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Abstract: In this paper, we investigate a competing risks model based on exponentiated Weibull

distribution under Type-I progressively hybrid censoring scheme. To estimate the unknown pa-

rameters and reliability function, the maximum likelihood estimators and asymptotic confidence

intervals are derived. Since Bayesian posterior density functions cannot be given in closed forms, we

adopt Markov chain Monte Carlo method to calculate approximate Bayes estimators and highest

posterior density credible intervals. To illustrate the estimation methods, a simulation study is

carried out with numerical results. It is concluded that the maximum likelihood estimation and

Bayesian estimation can be used for statistical inference in competing risks model under Type-I

progressively hybrid censoring scheme.
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§1. Introduction

The two-parameter Weibull distribution is popular as the lifetime distribution in

life test, but it still has its drawback. Its monotone hazard function is unavailable to
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accommodate nonmonotone (especially bathtub shaped) hazard rates which often occur in

practical applications. To fit nonmonotone hazard functions, Mudholkar and Srivastava [1]

proposed the exponentiated Weibull distribution (EWD) as a generalization of Weibull

distribution, which was widely applied in many fields [2]. For example, Ahmad et al. [3–7]

put it into use in the accelerated life tests and software reliability.

In fact, a failure product that takes place in a life-testing experiment results from

many factors including internal structure of the product and external conditions, like

temperature and humidity, and these factors cannot be ignored in analyzing failure da-

ta. There has been some literature on statistical inference in the presence of competing

risks based on complete failure data [8–10], Type-II progressive censoring [11], and Type-II

progressively hybrid censoring [12], Type-I progressively hybrid censoring [13], generalized

progressive hybrid censoring [14], adaptive progressively hybrid censoring [15]. However, in

the competing risks model, EWD was not considered among these lifetime distributions

referred in the references.

Considering the EWD as a lifetime distribution, there are some major references under

different censored schemes. Singh et al. gave Bayesian estimates based on squared loss

function and LINEX loss function under complete failure data [16], and Type-II censoring

data [17, 18]. Shi and Hu studied empirical Bayesian estimation of the shape parameter of

two-parameter EWD [19]. Kim et al. [20] obtained Bayesian estimation for the exponentiated

Weibull model under Type-II progressive censoring data.

Since complete failure data in the life tests are obtained with high expenses and

unexpected termination time, the censoring schemes are necessary to be used. For the

termination time, Type-I censoring schemes are applicable with the known testing time.

Considering failure number, Type-I hybrid censoring schemes cost less time comparing

with Type-I censoring schemes. But many times, the surviving tested units are removed

for other studies and tests. At this time, Type-I progressively hybrid censoring scheme

(PHCS), which was put forward by Childs et al. [21], can be available to meet these needs.

So far, there is few literature referred to statistical inference on competing risks from EWD

under Type-I PHCS.

In this paper, we mainly study statistical inference under Type-I PHCS in the pres-

ence of independent competing risks from EWD. The remainder of this paper is arranged

as follows. Section 2 shows the assumptions and likelihood function based on the con-

structed model. Maximum likelihood estimation and asymptotic confidence intervals of

shape parameters are presented in Section 3. In Section 4, Bayesian estimates and highest

posterior density credible intervals are obtained by the Markov chain Monte Carlo (M-
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CMC) method. Further, numerical results are presented to illustrate our methodology in

Section 5. Ultimately, conclusions are given in Section 6.

§2. Model Assumptions and Likelihood Function

In this section, we construct a competing risks model and obtain the likelihood func-

tion based on Type-I progressively hybrid censoring data (PHCD).

2.1 Model Description

Suppose that n units are put in the life testing. Type-I PHCS can be described as

follows. Failure number m, removal vector (R1, R2, . . . , Rm) and censoring time T0 are

fixed in advance, where 1 6 m 6 n, T0 ∈ (0,∞), 0 6 Ri < n, i = 1, 2, . . . ,m. When the i-

th failure takes place, the time is recorded as ti:m:n and Ri units are progressively removed

from the remaining survived units. The experiment under Type-I PHCS is terminated at

min(tm:m:n, T0). There are two cases to be denoted:

Case I : t1:m:n < t2:m:n < · · · < tD:m:n < T0 < · · · < tm:m:n, if T0 < tm:m:n;

Case II: t1:m:n < t2:m:n < · · · < tm:m:n 6 T0, if tm:m:n 6 T0.

Finally, the observed failure data and removal vector can be given as (t1:m:n, t2:m:n, . . .,

tD:m:n, T0) and (R1, R2, . . . , RD, R
∗
D+1), where 1 6 D 6 m, R∗D+1 = n −

D∑
i=1

(Ri + 1). In

Case I, D = 1, 2, . . . ,m− 1. Otherwise, D = m in Case II.

Consider p independent competing risks from EWD in the life testing under Type-I

PHCS. To make statistical inference on competing risks model, the basic assumptions are

given.

1) There is just one cause leading to the failure in the life testing.

2) Let Xij denote the i-th failure time from type-j failure cause under Type-I PHCS

and Xij ∼ EWD(x;αj , θj), where the shape parameters αj > 0 and θj > 0 for

j = 1, 2, . . . , p.

3) Xi1, Xi2, . . . , Xip are independent with each other. The probability density function

(pdf), cumulative distribution function (cdf) and reliability function with shape

parameters (αj , θj) of Xij are expressed as, respectively,

fj(x) = αjθjx
αj−1e−x

αj
(1− e−x

αj
)θj−1, x > 0, (1)

Fj(x) = (1− e−x
αj

)θj , x > 0, (2)
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F j(x) = 1− Fj(x), x > 0. (3)

4) The i-th competing failure time is Ti:m:n = min(Xi1, Xi2, . . . , Xip) for i = 1, 2, . . . ,m

with the indicator vector δi = (δi1, δi2, . . . , δip) of the i-th failure time, which is

defined as

δij =

1, if Ti:m:n = Xij ;

0, if Ti:m:n 6= Xij .

Based on above assumptions, the reliability function of Ti:m:n can be given by

R(t) =
p∏
j=1

[1− (1− e−t
αj

)θj ], t > 0; αj > 0, θj > 0. (4)

Finally, the competing risks data under Type-I PHCS can be formed as T̃ = {(Ti:m:n, δi),

T0 : i = 1, 2, . . . , D}.

2.2 Likelihood Function

Given above assumptions, the competing risks data T̃ = {(Ti:m:n, δi), T0 : i = 1, 2,

. . . , D}, and removal vector (R1, R2, . . . , RD, R
∗
D+1), the likelihood function of the type-j

failure cause can be given as follows

lj(αj , θj | t̃ ) ∝
{ D∏
i=1

fj(ti)
δij · F j(ti)1−δij · [F j(ti)]Ri

}
· [F j(t0)]R

∗
D+1 , (5)

where t̃ = (t̃1, t̃2, . . . , t̃D, t0) is a sample of T̃ . By substituting Equations (1), (3) into

Equation (5), the log-likelihood function of all the failure causes with parameters Θ =

(α1, θ1, α2, θ2, . . . , αp, θp) is proportional to

L =
p∑
j=1

ln lj(αj , θj | t̃ ) ∝
p∑
j=1

[dj(lnαj + ln θj)−Wj + Vj ], (6)

where, for i = 0, 1, 2, . . . , D, j = 1, 2, . . . , p,

uij
∧
= u(ti, αj) = 1− e−t

αj
i , dj =

D∑
i=1

δij ,

Wj
∧
= W (αj) =

D∑
i=1

[δijt
αj
i + δij lnuij − δij(αj − 1) ln ti], (7)

Vj
∧
= V (αj , θj) =

D∑
i=1

[θjδij lnuij + (1− δij +Ri) ln(1− uθjij )] +R∗D+1 ln(1− uθj0j).

Note that Wj and uij only have the parameter αj .
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§3. Maximum Likelihood Estimation

Under the Type-I progressively hybrid censoring scheme, the maximum likelihood

estimates (MLEs) and asymptotic confidence intervals are presented based on competing

risks model in this section.

3.1 Point Estimation

Let Θ = (α1, θ1, α2, θ2, . . . , αp, θp). The likelihood equations are obtained by differ-

entiating (6) with respect to αj and θj for j = 1, 2, . . . , p and equating the results to zero,

which are expressed as

∂L

∂αj
=
dj
αj
−R∗D+1m0(αj , θj)+

D∑
i=1

[δijxi(αj)+δij(θj−1)yi(αj)−(1−δij+Ri)mi(αj , θj)] = 0,

(8)

∂L

∂θj
=
dj
θj
−R∗D+1z0(αj , θj) +

D∑
i=1

[δij lnuij − (1− δij +Ri)zi(αj , θj)] = 0, (9)

where i = 0, 1, 2, . . . , D,

xi(αj) = (1− tαji ) ln ti, yi(αj) = t
αj
i u
−1
ij (1− uij) ln ti,

zi(αj , θj) = u
θj
ij (1− uθjij )−1 lnuij , mi(αj , θj) =

θjt
αj
i u

θj−1
ij (1− uij) ln ti

1− uθjij
.

The MLEs α̂jM and θ̂jM of the parameters αj and θj can be computed by solving

Equations (8) and (9). As the closed forms for α̂jM and θ̂jM cannot be given, the Newton –

Raphson method is employed to obtain MLEs Θ̂M = (α̂1M , θ̂1M , α̂2M , θ̂2M , . . . , α̂pM , θ̂pM ).

The MLE R̂M of the reliability R(t) in Equation (4) can be given by

R̂M
∧
= R(t; α̂jM , θ̂jM ) =

p∏
j=1

[1− (1− e−t
α̂jM

)θ̂jM ].

3.2 Interval Estimation

The confidence intervals are developed based on the asymptotic normal distribution

of the MLEs Θ̂M . The asymptotic distribution is given by

Θ̂M −Θ→ N(0, I−1(Θ)).

The inverse Fisher information matrix I−1(Θ) is the asymptotic variance-covariance ma-

trix of the MLEs for the parameters Θ. Based on the independence among competing
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failure causes, the inverse Fisher information matrix is expressed as

I−1(Θ) =


I−11 (α1, θ1) 0 · · · 0

0 I−12 (α2, θ2) · · · 0
...

...
...

...

0 0 · · · I−1p (αp, θp)

 ,
where

I−1j (αj , θj) =


−E
[∂2L(Θ | t̃ )

∂α2
j

]
−E
[∂2L(Θ | t̃ )

∂αj∂θj

]
−E
[∂2L(Θ | t̃ )

∂θj∂αj

]
−E
[∂2L(Θ | t̃ )

∂θ2j

]
 , j = 1, 2, . . . , p. (10)

In fact, the explicit expressions for the expectation (10) cannot be given in the closed

forms. Then, the approximate asymptotic variance-covariance matrix of I−1j (αj , θj) can

be given by

Î−1j (αj , θj) =


−∂

2L(Θ | t̃ )

∂α2
j

−∂
2L(Θ | t̃ )

∂αj∂θj

−∂
2L(Θ | t̃ )

∂θj∂αj
−∂

2L(Θ | t̃ )

∂θ2j


−1

↓ (α̂jM , θ̂jM ) =

[
V̂j11 V̂j12

V̂j21 V̂j22

]
.

The second partial derivatives of the log-likelihood function with respect to αj and θj in

Equation (10) are given as follows:

∂2L(Θ | t̃ )

∂α2
j

= − dj
α2
j

+
D∑
i=1

(ln ti)
2(1− uij)t

αj
i [(θj − 1)(u−1ij − t

αj
i u
−2
ij )− δij(1− uij)−1]

−
D∑
i=0

αjt
αj
i (ln ti)

2u
θj−1
ij (1− uθjij )−1(1− uij)

× [(1− δij +Ri)I(i 6= 0) +R∗D+1I(i = 0)]

× [1 + (θj − 1)t
αj
i (1− uij) + θjt

αj
i u

θj−1
ij (1− uθjij )−1(1− uij)− t

αj
i ],

∂2L(Θ | t̃ )

∂θ2j
= − dj

θ2j
−

D∑
i=0

[(1− δij +Ri)I(i 6= 0) +R∗D+1I(i = 0)](1− uθjij )−2uij(lnuij)
2,

∂2L(Θ | t̃ )

∂αj∂θj
=

D∑
i=1

δij(1− uij)u−1ij t
αj
i ln ti −

D∑
i=0

t
αj
i ln ti(1− uij)u

θj−1
ij (1− uθjij )−1

× [(1− δij +Ri)I(i 6= 0) +R∗D+1I(i = 0)][1− θj lnuij(1− u
θj
ij )−1].

The approximate 100(1 − γ)% confidence intervals for the parameters αj and θj are,

respectively, for j = 1, 2, . . . , p, expressed as,(
α̂jM − µγ/2

√
V̂j11 , α̂jM + µγ/2

√
V̂j11

)
,

(
θ̂jM − µγ/2

√
V̂j22 , θ̂jM + µγ/2

√
V̂j22

)
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where µγ/2 is the upper (γ/2)th percentile of the standard normal distribution.

Discussing the monotone property of the reliability R(t; Θ), for j = 1, 2, . . . , p, we

have
∂R(t; Θ)

∂θj
= −(1− e−t

α
j )θj ln(1− e−t

αj
) > 0

and
∂R(t; Θ)

∂αj
= −θj(1− e−t

αj
)θj−1e−t

αj
tαj ln t,

which satisfies 
∂R(t; Θ)

∂αj
> 0, 0 < t < 1;

∂R(t; Θ)

∂αj
6 0, t > 1.

Therefore, the approximate 100(1−γ)% confidence intervals for the reliability R(t) is given

by

(
R
(
t; α̂jM+µγ/2

√
V̂j11 , θ̂jM−µγ/2

√
V̂j22

)
, R
(
t; α̂jM−µγ/2

√
V̂j11 , θ̂jM+µγ/2

√
V̂j22

))
,

t > 1;(
R
(
t; α̂jM−µγ/2

√
V̂j11 , θ̂jM−µγ/2

√
V̂j22

)
, R
(
t; α̂jM+µγ/2

√
V̂j11 , θ̂jM+µγ/2

√
V̂j22

))
,

others.

§4. Bayesian Inference

Bayesian estimation is presented based on the squared loss function in this section.

Since the bivariate parameters (αj , θj), j = 1, 2, . . . , p are independent with each other,

we choose the bivariate priors of (αj , θj) with the following form

πj(αj , θj) = πj1(θj |αj)πj2(αj), αj > 0, θj > 0. (11)

Therefore, the joint prior density function of Θ = (α1, θ1, α2, θ2, . . . , αp, θp) is formed as

π(Θ) =
p∏
j=1

πj(αj , θj).

From Equations (5) and (11), the joint posterior density function is proportional to

π(Θ | t̃) ∝
p∏
j=1

α
dj
j θ

dj
j exp(−Wj + Vj) · πj(αj , θj), (12)

where dj , Wj and Vj for j = 1, 2, . . . , p are given in Equation (7). The joint posterior

density function (12) indicates that the bivariate parameters (αj , θj) are independent with
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each other after considering the prior information and the sample information from the

density function of type-j failure cause. Thus, we have

π(αj , θj | t̃ ) ∝ αdjj θ
dj
j exp(−Wj + Vj) · πj(αj , θj). (13)

As for πj(αj , θj) in Equation (13), Jaheen and Harbi [22] suggested a bivariate prior to

obtain Bayesian estimates of the parameters for the exponentiated Weibull model based

on the generalized order statistics from the Type-II progressive censoring samples. The

bivariate prior was initially chosen by Nassar and Eissa [23] and applied to disscuss Bayesian

estimation by Kim et al. [20], where the prior of θj was the gamma prior conditionally

when αj was known and the prior of αj was the exponential prior. Jaheen and Harbi [22]

explained that the prior belief of the experimenters could be covered by the gamma prior,

then they took the gamma prior πj2(αj) instead of the exponential prior of αj .

According to above discussions, the prior distributions in the competing risks model

are taken as follows

πj1(θj |αj) =
α−vj
Γ(v)

θv−1j e−θj/αj , θj > 0,

πj2(αj) =
b−d

Γ(d)
αd−1j e−αj/b, αj > 0,

where v, b and d are assumed to be known. Therefore, the joint prior of αj and θj can be

expressed as

πj(αj , θj) =
b−d

Γ(v)Γ(d)
θv−1j αd−v−1j exp

[
−
( θj
αj

+
αj
b

)]
, θj > 0, αj > 0. (14)

By substituting Equation (14) into Equation (13), we get

π(αj , θj | t̃ ) ∝ αdj+d−v−1j θ
dj+v−1
j exp

[
−
(
Wj − Vj +

θj
αj

+
αj
b

)]
.

Under the squared loss function, the Bayesian estimate of a function gj = g(αj , θj), for

j = 1, 2, . . . , p, can be given by

ĝjB = Eαj ,θj | t̃ [g(αj , θj)] =

∫ ∞
0

∫ ∞
0

g(αj , θj)π(αj , θj | t̃ )dαjdθj∫ ∞
0

∫ ∞
0

π(αj , θj | t̃ )dαjdθj

. (15)

Note that the Bayes estimate of gj = g(αj , θj) in Equation (15) cannot be computed

with closed forms. Therefore, we employ MCMC method, which was introduced by Chen

and Shao [24], to obtain the Bayes estimates (BEs) and highest posterior density (HPD)

credible intervals of unknown parameters. The main steps of computation are given as

follows.



No. 4 ZHANG C. F., et al.: Statistical Inference on Competing Risks Model from EWD under Type-I PHCD 339

Step 1: Set i = 1 and an initial value ω(i) = (α
(i)
j , θ

(i)
j );

Step 2: Let i = i + 1. Generate a proposal ω∗ from a bivariate proposal distribution

q(ω |ω(i−1)) and a u from a Uniform(0, 1) distribution. Evaluate the acceptance

probability

β = min
(

1,
π(ω∗ | t̃ )

π(ωi−1 | t̃ )

q(ωi−1 |ω∗)
q(ω∗ |ωi−1)

)
.

If u 6 β, accept the proposal ωi = ω∗. Otherwise, ωi = ωi−1;

Step 3: Repeat Step 2 until i = M . Obtain (α
(1)
j , θ

(1)
j ), (α

(2)
j , θ

(2)
j ), . . . , (α

(M)
j , θ

(M)
j ) and

{g(i)j = g(α
(i)
j , θ

(i)
j ), i = 1, 2, . . . ,M};

Step 4: The Bayes estimates α̂jB, θ̂jB and ĝjB can be approximated by

α̂jB =

M∑
i=M0

α
(i)
j

M −M0
, θ̂jB =

M∑
i=M0

θ
(i)
j

M −M0
, ĝjB =

M∑
i=M0

g
(i)
j

M −M0
,

and their posterior variances are, respectively,

M∑
i=M0

(α
(i)
j − α̂jB)2

M −M0
,

M∑
i=M0

(θ
(i)
j − θ̂jB)2

M −M0
,

M∑
i=M0

(g
(i)
j − ĝjB)2

M −M0
,

where M0 is the burn-in period;

Step 5: Order g
(i)
j , M0 6 i 6M , that is,

g
(M0+1)
j 6 g

(M0+2)
j 6 · · · 6 g

(M)
j .

The 100(1 − γ)% HPD credible intervals of gj is given by (g
(i∗)
j , g

(i∗+(1−γ)M)
j ),

where i∗ satisfies

g
(i∗+(1−γ)M)
j − g(i

∗)
j = min

M06i6γM
(g

(i+(1−γ)M)
j − g(i)j ).

Similarly, we can obtain HPD credible intervals of αj and θj .

When gj = F j(t;αj , θj), the Bayes estimates of F j(t;αj , θj) is ĝjB. Thus, the reliability

R(t) in Equation (4) can be estimated by R̂M =
p∏
j=1

ĝjB.

§5. Numerical Analysis

In this section, we present the numerical results of MLEs and BEs of the shape pa-

rameters and reliability function based on the competing risks model under Type-I PHCS.
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Meanwhile, mean squared errors (MSEs) and interval lengths (ILs) of 95% asymptotic

confidence intervals and HPD credible intervals are shown to discuss the performance of

the MLEs and BEs.

Consider two competing risks, that is, p = 2. Set the values of shape parameters

(α1, θ1, α2, θ2) = (2.0, 3.0, 3.0, 2.0), and the values of the hyper-parameters from prior

density functions (d, v, b) = (3.0, 2.0, 1.0). Removal vector (R1, R2, . . . , Rm) in Type-I

PHCS satisfies that R1 = R2 = · · · = Rm−1 = [n/m]−1 and Rm = n−m−
m−1∑
i=1

Ri, where

{[x], x > 0} presents the lower nearest integer of x. Using MCMC method to compute

BEs and HPD credible intervals, the sample size M of Markov chain is equal to 5 000 with

the burn-in period M0 = 500. The numerical results of MLEs and BEs for parameters

and reliability function at t = 0.5 are reported in Tables 1 – 4.

Tabel 1 MLEs, MSEs (between brackets) and ILs of shape parameters

(n,m/n) Parameters T0 = 1.0 T0 = 1.4 T0 = 2.0

(30, 0.2) α1 2.3683 (0.1590), 4.0939 2.3889 (0.2019), 4.1494 2.5433 (0.3356), 4.4651

α2 4.0852 (1.6561), 5.7009 4.1578 (1.7120), 5.7109 3.9204 (1.2750), 5.3980

θ1 2.1401 (0.7393), 3.1526 2.1446 (0.7315), 3.2894 2.1360 (0.7360), 3.2880

θ2 1.6210 (0.1436), 2.5080 1.5710 (0.1840), 2.4539 1.5615 (0.1853), 2.4815

(45, 0.2) α1 2.4071 (0.1927), 3.5103 2.4124 (0.2237), 3.5465 2.6226 (0.4391), 4.0189

α2 4.2069 (1.6506), 4.8467 4.1785 (1.8456), 4.7850 4.2981 (2.0111), 4.9307

θ1 2.2501 (0.5622), 2.8325 2.1814 (0.6699), 2.8616 2.2367 (0.5825), 2.8792

θ2 1.5649 (0.1892), 1.9453 1.5932 (0.1654), 2.0684 1.5590 (0.1944), 1.9886

(60, 0.2) α1 2.2056 (0.0510), 2.7600 2.7747 (0.7305), 4.0681 2.1933 (0.0374), 2.7966

α2 3.8448 (0.9332), 3.6121 4.0027 (1.0055), 3.8058 4.6396 (3.0962), 4.6405

θ1 2.2436 (0.5721), 2.4403 2.4396 (0.3140), 2.9763 2.1766 (0.6780), 2.4817

θ2 1.5272 (0.2235), 1.6017 1.4221 (0.3113), 1.4974 1.6150 (0.1482), 1.7956

(60, 0.4) α1 2.1093 (0.0167), 3.0461 1.5778 (0.1783), 2.2613 1.6728 (0.1070), 2.3680

α2 4.0419 (1.2812), 3.7121 4.8172 (3.4122), 3.8257 4.3952 (2.0312), 3.4120

θ1 1.9567 (1.0886), 2.4946 1.3078 (2.5670), 1.8400 1.3110 (2.3685), 1.8644

θ2 1.3604 (0.4090), 1.3792 1.2582 (0.5502), 1.1891 1.2218 (0.6057), 1.1485

(100, 0.4) α1 1.9371 (0.0018), 2.3596 1.5415 (0.2103), 1.8731 1.4607 (0.2908), 1.7930

α2 3.9486 (1.0186), 2.5894 4.2682 (1.6083), 2.5265 4.3961 (1.9491), 2.5977

θ1 2.0832 (0.8404), 2.1557 1.3415 (2.3670), 1.5609 1.3061 (2.3836), 1.5055

θ2 1.3141 (0.4704), 0.9697 1.1782 (0.6754), 0.8492 1.2055 (0.6313), 0.8585

In Tables 1 – 2, we can find that MSEs of MLEs and BEs decrease as n increases for

fixed m/n and T0. The ILs of asymptotic confidence intervals and HPD credible intervals
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Tabel 2 BEs, MSEs (between brackets) and ILs of shape parameters

(n,m/n) Parameters T0 = 1.0 T0 = 1.4 T0 = 2.0

(30, 0.2) α1 2.3124 (0.1242), 2.8446 2.3221 (0.1522), 2.8086 2.5077 (0.3084), 2.9966

α2 3.9842 (1.4622), 4.3061 4.0626 (1.4996), 4.3830 3.8599 (1.1539), 4.1868

θ1 2.2110 (0.6225), 2.4967 2.1884 (0.6586), 2.4825 2.1915 (0.6441), 2.4963

θ2 1.7357 (0.0699), 2.2706 1.6902 (0.0960), 2.1650 1.6625 (0.1113), 2.1302

(45, 0.2) α1 2.2613 (0.0859), 2.7884 2.2390 (0.1018), 2.7528 2.4987 (0.2902), 2.9045

α2 3.9525 (1.0977), 4.3715 4.0256 (1.4534), 4.3570 4.0984 (1.4844), 4.4942

θ1 2.2628 (0.5435), 2.5887 2.1530 (0.7174), 2.3563 2.2600 (0.5477), 2.5614

θ2 1.6187 (0.1454), 2.0417 1.6438 (0.1269), 2.1563 1.5883 (0.1695), 1.9865

(60, 0.2) α1 2.2056 (0.0510), 2.7600 2.7747 (0.7305), 4.0681 2.1933 (0.0374), 2.7966

α2 3.8448 (0.9332), 3.6121 4.0027 (1.0055), 3.8058 4.6396 (3.0962), 4.6405

θ1 2.2436 (0.5721), 2.4403 2.4396 (0.3140), 2.9763 2.1766 (0.6780), 2.4817

θ2 1.5272 (0.2235), 1.6017 1.4221 (0.3113), 1.4974 1.6150 (0.1482), 1.7956

(60, 0.4) α1 2.1093 (0.0167), 3.0461 1.5778 (0.1783), 2.2613 1.6728 (0.1070), 2.3680

α2 4.0419 (1.2812), 3.7121 4.8172 (3.4122), 3.8257 4.3952 (2.0312), 3.4120

θ1 1.9567 (1.0886), 2.4946 1.3078 (2.5670), 1.8400 1.3110 (2.3685), 1.8644

θ2 1.3604 (0.4090), 1.3792 1.2582 (0.5502), 1.1891 1.2218 (0.6057), 1.1485

(100, 0.4) α1 1.9371 (0.0018), 2.3596 1.5415 (0.2103), 1.8731 1.4607 (0.2908), 1.7930

α2 3.9486 (1.0186), 2.5894 4.2682 (1.6083), 2.5265 4.3961 (1.9491), 2.5977

θ1 2.0832 (0.8404), 2.1557 1.3415 (2.3670), 1.5609 1.3061 (2.3836), 1.5055

θ2 1.3141 (0.4704), 0.9697 1.1782 (0.6754), 0.8492 1.2055 (0.6313), 0.8585

Tabel 3 MLEs, MSEs (between brackets) and ILs of reliability function at t = 0.5

(n,m/n) Reliability T0 = 1.0 T0 = 1.4 T0 = 2.0

(30, 0.2) R(0.5) 0.8764 (0.0112), 0.8859 0.8638 (0.7462), 0.8978 0.8595 (0.7387), 0.8965

(45, 0.2) R(0.5) 0.8870 (0.0136), 0.7326 0.8733 (0.0106), 0.7563 0.8731 (0.0105), 0.7535

(60, 0.2) R(0.5) 0.8951 (0.0155), 0.6100 0.8750 (0.0109), 0.6489 0.8861 (0.0134), 0.6160

(60, 0.4) R(0.5) 0.8357 (0.0043), 0.7245 0.6971 (0.0054), 0.7540 0.6801 (0.0082), 0.7367

(100, 0.4) R(0.5) 0.8479 (0.0060), 0.5478 0.6889 (0.0066), 0.6341 0.6757 (0.0090), 0.6207

Tabel 4 BEs, MSEs (between brackets) and ILs of reliability function at t = 0.5

(n,m/n) Reliability T0 = 1.0 T0 = 1.4 T0 = 2.0

(30, 0.2) R(0.5) 0.8865 (0.0135), 0.0973 0.8722 (0.0104), 0.0937 0.8706 (0.0100), 0.0970

(45, 0.2) R(0.5) 0.8796 (0.0119), 0.0948 0.8683 (0.0096), 0.0924 0.8674 (0.0094), 0.0884

(60, 0.2) R(0.5) 0.8787 (0.0117), 0.1014 0.8530 (0.0068), 0.0806 0.8652 (0.0090), 0.0876

(60, 0.4) R(0.5) 0.8145 (0.0019), 0.0882 0.6809 (0.0080), 0.0943 0.6605 (0.0121), 0.0964

(100, 0.4) R(0.5) 0.8017 (0.0010), 0.0640 0.6479 (0.0150), 0.0679 0.6422 (0.0164), 0.0589
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become smaller when n increases. From Tables 3 – 4, it can be found that ILs decrease

with the increasing n for fixed m/n and T0 except for some cases. As the estimates of

parameters and reliability index are obtained under Type-I PHCS, the final termination

time is flexible. Thus, these cases in Tables 3 – 4 are admissible. In summary, the maximum

likelihood estimation and Bayesian estimation have a good performance.

§6. Conclusion

We construct an exponentiated-Weibull competing risks model based on Type-I pro-

gressively hybrid censoring scheme in this paper. Maximum likelihood estimation and

Bayesian estimation are discussed to analyze our model. By simulation study, it is con-

cluded that the proposed model is available to analyze the failure data with nonmonotone

hazard rate. The maximum likelihood estimation and Bayesian estimation have a good

performance. In future work, the model can be applied into accelerated life tests for

products with high reliability.

References

[1] MUDHOLKAR G S, SRIVASTAVA D K. Exponentiated Weibull family for analyzing bathtub failure-

rate data [J]. IEEE Trans Reliab, 1993, 42(2): 299–302.

[2] NADARAJAH S, CORDEIRO G M, ORTEGA E M M. The exponentiated Weibull distribution: a

survey [J]. Statist Papers, 2013, 54(3): 839–877.

[3] AHMAD N, ISLAM A, SALAM A. Analysis of optimal accelerated life test plans for periodic in-

spection: the case of exponentiated Weibull failure model [J]. Int J Qual Reliab Manag, 2006, 23(8):

1019–1046.

[4] AHMAD N, BOKHARI M U, QUADRI S M K, et al. The exponentiated Weibull software reliability

growth model with various testing-efforts and optimal release policy: a performance analysis [J]. Int

J Qual Reliab Manag, 2008, 25(2): 211–235.

[5] AHMAD N, KHAN M G M, QUADRI S M K, et al. Modelling and analysis of software reliability with

Burr type X testing-effort and release-time determination [J]. J Model Manag, 2009, 4(1): 28–54.

[6] AHMAD N, KHAN M G M, RAFI L S. A study of testing-effort dependent inflection S-shaped

software reliability growth models with imperfect debugging [J]. Int J Qual Reliab Manag, 2010,

27(1): 89–110.

[7] AHMAD N, QUADRI S M K, MOHD R. Comparison of predictive capability of software reliability

growth models with exponentiated Weibull distribution [J]. Int J Comput Appl, 2011, 15(6): 40–43.

[8] BADARINATHI R, TIWARI R C. Hierarchical Bayesian approach to reliability estimation under

competing risk [J]. Microelectron Reliab, 1992, 32(1-2): 249–258.



No. 4 ZHANG C. F., et al.: Statistical Inference on Competing Risks Model from EWD under Type-I PHCD 343

[9] WANG C P, GHOSH M. Bayesian analysis of bivariate competing risks models [J]. Sankhyā Ser B,
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