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Abstract: In this paper an efficient estimation methodology for the partially linear models with

random effects is proposed. For this, we use the generalized least square estimate (GLSE) and the

B-splines methods to estimate the unknowns, and employ the penalized least square method to

obtain the estimators of the random effects item. Further, we also consider the estimation for the

variance components. Compared with the existing methods, our proposed methodology performs

well. The asymptotic properties of the estimators are obtained. A simulation study is carried out

to assess the performance of our proposed methodology.
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§1. Introduction

We consider the partially linear model with random effects:

Yi = XT
i β + g(Ui) + ZT

i b+ εi, i = 1, 2, . . . , n, (1)

where we assume that the function g(·) is a smooth function on a generic domain χ. β is

a p× 1 parameter vector, b is a random-effect vector with E(b) = 0 and Var (b) = D. Here

D is a positive definite matrix depending on a parameter vector φ, εi is a independent

random variables and has E(εi) = 0 and Var (εi) = σ2
ε > 0. We usually assume that
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Ui ∈ [0, 1]. There Xi and Yi are the random variables, which can be observed. Zi is

n-dimensional vector. We describe the general problem of estimating β, g(·), b, σ2
b and

σ2
ε .

Mixed effects models are widely applied in the analysis of relevant data, such as

longitudinal data and repeated measures data. Some scholars studied the linear and

nonparametric mixed effects model in literatures. In model (1), when g(·) = 0, it is linear

mixed-effect models and it is also known as the variance components model. Zhong et al. [1]

proposed a unified approach to estimate the linear mixed models with errors-in-variables.

When β = 0, model (1) becomes a nonparametric mixed effects model. Wang [2] studied

the smoothing spline analysis of variance in nonparametric mixed effect model, they used

the smoothing splines to model the fixed effects and constructed the penalized likelihood

function. Gu and Ma [3] used penalized least squares method to study the estimation

problem of nonparametric mixed effects model. When b = 0, model (1) become a partially

linear model, see [4–7]. These proposed estimation method was proved to be effective.

There are many literatures about partially linear mixed effect models. Tang and Duan [8]

studied a semiparametric Bayesian approach to generalize partially linear mixed models for

longitudinal data, they presented a semiparametric Bayesian approach by simultaneously

utilizing an approximation truncation Dirichlet process prior of the random effects and a P-

spline approximation. Li and Xue [9] studied the partially linear varying coefficient model

with random effect for longitudinal data, they proposed the estimators for the variance

component and profile weighted semiparametric least squares techniques to estimate the

parametric component efficiently, they also use B-spline to estimate the function. Li and

Xue [10] studied the statistical inference for the generalized partially linear mixed effects

models, they proposed a class of semiparametric estimators for the parametric and variance

components and they used the local linear smoother method to present the nonparametric

estimator. Other literatures about the random effects, see [11–13].

The purpose of this article is to study the estimation problem of model (1). We

express the function as the linear form by using B-spline, then we use the generalized least

squares to estimate the parameters and function, and use the penalized (unweighted) least

squares method to estimate the random effect. We construct the variance estimation for

σ2
ε and σ2

b , and they are root-n consistent estimators. Our algorithm is fast and stable in

numerically. Simulation will be used to show the application of the methodology.

Compared with existing methods, our method has some advantages as follows: In most

of the literatures, the relevant scholars have not considered the estimation of random effect

in the case of B-spline, while we use the penalized (unweighted) least squares method to
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estimate the random effect b. Comparing with [9], our method is more stable and faster.

The algorithm is more simple in our paper.

We organize the rest of the paper as follows. In Section 2, we introduce the estimation

method and main results. In Section 3, we present the simulation study. The proofs of

main results are shown in the Appendix.

§2. Estimation Methodology

In this section, we focus on the estimation methodology. We use B-spline to express

the function g(·) as the following approximate form,

g(u) =
q∑
j=1

cjBj(u) = B(u)c.

Therefore, the estimation can be expressed as ĝ(u) =
q∑
j=1

ĉjBj(u), where {Bj(u)}qj=1 is

a B-spline basis, B(u) = (B1(u), B2(u), . . . , Bq(u)), c = (c1, c2, . . . , cq)
T. The estimation

process of β, g(·), b, σ2
ε and σ2

b is as follows.

Step 1: Estimation of β and g(·)

We let Y = (Y1, Y2, . . . , Yn)T, X = (X1, X2, . . . , Xn)T, Xi = (Xi1, Xi2, . . . , Xip)
T, β =

(β1, β2, . . . , βp)
T, B = (B(U1), B(U2), . . . , B(Un))T, Z = (Z1, Z2, . . . , Zn), Zi = (Zi1, Zi2,

. . . , Zin)T, b = (b1, b2, . . . , bn)T and ε = (ε1, ε2, . . . , εn)T, then model (1) can be expressed as

a vector form: Y = Xβ+Bc+ZTb+ε. We can obtain β̂ and ĉ by minimizing the following

problem: [Y − (Xβ+Bc)]TV −1[Y − (Xβ+Bc)], where V = Var (ZTb+ε) = ZDZT +σ2
εIn,

they are also the solution of (2):XTV −1[Y − (Xβ +Bc)] = 0,

BTV −1[Y − (Xβ +Bc)] = 0.
(2)

We let S = B(BTV −1B)−1BTV −1 and through formula (2), we will get the estimations of

β and g: β̂ = [XTV −1(I−S)X]−1XTV −1(I−S)Y , ĝ = B(BTV −1B)−1BTV −1(Y −Xβ̂) =

S(Y −Xβ̂). We will prove that σ2
b and σ2

ε can be estimated at root-n rates in Step 3, so

we take V as known quantity. Then through iterative until convergence, we obtain the

final estimates of β and g(·).

Step 2: Estimation of b

We use the penalized (unweighted) least squares method to estimate the random

effect. Through minimize the following problem:

1

n

n∑
i=1

(Yi −XT
i β̂ − ĝ(Ui)− ZT

i b)
2 +

1

n
bTΣb,
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we get the estimation of b. We plug g(u) = B(u)c in the above minimization problem and

get (Y − Xβ̂ − Bĉ − ZTb)T(Y − Xβ̂ − Bĉ − ZTb) + bTΣb, where Σ > 0 is p × p general

positive definite matrix, we usually use σ2
εD
−1 to replace Σ, we will prove that the D

and σ2
ε can be estimated at root-n rates, then Σ is known, so the estimation of b is b̂ =

(ZZT + Σ)−1(ZY − ZXβ̂ − ZBĉ).

Step 3: Estimation of σ2
ε and σ2

b

Finally, we estimate the variance components. The estimation method of the variance

components is similar to [13]. Assumption that the covariance matrix of model (1) is

V = σ2
bJnJ

T
n +σ2

εIn, where Jn = (1, 1, . . . , 1)T is a n-dimensional vector about ones. If the

random effects b and the error term εi has a normal distribution, then the distribution of

observation Y submit to N(Xβ + g(U), V ). Replacing β and g(·) with their estimators β̂

and ĝ(·), respectively. We can write the normal likelihood function about σ2
b and σ2

ε :

− n(n− 1) ln(σ2
ε)− n ln(σ2

ε + nσ2
b )−

n

σ2
ε + nσ2

b

(Y −Xβ̂ − ĝ )2

− 1

σ2
ε

n∑
i=1
{Yi −XT

i β̂ − ĝ(Ui)− (Y −Xβ̂ − ĝ )}2,

where

Y = n−1
n∑
i=1

Yi, ĝ = n−1
n∑
i=1

ĝ(Ui), X = n−1
n∑
i=1

Xi, Xi =
1

p

p∑
j=1

Xij , β̂ =
1

p

p∑
j=1

β̂j .

When σ̂2
ε > 0, the maximum of the likelihood function can be obtained in the following

points:

σ̂2
ε =

1

n(n− 1)

n∑
i=1
{Yi −XT

i β̂ − ĝ(Ui)− (Y −Xβ̂ − ĝ )}2, σ̂2
b =

1

n
(Y −Xβ̂ − ĝ )2 − 1

n
σ̂2
ε .

When σ̂2
b = 0, σ̂2

ε = n−2
n∑
i=1
{Yi −XT

i β̂ − ĝ(Ui)}2, where the large sample properties of σ2
ε

and σ2
b is as follows:

σ̂2
ε − σ2

ε = OP (n−1/2), (3)

σ̂2
b − σ2

b = OP (n−1/2). (4)

§3. Numerical Simulation Studies

In this section, our purpose is to illustrate the performance of estimation methods for

model (1). In our simulation, we use the root mean squared errors (RMSE) to assess the

precision of β̂ and ĝ(·). It is defined as

RMSE =
{
n−1

grid

ngrid∑
k=1

[ĝ(uk)− g(uk)]
2
}1/2

,
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where ngrid is the number of grid point, and {uk, k = 1, 2, . . . , ngrid} are equidistant grid

points.

Example 1 We consider the model of the form

Yi = XT
i β + 6 sin(πUi) + b+ εi, i = 1, 2, . . . , n,

where β = (1.5, 0.5)T, Xi is a two-dimensional random vector with standard normal compo-

nents, Ui is a variable with uniform [0, 1], b is a random-effect variable with standard normal

components. εi is a normal variable with mean 0 and variance 0.36. Here g(u) = 6 sin(πu).

The number of subjects, n, is taken as 30, 50 and 100. In our simulation, we repeat the

simulation 500 times, and compute the bias, standard deviation (SD) and root mean square

error (RMSE). The simulation results are obtained from Table 1.

Table 1 Simulation result for Example 1. The biases, standard deviations (SD)

and root mean squared error (RMSE) for the estimates of β1 and β2.

Parameter n Bias SD RMSE

β1 30 0.0215 0.5147 0.5147

50 0.0122 0.3542 0.3541

100 0.0085 0.2249 0.2248

β2 30 0.0205 0.5329 0.5328

50 0.0088 0.3737 0.3734

100 0.0031 0.2242 0.2240

From Table 1, we see that the small sample size will lead to larger SD and RMSE.

We also find that the Bias, SD and RMSE decrease as n increases, so the improvement is

significant. When n = 100, the means of the estimates of β1 and β2 are 1.5086 and 0.4969,

respectively. The estimates of σ2
b and σ2

ε are 1.0346 and 0.3726, respectively. Figure 1

shows the asymptotic normality of these estimators. When n = 100, Figure 1(a) and (b)

shows the Q-Q plots of the 500 estimates of β1 and β2, respectively.

We also considered the estimation of g(u). When n = 100, Figure 2(a) shows the real

link function curve and the estimated link function curve, the solid curve shows the real

link function curve, the dashed curve shows the estimated curve of link function. Figure

2(b) gives the boxplot of the 500 RMSEs of the estimates for link function when n = 100.

From Figure 2(a), we find that the estimated curve is close to the real link function curve,

so the estimation methods for data fitting is ideal. Figure 2(b) tell us that the RMSEs of

the estimates for link function are small.
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(a) Normal Q-Q plot (b) Normal Q-Q plot

Figure 1 When n = 100, the Q-Q plots of parameter for Example 1.
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Figure 2 When n = 100, the fitted curve and boxplot of function for Example 1.

Finally, we compare our method with [9]. When n = 30, 50, 100, 150, we calculate the

RMSEs of the estimates of g(·) and β under the two methods, respectively. The results

are shown in Table 2. When n = 100, from Table 2, our method about the RMSEs of

the estimates of g(·), β1 and β2 are 0.2394, 0.2248 and 0.2240, respectively. [9] about

the RMSEs of the estimates of g(·), β1 and β2 are 0.2559, 0.2382 and 0.2439, respectively.

Under our method, the RMSE is smaller, it tell us that our method is superior to [9] about

the estimate of g(·) and β. So you can see that our method is better than [9]. And in the

small sample, our method performs better. From Table 2, we can find the RMSE of the

two methods decrease as n increases. Finally, we also find that our calculation speed is

faster than [9].
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Table 2 The results of the comparison of the estimation method for our

method with [9] about g(·) and β

n RMSEQue RMSELX

g(·) 30 0.4443 0.4529

50 0.3501 0.3618

100 0.2394 0.2559

150 0.1970 0.2048

β1 30 0.5147 0.5367

50 0.3541 0.3702

100 0.2248 0.2382

150 0.1879 0.1919

β2 30 0.5328 0.5686

50 0.3734 0.3758

100 0.2240 0.2439

150 0.1860 0.1889

Appendix

We will use the following regular conditions.

C1 τ1, τ2, . . . , τJ are the internal nodes of spline function, namely, we assume z0 = 0,

zk+1 = 1, hi = zi−zi−1, h = max
16i6k+1

hi and exist a constantM0, making h/min
i

6M0

and max
i
|hi+1 − hi| = o(1/k), so h = o(1/k).

C2 The design point sequence {Ui, i = 1, 2, . . . , n} have bounded support set < and the

density function f(u) satisfy 0 < inf
<
f(·) 6 sup

<
f(·) <∞.

C3 If u ∈ <, the eigenvalue of Σ = E(XXT) is λ0 6 λ0 6 · · · 6 λk. The eigenvalue is

not equal to zero and bounded, the distribution of Xi is compactly supported set.

C4 There is a constant c0, making E(e2) 6 c0 <∞, where e = ZTb+ ε.

C5 As for any i, Xi and Ui are the random variables with independent identically

distributed, respectively. And there is a constant δ > 0 and M1, M2, making

E‖Xi‖2+δ 6M1 <∞ and E‖Ui‖2+δ 6M2 <∞.

Under the condition of (C1) – (C5), the Proof of (3) and (4) as follows. First, we prove

(3). For convenience, we let

ε = n−1
n∑
i=1

εi, g̃i = g(Ui)− ĝ(Ui), g̃ = n−1
n∑
i=1

g̃i,
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XT
i β̃ = XT

i β −XT
i β̂, XTβ̃ = n−1

n∑
i=1

(XT
i β̃).

By

σ̂2
ε =

1

n(n− 1)

n∑
i=1
{Yi −XT

i β̂ − ĝ(Ui)− (Y −Xβ̂ − ĝ )}2,

we get

σ̂2
ε =

1

n(n− 1)

n∑
i=1

[(εi − ε) + (g̃i − g̃ ) + (XT
i β̃ −XTβ̃ )]2

=
1

n(n− 1)

n∑
i=1

(εi − ε)2 +
1

n(n− 1)

n∑
i=1

(g̃i − g̃ )2 +
1

n(n− 1)

n∑
i=1

(XT
i β̃ −XTβ̃ )2

+
2

n(n− 1)

n∑
i=1

(εi − ε)(g̃i − g̃ ) +
2

n(n− 1)

n∑
i=1

(εi − ε)(XT
i β̃ −XTβ̃ )

+
2

n(n− 1)

n∑
i=1

(g̃i − g̃ )(XT
i β̃ −XTβ̃ )

≡M1 +M2 +M3 +M4 +M5 +M6.

By the law of large numbers, we can prove that M1 = σ2
ε +OP (n−1/2), M2 = OP (n−1/2),

M3 = OP (n−1/2), M4 = OP (n−1/2), M5 = OP (n−1/2) and M6 = OP (n−1/2), so the

formula (3) is established. Now, we can prove the formula (4). Through calculation, we

can get

σ̂2
b =

1

n
(b+ ε+ g̃ +XTβ̃ )2 − σ̂2

ε/n

=
1

n
(b+ ε)2 +

1

n
g̃

2
+

1

n
(XTβ̃ )2 +

2

n
(b+ ε)g̃ +

2

n
(b+ ε)(XTβ̃ ) +

2

n
g̃(XTβ̃ )− σ̂2

ε/n

≡ N1 +N2 +N3 +N4 +N5 +N6 − σ̂2
ε/n.

It is easy to prove that N1 = σ2
b + σ2

ε/n+OP (n−1/2), N2 = OP (n−1/2), N3 = OP (n−1/2),

N4 = OP (n−1/2), N5 = OP (n−1/2) and N6 = OP (n−1/2). We can prove (4) by using (3).
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