9425 -0.0202 0.3610 0.3549 0.9425

(0.2,-0.2) γ̂ -0.0030 0.0612 0.0606 0.9500 -0.0008 0.0431 0.0432 0.9450

β̂ 0.0066 0.4712 0.4721 0.9400 0.0011 0.3396 0.3404 0.9475

For comparison, we also consider the correlated failure times model used in [4], that
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is,

λij(t |Zij , bi) = λ0(t) + β′0Zij + bi (6)

with λ0(t) = 2. The latent variables bi’s were assumed to follow a normal distribution

with zero mean and variance equal to 1/4. The covariates Zij ’s were generated from the

Bernoulli distribution with success probability p = 0.5. The monitoring variables Uij ’s and

Vij ’s were generated from (2) and (3) with λ1(t) = 4 and λ2(t) = 2. The cluster size ni was

generated from the uniform distribution U{2, 3, 4} and the number of clusters n = 200.

The results based on 1 000 replications and the WCR method with Q = 400 resamples

for each step. The true regression parameter γ0 was taken to be 0.25, 0 and β0 was 0.25,

0 and -0.25. Simulated results are listed in Table 3, and all the results listed below “Li,

Wang and Sun” are extracted directly from the paper of [4]. These results indicate that

the proposed procedure actually better performance than the method given by [4]. The

proposed method seems to give smaller biases and standard errors. This is because the

individuals are related and the WCR method take into account the correlation compared

with the method given by [4]. So the WCR method is more effective.

Table 3 Compared simulation results for estiamtion with λ0 = 2, λ1 = 4, λ2 = 2,

n = 200

Li, Wang and Sun WCR

(γ0, β0) BIAS SEE SSE CP BIAS SEE SSE CP

(0,0) γ̂ 0.0019 0.1106 0.1081 0.948 0.0020 0.0602 0.0597 0.951

β̂ 0.0315 0.8804 0.8273 0.975 -0.0047 0.2460 0.2298 0.937

(0,0.25) γ̂ 0.0073 0.1102 0.1065 0.946 0.0020 0.0602 0.0597 0.951

β̂ -0.0225 0.8835 0.8303 0.973 0.0030 0.2618 0.2430 0.936

(0,-0.25) γ̂ -0.0051 0.1126 0.1100 0.952 -0.0050 0.0590 0.0595 0.950

β̂ 0.0172 0.8776 0.8255 0.938 -0.0055 0.2257 0.2191 0.941

(0.25,0) γ̂ 0.0035 0.1154 0.1126 0.941 0.0007 0.0594 0.0603 0.946

β̂ 0.0850 0.9610 0.9150 0.940 0.0044 0.2454 0.2393 0.943

(0.25,0.25) γ̂ 0.0122 0.1138 0.1107 0.948 0.0007 0.0594 0.0603 0.946

β̂ 0.0731 0.9634 0.9133 0.971 0.0107 0.2609 0.2526 0.942

(0.25,-0.25) γ̂ -0.0036 0.1177 0.1151 0.941 0.0007 0.0594 0.0603 0.946

β̂ 0.0992 0.9643 0.9112 0.963 -0.0013 0.2309 0.2271 0.952

Finally, it can be seem from the Tables 1 – 3 that γ̂ seems to have smaller standard

error than that of β̂ for all the estimates. This is because that completely observed data

can be used for the estimate of γ, while only incompletely observed data for the estimate

of β.



524 Chinese Journal of Applied Probability and Statistics Vol. 33

Appendix: Proofs of the Asymptotic Normality of β̂wcr

Proof For i = 1, 2, . . . , n, we first define

M
(1)q
i (t) = N

(1)q
i (t)−

∫ t

0
I(s 6 U qi )λ10(s)e−β

′
0Z

q∗
i (s)+γ′0Z

q
i (s)ds,

M
(2)q
i (t) = N

(2)q
i (t)−

∫ t

0
I(U qi < s 6 V q

i )λ20(s)e−β
′
0Z

q∗
i (s)+γ′0Z

q
i (s)ds,

M̃
(1)q
i (t) = Ñ

(1)q
i (t)−

∫ t

0
I(s 6 U qi )λ1(s)eγ

′
0Z

q
i (s)ds,

M̃
(2)q
i (t) = Ñ

(2)q
i (t)−

∫ t

0
I(U qi < s 6 V q

i )λ2(s)eγ
′
0Z

q
i (s)ds,

which are martingales.

Since β̂q is the solution of the estimating equation U qβ(β, γ̂q) = 0. By the Taylor’s

expansion, we have

−U qβ(β0, γ̂q) = U qβ(β̂q, γ̂q)− U qβ(β0, γ̂q) =
∂U qβ(β∗, γ̂q)

∂β∗
(β̂q − β0),

where β∗ is on the line segment between β̂q and β0. Rewriting the above equation yields

that
√
n(β̂q − β0) =

(
− 1

n

∂U qβ(β∗, γ̂q)

∂β∗

)−1( 1√
n
U qβ(β0, γ̂q)

)
.

Note that −n−1∂U qβ(β, γ)/∂β is equal to

1

n

n∑
i=1

∫ ∞
0

(S(2)
1,β,q(t, β, γ)

S
(0)
1,β,q(t, β, γ)

−
(S

(1)
1,β,q(t, β, γ))⊗2

(S
(0)
1,β,q(t, β, γ))2

)
dN

(1)q
i (t)

+
1

n

n∑
i=1

∫ ∞
0

(S(2)
2,β,q(t, β, γ)

S
(0)
2,β,q(t, β, γ)

−
(S

(1)
2,β,q(t, β, γ))⊗2

(S
(0)
2,β,q(t, β, γ))2

)
dN

(2)q
i (t)

=
1

n

n∑
i=1

∫ ∞
0

(Zq∗i (s)− Zq(1)(β, γ, t))
⊗2I(U qi > t)e

−β′Zq∗
i (t)+γ′Zq

i (t) dN
(1)q

(t)

S
(0)
1,β,q(t, β, γ)

+
1

n

n∑
i=1

∫ ∞
0

(Zq∗i (s)− Zq(2)(β, γ, t))
⊗2I(U qi 6 t < V q

i )e−β
′Zq∗

i (t)+γ′Zq
i (t) dN

(2)q
(t)

S
(0)
2,β,q(t, β, γ)

,

where

Z
q
(1)(β, γ, t) =

S
(1)
1,β,q(t, β, γ)

S
(0)
1,β,q(t, β, γ)

, Z
q
(2)(β, γ, t) =

S
(1)
2,β,q(t, β, γ)

S
(0)
2,β,q(t, β, γ)

, N
(1)q

(t) =
1

n

n∑
i=1

N
(1)q
i (t),

and N
(2)q

(t) = n−1
n∑
i=1

N
(2)q
i (t). It can be easily seen that −n−1∂U qβ(β0, γ̂

q)/∂β0 is pos-

itive definite and −n−1∂U qβ(β0, γ0)/∂β converges in probability to a deterministic and
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positive definite matrix denoted by Aβ, which can be consistently estimated by Âqβ :=

−n−1∂U qβ(β∗, γ̂q)/∂β
∗.

Averaging over q = 1, 2, . . . , Q resamples, it yields that

√
n(β̂wcr − β0) =

1

Q

Q∑
q=1

√
n(β̂q − β0)

=
1

Q

Q∑
q=1

(
− 1

n

∂U qβ(β∗, γ̂q)

∂β∗

)−1( 1√
n
U qβ(β0, γ̂q)

)
= A−1

β

1√
nQ

Q∑
q=1

U qβ(β0, γ̂q) + op(1).

Use the Taylor series expansions of U qβ(β0, γ̂q) and U qγ (γ̂q) around γ0, we have

U qβ(β0, γ̂q)− U qβ(β0, γ0) =
∂U qβ(β0, γ

t)

∂γt
(γ̂q − γ0),

−U qγ (γ̂0) = U qγ (γ̂q)− U qγ (γ0) =
∂U qγ (γs)

∂γs
(γ̂q − γ0),

where both γt and γs are on the line segment between γ̂q and γ0. By the consistency of

γ̂q and rewriting the above equations yields that
√
n
−1
U qβ(β0, γ̂q) is equal to

1√
n

{
U qβ(β0, γ0) +

∂U qβ(β0, γ
t)

∂γt
(γ̂q − γ0)

}
=

1√
n

{
U qβ(β0, γ0) +

1

n

∂U qβ(β0, γ
t)

∂γt

(
− 1

n

∂U qγ (γs)

∂γs

)−1
U qγ (γ0)

}
=

1√
n
{U qβ(β0, γ0) +Aqγ(Bq

γ)−1U qγ (γ0)}+ op(1)

:=
1√
n

n∑
i=1
{aq1i(β0, γ0) + aq2i(β0, γ0) +Aqγ(Bq

γ)−1(bq1i(γ0) + bq2i(γ0))}+ op(1),

where

aq1i(β, γ) =

∫ ∞
0

(
Zq∗i (t)−

s
(1)
1,β,q(t, β, γ)

s
(0)
1,β,q(t, β, γ)

)
dM

(1)q
i (t),

aq2i(β, γ) =

∫ ∞
0

(
Zq∗i (t)−

s
(1)
2,β,q(t, β, γ)

s
(0)
2,β,q(t, β, γ)

)
dM

(2)q
i (t),

bq1i(γ) =

∫ ∞
0

(
Zq∗i (t)−

s
(1)
1,γ,q(t, γ)

s
(0)
1,γ,q(t, γ)

)
dM̃

(1)q
i (t),

bq2i(γ) =

∫ ∞
0

(
Zq∗i (t)−

s
(1)
2,γ,q(t, γ)

s
(0)
2,γ,q(t, γ)

)
dM̃

(2)q
i (t),
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Aqγ and Bq
γ are limits of Âqγ(β, γ) = n−1∂U qβ(β, γ)/∂γ and B̂q

γ(γ) = −n−1∂U qγ (γ)/∂γ

at (β0, γ0). s
(j)
l,β,q(t, β, γ) and s

(j)
l,γ,q(t, γ) denote the limits of S

(j)
l,β,q(t, β, γ) and S

(j)
l,γ,q(t, γ),

respectively, for l = 1, 2 and j = 0, 1. Note that

U qβ(β0, γ0) =
n∑
i=1
{aq1i(β0, γ0) + aq2i(β0, γ0)}+ op(1),

U qγ (γ0) =
n∑
i=1
{bq1i(γ0) + bq2i(γ0)}+ op(1),

It is easy to show that (
√
nQ)−1

Q∑
q=1

U qβ(β0, γ̂q) converge to a normal distribution as n→∞,

changing the order of summation as

1√
nQ

Q∑
q=1

U qβ(β0, γ̂q)

=
1√
nQ

Q∑
q=1
{U qβ(β0, γ0) +Aqγ(Bq

γ)−1U qγ (γ0)}+ op(1)

=
1√
n

n∑
i=1

1

Q

Q∑
q=1
{aq1,i(β0, γ0) + aq2,i(β0, γ0) +Aqγ(Bq

γ)−1(bq1,i(γ0) + bq2,i(γ0))}+ op(1)

:=
1√
n

n∑
i=1

Ui(β0, γ0) + op(1),

where Ui(β0, γ0), i = 1, 2, . . . , n are independent with mean zero and finite variance. It

thus follows from the multivariate Central Limit Theorem that (
√
nQ)−1

Q∑
q=1

U qβ(β0, γ̂q) is

asymptotically normal with zero mean. Combining with Slutsky’s theorem,
√
n(β̂wcr−β0)

converges in distribution to a zero-mean normal random vector and covariance matrix can

be consistently estimated by nΣ̂wcr.

Wang et al. [2] showed that
√
n(β̂q − β0) can be asymptotically approximated by a

normal vector with mean zero and a covariance matrix that can be consistently estimated

by nΣ̂q = (Âqβ)−1Γ̂q(Â
q
β)−1, where

Γ̂q =
1

n

n∑
i=1

α̂qi (β̂q, γ̂q)(α̂
q
i (β̂q, γ̂q))

′

with

α̂qi (β̂q, γ̂q) = âq1i(β̂q, γ̂q) + âq2i(β̂q, γ̂q) + Âqγ(β̂q, γ̂q)(B̂
q
γ(γ̂q))

−1{b̂q1i(γ̂q) + b̂q2i(γ̂q)}.

For each resampled data, Var (β̂q) can be consistently estimated by Σ̂q. Average over the

Q resamples, the resulting estimator denoted by Q−1
Q∑
q=1

Σ̂q is also consistent. For the

consistent estimator of the covariance matrix of β̂wcr, similar to [11], we first write

Var (β̂q) = E(Var (β̂q |data)) + Var (E(β̂q | data)).
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By the fact of E(β̂q |data) = β̂wcr, it yields that

Var (β̂wcr) = Var (β̂q)− E(Var (β̂q |data)).

Since

E(Var (β̂q |data)) = E
( 1

Q

Q∑
q=1

(β̂q − β̂wcr)(β̂q − β̂wcr)
′
)
,

it can be estimated as the covariance matrix based on the Q resampling estimators β̂q,

q = 1, 2, . . . , Q, that is

Ω =
1

Q

Q∑
q=1

(β̂q − β̂wcr)(β̂q − β̂wcr)
′.

Thus the estimated variance-covariance matrix of β̂wcr is

Σ̂wcr =
1

Q

Q∑
q=1

Σ̂q −
1

Q

Q∑
q=1

(β̂q − β̂wcr)(β̂q − β̂wcr)
′.

To show the consistency of Σ̂wcr, it is easy to see that Ω − E(Ω) → 0 in probability as

n → ∞. Actually, this can be easily shown by applying the same arguments as those in

the proof of [9]. This completes the proof. �
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