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Abstract: Take any subcritical offspring distribution with bounded support and consider the

corresponding Galton–Watson tree. In this short note we condition this Galton–Watson tree on

large width and show that the conditioned tree does not converge locally to any random tree with

at most one infinite spine.
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§1. Introduction

For an introduction of Galton–Watson processes and Galton–Watson trees (GW

trees), refer to the standard reference [1]. Regarding the local limits of conditioned G-

W trees, it was Kesten [2] who first studied the local limits of critical or subcritical GW

trees conditioned to have large height. These local limits are certain size-biased trees with

a unique infinite spine, which we call immortal trees throughout the present note. Recent-

ly, Jonsson and Stefánsson [3] discovered a different type of local limits by conditioning

some subcritical GW trees to have large total progeny. These different local limits are

certain size-biased trees with a unique node with countably infinite offsprings, which we

call condensation trees. Also we call a node with countably infinite offsprings an infinite

node. Shortly after, Janson [4] completed this result by proving that any subcritical GW

tree conditioned to have large total progeny converges locally to a condensation tree or

an immortal tree, depending on the offspring distribution of the GW tree. Very recently,

Abraham and Delmas [5, 6] and He [7, 8] provided more results on local limits of GW trees,
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by considering other different conditionings. Now, the general picture of all known re-

sults is the following: For any critical GW tree, essentially the conditioned tree always

converges locally to an immortal tree, for details see [8]; For a subcritical GW tree, the

conditioned tree converges locally to an immortal tree or a condensation tree, depending

on the conditioning and the offspring distribution.

Naturally one would be interested in the following general question: Is it true that the

conditioned subcritical GW trees always converge locally to immortal trees or condensation

trees, under any “reasonable” conditioning ? In this note we give a negative answer to this

question. Specifically, we take any subcritical offspring distribution with bounded support,

then condition the corresponding GW tree on large width. See (1) for the definition of

the width. We prove in Theorem 2 that the conditioned tree does not converge locally

to any random tree with at most one infinite spine. Note that the offspring distribution

under consideration has bounded support, so trivially the corresponding conditioned GW

tree does not converge locally to any random tree with infinite nodes, for details on this

assertion one may refer to Section 2 in [6] for the local convergence of trees with infinite

nodes. Thus we have arrived to a negative answer to our motivating question. We may also

use an argument in the proof of Theorem 2 to prove a positive result. Specifically, we take

any critical offspring distribution with bounded support, then condition the corresponding

GW tree to have width equal to a large value. We prove in Proposition 3 that the

conditioned tree converges locally to an immortal tree. Note that this result was first

proved in [8] by a different method.

This note is organized as follows. In Section 2, we review several topics of GW trees.

Section 3 is devoted to the proofs of our main results, Theorem 2 for the subcritical case

and Proposition 3 for the critical case.

§2. Preliminaries

This section is extracted from [5]. For more details and proofs, refer to Section 2 in

[5]. We denote by Z+ = {0, 1, 2, . . .} the set of non-negative integers and by N = {1, 2, . . .}
the set of positive integers.

2.1 Local Convergence of Random Trees

We first review some notations of discrete trees. Use U =
⋃
n>0

Nn to denote the set

of finite sequences of positive integers with the convention N0 = {∅}. For u ∈ Nn, we call

|u| = n the generation or the height of u. If u and v are two sequences of U , denote by
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uv the concatenation of the two sequences, with the convention that uv = u if v = ∅ and

uv = v if u = ∅. The set of ancestors of u is the set

Au = {v ∈ U : there exists w ∈ U , w 6= ∅, such that u = vw}.

A tree t is a subset of U that satisfies:

• ∅ ∈ t.

• If u ∈ t, then Au ⊂ t.

• For every u ∈ t, there exists ku(t) ∈ Z+ such that, for every positive integer i, ui ∈ t

if and only if 1 6 i 6 ku(t).

The node ∅ is called the root of t. The integer ku(t) represents the number of offsprings

of the node u in t. The set of leaves of the tree t is L(t) = {u ∈ t : ku(t) = 0}. Write

X(t) = (Xn(t), n ∈ Z+) for the Galton–Watson process corresponding to the tree t, that

is, Xn(t) is the total number of nodes of the tree t at height n. Then define the width of

the tree t by

W (t) = sup
n∈Z+

Xn(t). (1)

For u ∈ t, by Su(t) we mean the subtree of t “above” u. Denote by T the set of trees, by

T0 the subset of finite trees, and by T1 the subset of trees with a unique infinite spine. An

infinite spine is a genealogical line which never ends. For precise definitions of all these

notations in the present paragraph, refer to Section 2 in [5].

For the general framework of the local convergence of discrete trees, also refer to

Section 2 in [5]. Here we only recall some essential notations and a crucial lemma. Let

(Tn, n ∈ N) and T be some random discrete trees. We denote by dist (T ) the distribution

of the random discrete tree T , and we denote

dist (Tn)→ dist (T ) as n→∞

for the convergence in distribution of the sequence (Tn, n ∈ N) to T , with respect to the

local distance on the space of discrete trees. If t, s ∈ T and x ∈ L (t), we denote by

t~ (s, x) = {u ∈ t} ∪ {xv, v ∈ s} (2)

the tree obtained by grafting the tree s on the leaf x of the tree t. For every t ∈ T and

every x ∈ L (t), we shall consider the set of trees obtained by grafting a tree on the leaf

x of t,

T(t, x) = {t~ (s, x), s ∈ T}. (3)

We recall Lemma 2.1 in [5], which is a very convenient characterization of convergence in

distribution in T0 ∪ T1.
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Lemma 1 Let (Tn, n ∈ N) and T be T-valued random variables. The sequence (Tn,

n ∈ N) converges in distribution to T implies that for every t ∈ T0 and every x ∈ L (t),

lim
n→∞

P(Tn ∈ T(t, x)) = P(T ∈ T(t, x)) and lim
n→∞

P(Tn = t) = P(T = t). (4)

If (Tn, n ∈ N) and T belong a.s. to T0∪T1, then (4) also implies that (Tn, n ∈ N) converges

in distribution to T .

2.2 GW Trees and Immortal Trees

Let p = (p0, p1, p2, . . .) be an offspring distribution, which is just a probability distri-

bution on Z+. A T-valued random variable τ is a Galton–Watson tree (GW tree) with

offspring distribution p if the distribution of k∅(τ) is p and for any n ∈ N, conditionally

on {k∅(τ) = n}, the subtrees (S1(τ),S2(τ), . . . ,Sn(τ)) are independent and distributed

as the original tree τ . By the definition of GW trees, we have for every t ∈ T0, x ∈ L (t),

and t̃ ∈ T0,

P(τ = t~ (t̃, x)) =
1

p0
P(τ = t)P(τ = t̃). (5)

Denote by µ the expectation of p. The GW tree is called critical (resp. subcritical,

supercritical) if µ = 1 (resp. µ < 1, µ > 1). In the critical or subcritical case, it is

well-known that a.s. τ ∈ T0.

We recall the following definition of immortal trees from Section 1 in [6], which first

appeared in Section 5 of [4]. Let p be a critical or subcritical offspring distribution. Let

τ∗(p) denote the random tree which is defined by:

(i) There are two types of nodes: normal and special.

(ii) The root is special.

(iii) Normal nodes have offspring distribution p.

(iv) Special nodes have biased offspring distribution p̂ on Z+ defined by p̂n = npn/µ for

any n ∈ Z+.

(v) The offsprings of all the nodes are independent of each others.

(vi) All the offsprings of a normal node are normal.

(vii) When a special node gets several offsprings (note that p̂0 = 0), one of them is selected

uniformly at random and is special while the others are normal.

Note that a.s. τ∗(p) has exactly one infinite spine and no infinite nodes. We call it an

immortal tree. By the definitions of GW trees and immortal trees, we have for every t ∈ T0

and x ∈ L (t),

P(τ∗(p) ∈ T(t, x)) =
1

µ|x|p0
P(τ = t). (6)
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§3. The Results

By (1), the definition of the width, it is not hard to see that P(W (τ) > n) > 0 for

all n if and only if p0 + p1 < 1. So we need the assumption p0 + p1 < 1 in order for the

conditional distribution dist (τ |W (τ) > n) to make sense.

Theorem 2 Consider a subcritical offspring distribution p = (p0, p1, p2, . . .) with

bounded support. Assume that p0 + p1 < 1. Then for the GW tree τ with the offspring

distribution p, and for any random tree T ∈ T1 a.s., the local convergence dist (τ |W (τ) >

n)→ dist (T ) does not hold.

Proof Assume that for some random tree T , the local convergence dist (τ |W (τ) >

n) → dist (T ) holds. Let N be the supremum of the support of p, that is, N = sup{n :

pn > 0} <∞.

Recall (2) and (3), the definitions of t~ (t̃, x) and T(t, x). By (5) we get

P(τ ∈ T(t, x),W (τ) > n) =
∑
t̃∈T0

P(τ = t~ (t̃, x))1{W (t~(t̃,x))>n}

=
∑
t̃∈T0

1

p0
P(τ = t)P(τ = t̃)1{W (t~(t̃,x))>n}.

Write Wn(t) for the width of the tree which consists of the first n generations of t. Since

p has bounded support with N being the supremum of the support of p, we see that if

P(τ = t̃) > 0 then WH(t)(t̃) 6 N
H(t). So for any n > W (t) +NH(t), we have

n > W (t) +NH(t) >W (t) +WH(t)(t̃).

This inequality implies that W (t~ (t̃, x)) > n can only be realized after generation H(t)

of the tree t~ (t̃, x) (or above height H(t) of the tree t~ (t̃, x), in different words), which

then implies that

W (t~ (t̃, x)) = W (t̃) > n.

By this observation we get for n > W (t) +NH(t),

∑
t̃∈T0

1

p0
P(τ = t)P(τ = t̃)1{W (t~(t̃,x))>n} =

1

p0
P(τ = t)

∑
t̃∈T0

P(τ = t̃)1{W (t̃)>n}

=
1

p0
P(τ = t)P(W (τ) > n).

Therefore we have

lim
n→∞

P(τ ∈ T(t, x) |W (τ) > n) = lim
n→∞

P(τ ∈ T(t, x),W (τ) > n)

P(W (τ) > n)
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= lim
n→∞

1

p0

P(τ = t)P(W (τ) > n)

P(W (τ) > n)
=

1

p0
P(τ = t).

Then Lemma 1 asserts that

P(T ∈ T(t, x)) =
1

p0
P(τ = t). (7)

For every t ∈ T0 and every n > W (t), we have P(τ = t |W (τ) > n) = 0. So Lemma

1 asserts that for every t ∈ T0, P(T = t) = 0, which implies that a.s. T has at least

one infinite spine. If the root of T has only one offspring, that is the node 1, then T ∈
T({∅, 1}, 1) and (7) asserts that

P(T ∈ T({∅, 1}, 1)) =
1

p0
P(τ = {∅, 1}) = p1,

so P(T ∈ T1, k∅(T ) = 1) 6 p1. Recall that k∅(T ) is the number of offsprings of the root ∅
in the tree T . If the root of T has two offsprings, the node 1 and the node 2, and all the

infinite spines of T go through the node 1, then T ∈
⋃

t∈T0

T({∅, 1, 2} ~ (t, 2), 1), and (7)

and (5) assert that

P
(
T ∈

⋃
t∈T0

T({∅, 1, 2}~ (t, 2), 1)
)

=
∑
t∈T0

1

p0
P(τ = {∅, 1, 2}~ (t, 2))

=
1

(p0)2
P(τ = {∅, 1, 2})

∑
t∈T0

P(τ = t) = p2.

The same is true for the probability that the root of T has two offsprings and all the

infinite spines go through the node 2, that is,

P
(
T ∈

⋃
t∈T0

T({∅, 1, 2}~ (t, 1), 2)
)

= p2,

so P(T ∈ T1, k∅(T ) = 2) 6 2p2. Similarly we have P(T ∈ T1, k∅(T ) = n) 6 npn. Finally

we see that

P(T ∈ T1) =
∑
n
P(T ∈ T1, k∅(T ) = n) 6

∑
n
npn < 1,

so the statement a.s. T ∈ T1 does not hold. �

Proposition 3 Consider a critical offspring distribution p = (p0, p1, p2, . . .) with

bounded support. We also assume that p0 + p1 < 1. Then for the GW tree τ with the

offspring distribution p, as n→∞ along the subsequence {n : P(W (τ) = n) > 0},

dist (τ |W (τ) = n)→ dist (τ∗(p)).
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Proof First of all, all limits in this proof are understood along the subsequence

{n : P(W (τ) = n) > 0}. As in the second paragraph of the proof of Theorem 2, we have

for every t ∈ T0 and every x ∈ L (t),

lim
n→∞

P(τ ∈ T(t, x) |W (τ) = n) =
1

p0
P(τ = t).

Note that p is critical, so µ = 1. Then (6) asserts that

lim
n→∞

P(τ ∈ T(t, x) |W (τ) = n) = P(τ∗(p) ∈ T(t, x)).

As in the third paragraph of the proof of Theorem 2, we have for every t ∈ T0,

lim
n→∞

P(τ = t |W (τ) = n) = 0 = P(τ∗(p) = t).

Finally apply Lemma 1 to finish the proof. �
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