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Abstract: The additive model is a more flexible nonparametric statistical model which allows a

data-analytic transform of the covariates. When the number of covariates is big and grows expo-

nentially with the sample size the urgent issue is to reduce dimensionality from high to a moderate

scale. In this paper, we propose and investigate marginal empirical likelihood screening methods

in ultra-high dimensional additive models. The proposed nonparametric screening method selects

variables by ranking a measure of the marginal empirical likelihood ratio evaluated at zero to dif-

ferentiate contributions of each covariate given to a response variable. We show that, under some

mild technical conditions, the proposed marginal empirical likelihood screening methods have a

sure screening property and the extent to which the dimensionality can be reduced is also explic-

itly quantified. We also propose a data-driven thresholding and an iterative marginal empirical

likelihood methods to enhance the finite sample performance for fitting sparse additive models.

Simulation results and real data analysis demonstrate the proposed methods work competitively

and performs better than competitive methods in error of a heteroscedastic case.
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§1. Introduction

In current practical problems, high-dimensional data are more frequently seen in fi-

nance, biomedical sciences, geological studies and many more areas. Statistical methods
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for high dimensional data analysis play more important roles to deal with large volume

of data containing considerably many features. The general cases can be considered as

the number of variables p may be larger than the number of observations n. We often

assume ln p = O(nι) for some ι ∈ (0, 1/2) that can be seen in [1–3] for overviews. Iden-

tifying relevant features becomes a fundamental objective of statistical analysis with high

dimensional data.

To selection variables more effectively, statisticians proposed and investigated differ-

ent screening methods to eliminate uncorrelated variables. Sure independent screening

procedure arrives, for example, Fan and Lv [4] for linear model, Fan and Song [5] for gen-

eralized linear models, Fan et al. [6] for nonparametric additive models, He et al. [7] for

model-free nonparametric quantile regression, respectively. Fan and Lv [4] and Fan and

Song [5] screened variables by ranking the absolute values of marginal estimates of model

coefficients, and Fan et al. [6] performed screening by ranking integrated squared marginal

nonparametric curve estimates. Fan and Song [5] also carried out independence screen-

ing by examining the magnitudes of the likelihood ratios. He et al. [7] screened variables

by marginal nonparametric quantile curve estimates. More development about feature

screening are in [8–12] and so on.

In this paper we consider the additive models, as Y =
p∑
j=1

mj(Xj) + ε, introduced

by Stone [13]. In the screening framework based marginal empirical likelihood [14, 15], our

technical shares some similarity with that [12] in which the empirical likelihood screen-

ing is discussed for linear model and the the generalized linear models. The empirical

likelihood [14, 15] is demonstrated effectively with less restrictive distributional assump-

tions for statistical inferences by incorporating the moment constraints into the classical

likelihood-based framework; see [16, 17] and reference therein. The statistical literature

contains recently numerous procedures of the empirical likelihood approach to deal with

high-dimensional data; see [18–22]. The empirical likelihood approach, however, encoun-

ters built-in challenge when data dimensionality is high. We refer to [12] in which the

marginal empirical likelihood was introduce to screen variables in linear model with ultra-

high dimensional data and we propose the marginal empirical likelihood screening method

for additive model. we apply B-spline bases to appropriate the marginal effects of addi-

tive components and select the important variables by ranking a measure of the marginal

empirical likelihood ratio evaluated at zero. Simulation results and real data analysis

demonstrate the proposed methods work competitively and performs better than compet-

itive methods in error of a heteroscedastic case.
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The remainder of the article is organized as follows. In Section 2, we introduce the

nonparametric marginal empirical likelihood for additive model. In this section we describe

the marginal empirical likelihood methodology and present the theoretical properties for

nonparametric independent screening. Section 3 gives the algorithm about an iterative

sure screening procedure. Numerical examples and real data analysis are given in Section

4. We relegate the proofs to Section 5.

§2. Marginal Empirical Likelihood of Nonparametric

Additive Model

2.1 Models and Notation

Let Yi ∈ R1 (i = 1, 2, . . . , n) be the response from the ith subject, xi = (Xi1, Xi2, . . .,

Xip)
T ∈ Rp be the associated p-dimensional predictor, Xj is the jth covariate and its n

independent observation denoted as (X1j , X2j , . . . , Xnj)
T. We assume that

Yi =
p∑
j=1

mj(Xij) + εi, (1)

where mj(·) is a general unknown smooth function, εi is the random error with mean 0.

Let M∗ = {j : E[mj(Xj)]
2 > 0} be the true sparse model and nonsparsity size is s = |M∗|.

We allow p to grow with n and denote it by pn.

Without loss of generality, we assume that each Xij takes values on the interval

[0, 1]. Let S be the space of the functions defined in condition A1 in Section 2.3 and

0 = t0 < t1 < · · · < tk = 1 be a partition of the interval. Using the ti as knots, we

construct N = k + l normalized B-spline basis functions which form a basis of order

l+ 1. We denote these basis functions as vector B(t) = {B1(t), B2(t), . . . , BN (t)}T, where

‖B(t)‖∞ 6 1 and ‖ ·‖∞ denotes the sup norm. Assume that fj(t) ∈ S . Then fj(t) can be

well approximated by a linear combination of the basis functions BT(t)βj , for some βj ∈
RN . Denote nonparametric marginal projections as {fj(Xij)}pj=1 that is approximated as

{fnj(Xij)}pj=1, a.e., fnj(Xij) = BT(Xij)βj .

2.2 Marginal Empirical Likelihood Methodology

We firstly consider the marginal moment condition of the least squares estimator:

E{Bk(Xj)[Yi −BT(Xj)βj ]} = 0 (k = 1, 2, . . . , N, j = 1, 2, . . . , p). (2)
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From (2) we can note that E[Bk(Xj)B
T(Xj)βj ] = E[Bk(Xj)Yi]. Let {(xi, Yi)}ni=1 be collect-

ed independent data, gijk(β) = Bk(Xij)[Yi − BT(Xij)β] (k = 1, 2, . . . , N , j = 1, 2, . . . , p).

We define the following marginal empirical likelihood:

Ljk(βjk) = sup
{ n∏
i=1

ωi : ωi > 0,
n∑
i=1

ωi = 1,
n∑
i=1

ωigijk(βjk) = 0
}

(3)

for j = 1, 2, . . . , p, k = 1, 2, . . . , N . For any given β such that 0 in the convex hull of

{Bk(Xij)Yi}ni=1, the marginal empirical likelihood ratio is defined as

`jk(βjk) = −2 ln[Ljk(βjk)]− 2n lnn = 2
n∑
i=1

ln[1 + λgijk(βjk)], (4)

where λ is the Lagrange multiplier satisfying

0 =
n∑
i=1

gijk(β)

1 + λgijk(β)
. (5)

To obtain the objective of dimensional reducing we select active variableXj if marginal

signal |fj(Xj)| is more larger than some a given positive constant, i.e., |BT(Xij)β| is large

enough, where |a| denotes the absolute value of a. We know that |BT(Xij)β| may be small

when βk (k = 1, 2, . . . , N) are not all 0. However, to differentiate parametric marginal

signal by E[Bk(Xj)Yi], it is only needed βj = 0. We test the null hypothesis H0 : βj = 0 so

that `jk(0) has a very clear practical interpretation for the marginal empirical likelihood

ratio (4) with gijk(βjk) = Bk(Xij)[Yi − BT(Xij)βjk]. So we can use `jk(0) as a device for

feature screening.

Let `j(0) = max{`j1(0), `j2(0), . . . , `jN (0)}. We select the variable as

M̂γn = {1 6 j 6 p : `j(0) > γn},

where the threshold level γn is predefined.

2.3 Main Results

To achieve the theoretical basis of the sure screening, we impose the following as-

sumption:

A1 The nonparametric marginal projections {fj}pj=1 ∈ S . S is the collection of a class

of functions defined on [0, 1], whose rth derivative f rj exists and is Lipschitz of order

α: |f rj (s) − f rj (t)| 6 K|s − t|α for some positive constant K, where s, t ∈ [0, 1] and

α ∈ (0, 1] such that d = r + α > 0.5.

A2 Random variables Y has bounded variance and min
j∈M∗

E|E(Y |Xj)| > c1N
1/2n−κ for

some 0 < κ < d/(2d+ 1) and c1 > 0.
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A3 There exist positive constant c3 such that N−d−1/2 = c3n
−κ.

A4 There exist positive constants T1, T2, ι1, ι2 such that

P{|Xj | > z} 6 T1 exp(−T2zι1) for u > 0 (j = 1, 2, . . . , p),

P{|Y | > z} 6 T1 exp(−T2zι2) for u > 0 (j = 1, 2, . . . , p).

From [12], `(βj) was showed to tend towards infinity in probability with n→∞, and

`(βj) don’t exceed some number depending n in probability, under some additions. We

now establish the general result for the distribution of empirical likelihood ratio.

Theorem 1 Under assumptions A1 – A4, there exists a positive constant C1 depend-

ing only on T1, T2, ι1 and ι2 appeared in additions A4 such that

max
j∈M∗

P{`j(0) < c25Nn
2τ}

6

exp(−C1Nn
(1−κ)∧[(1−κ−τ)ι/2]), if (1− κ)(1− δ) < 1;

exp(−C1Nn
[(1−κ/2)/(1+δ)]∧[(1−κ−τ)(ι/2)]), if (1− κ)(1 + 2δ) > 1,

where ι = ι1ι2/(ι1 + ι2) and δ = max{2/ι− 1, 0}.

Theorem 2 Under assumptions A1 – A4, there exists a positive constant C1 depend-

ing only on T1, T2, ι1 and ι2 appeared in additions A4 such that, for any τ ∈ (0, (1− κ)/2)

and γn = c25Nn
2τ ,

P{M∗ ⊂ M̂γn}

>

1− s exp(−C1Nn
(1−κ)∧[(1−κ−τ)ι/2]), if (1− κ)(1− δ) < 1;

1− s exp(−C1Nn
[(1−κ/2)/(1+δ)]∧[(1−κ−τ)(ι/2)]), if (1− κ)(1 + 2δ) > 1,

where ι = ι1ι2/(ι1 + ι2) and δ = max{2/ι− 1, 0}.

We know that the results of Theorem 1 and Theorem 2 holds under the conditions

N = O(n2κ/(1+2d)) and

ln p =

o(Nn(1−κ)∧[(1−κ−τ)ι/2]), if (1− κ)(1− δ) < 1;

o(Nn[(1−κ/2)/(1+δ)]∧[(1−κ−τ)(ι/2)]), if (1− κ)(1 + 2δ) > 1.

§3. Conditional Permutation Iterative Screening Method

To tackle the problem of correlated explanatory variables, we propose the following

random permutation iterative screening method.
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Step 1: Compute `jk(0) for k = 1, 2, . . . , N and j = 1, 2, . . . , p by (4) and (5). Select

the top K explanatory variables by ranking their marginal empirical likelihood `j(0), where

`j(0) = max
k∈{1,2,...,N}

{`jk(0)}. We select K = 1 or the number of less than the number of

prespecified covariables. Denote the index set of selected variables as M0.

Step 2: For data {(Xj , Y ), j ∈ M0}, apply B-spline to estimate mj(Xj) and get

m̂j(Xj). Conddition on M0, the partial residual is

Y ∗ = Y −
∑
j∈M0

m̂j(Xj).

Compute `∗j (0) using {(Xj , Y
∗), j ∈M c

0 }. We determine the threshold value by applying

random permutation on the partial residual Y ∗, which yields Y ∗Q, where Y ∗Q = {Y ∗Q1,

Y ∗Q2, . . . , Y
∗
Qn}T and {Q1, Q2, . . . , Qn} is a permutation of {1, 2, . . . , n}. Compute `Q∗j (0)

for {(Xj , Y
∗
Q), j ∈M c

0 }. Let γ∗q be the qth-ranked magnitude of {`Q∗j (0), j ∈M c
0 }. Then,

the active variable set of variables is chosen as

A1 = {j : `∗j (0) > γ∗q , j ∈M c
0 } ∪M0.

In our numerical studies, q = 1.

Step 3: Apply penalized empirical likelihood [21] to explanatory variables in A1 to

select variables and get M1.

Step 4: Repeat Step 2 and Step 3 k steps until Ak = Ak+1 or Ak+1 reaches a

pre-specified number.

§4. Numerical Results

In this section, we study the performance of our proposed methods on the simulated

data and in a real data analysis. We appropriate the marginal function by cubic B-spline,

N = 7. We compare our proposed nonparametric empirical likelihood-based screening

procedure (denoted by NEL-SIS) and corresponding iterative procedure (denoted by NEL-

ISIS), with the screening methods proposed in [6] (denoted by NLS-SIS and NLS-ISIS) and

[7] (denoted by QaSIS) for nonparametric additive models, respectively. For the method

QaSIS [7], we consider two case that the quantile α = 0.5 and α = 0.75. We set n = 100

and p = 1, 000 and 200 repetition for all the examples. We get the number of the final

model with the respective SCAD penalized variables and screen to a much smaller number

d of explanatory variables. For each example, we report the number that each important

explanatory variables is selected in the final model for 200 repetitions and the average

number of unimportant explanatory variables being selected.



132 Chinese Journal of Applied Probability and Statistics Vol. 35

Let

h1(x) = x, h2(x) = (2x− 1)2, h3(x) =
sin(2πx)

2− sin(2πx)
,

and

h4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin(2πx)2 + 0.4 cos(2πx)3 + 0.5 sin(2πx)3.

Example 3 The response is generated as Y = 5h1(X1) + 3h2(X2) + 4h3(X3) +

6h4(X4) +
√

1.74ε, with ε being independent of explanatory variables. We consider ε as

three different distribution N(0, 1), N(0, 22), t4. The covariates are generated as follows:

Xj =
Uj + tUp+1

1 + t
, j = 1, 2, . . . , p,

where {Ui}p+1
i=1 are i.i.d. uniform random variables on [0, 1]. When t = 0, Xi is uncorrelated

with Xj , i 6= j as t = 1 the pairwise correlation of covariates is 0.5.

Example 4 The example has 12 important variables with different coefficients

Y = h1(X1) + h2(X2) + h3(X3) + h4(X4)

+ 1.5h1(X5) + 1.5h2(X6) + 1.5h3(X7) + 1.5h4(X8)

+ 2h1(X9) + 2h2(X10) + 2h3(X11) + 2h4(X12) +
√

0.518ε.

The covariates generated and the error ε are as in Example 3.

We set random samples of size n = 100 and d = [n/(2 lnn)] = 10 in Example 3 and

d = [n/(lnn)] = 21 in Example 4, where [a] denotes the largest integer that is less than or

equal to a. The results of Example 3 and Example 4 are reported in Table 1 and Table 2,

where we report the number of repetitions of the important explanatory variables selected.

We report their average number of repetitions of unimportant explanatory variables. It

shows that the proposed empirical likelihood-based screening methods perform very com-

petitively compared to the screening method proposed by [6] and similarly by iterative

algorithm, respectively. When true important variables are fewer, the selection effects gets

better.

Example 5 We use the example of [23]. The data is generated as Y = 2Z1 + 2Z2 +

2Z3 − 3
√

2Z4 + ε, where ε is simulated as three different distribution N(0, 1), N(0, 22), t4.

The covariates Z1, Z2, . . . , Zp are jointly Gaussian, marginally N(0, 1), and with corr(Zj , Z4)

= 1/
√

2 for all j 6= 4 and corr(Zi, Zj) = 1/2 if i 6= j, i 6= 4, j 6= 4. Note Z4 is independent

of Y , even though it is the most important variable in the joint model. In Example 5 we set

random samples of size n = 100 and d = [n/(2 lnn)] = 10. The results are reported in Table
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Table 1 Model selection results for Example 3

Unimportant explanatory

ε Method X1 X2 X3 X4 variables

N(0, 1) t = 0 NLS-NIS 196 196 199 198 1.516013

NEL-NIS 192 190 189 182 1.533261

NLS-INIS 200 200 200 200 0.987642

NEL-INIS 200 200 200 200 0.723519

t = 1 NLS-NIS 196 195 197 200 1.530386

NEL-NIS 196 186 188 183 1.542543

NLS-INIS 200 200 200 200 1.504923

NEL-INIS 200 200 200 200 1.097082

N(0, 22) t = 0 NLS-NIS 195 197 199 196 1.516123

NEL-NIS 192 185 183 185 1.520312

NLS-INIS 200 200 200 200 1.502164

NEL-INIS 200 200 200 200 1.089732

t = 1 NLS-NIS 195 196 195 198 1.518326

NEL-NIS 190 192 189 183 1.550329

NLS-INIS 200 200 200 200 1.512904

NEL-INIS 200 200 200 200 1.102114

t4 t = 0 NLS-NIS 194 198 198 199 1.517438

NEL-NIS 190 186 183 182 1.551326

NLS-INIS 200 200 200 200 1.503214

NEL-INIS 200 200 200 200 1.087921

t = 1 NLS-NIS 194 199 198 196 1.518458

NEL-NIS 190 186 182 185 1.548921

NLS-INIS 200 200 200 200 1.504116

NEL-INIS 200 200 200 200 1.095410

3. We note from Table 3 that the proposed empirical likelihood-based screening methods is

challenged by the important explanatory variable Z4 but the corresponding iterative screening

can easily pick it up and perform competitively compared to the screening method proposed

by [6].

Example 6 We investigate the performance of the nonparametric empirical likeli-

hood-based screening procedure under a heteroscedastic example. The data is generalized

as following: Y = c[h1(X1) − h2(X2) + h3(X3)] + ε/(X2
1 + X2

2 + X2
3 ) with independent
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Table 2 Model selection results for Example 4

Unimportant

ε Method X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 variables

N(0, 1) t = 0 NLS-NIS 192 191 187 187 191 188 182 180 185 184 180 180 1.553213

NEL-NIS 189 183 180 182 184 180 178 177 175 175 172 171 1.586431

NLS-INIS 200 198 198 195 198 195 193 192 195 195 194 192 1.132041

NEL-INIS 196 192 192 189 193 190 185 186 192 190 186 186 1.042106

t = 1 NLS-NIS 192 190 187 188 189 186 183 180 184 183 178 182 1.622905

NEL-NIS 192 186 185 183 185 184 180 178 180 175 178 180 1.638423

NLS-INIS 199 197 197 195 198 195 197 199 196 194 194 192 1.102865

NEL-INIS 199 196 195 195 195 193 195 197 195 191 195 195 1.08632

N(0, 22) t = 0 NLS-NIS 192 190 190 189 192 187 183 179 186 183 180 181 1.553185

NEL-NIS 188 183 178 181 183 176 176 177 175 174 171 170 1.553890

NLS-INIS 199 199 198 196 198 195 194 193 194 195 193 193 1.102232

NEL-INIS 194 193 193 189 191 189 185 185 190 190 184 183 1.002365

t = 1 NLS-NIS 192 189 187 188 189 186 184 181 185 184 177 182 1.622915

NEL-NIS 190 185 185 182 185 184 180 176 180 173 176 180 1.627295

NLS-INIS 200 196 197 195 198 195 193 193 194 195 193 193 1.102439

NEL-INIS 199 196 194 194 195 192 193 196 195 191 192 192 1.08465

t4 t = 0 NLS-NIS 192 191 190 189 192 187 182 180 186 183 181 181 1.553169

NEL-NIS 190 185 180 183 183 180 178 178 176 175 174 174 1.550321

NLS-INIS 200 199 197 197 198 195 194 193 194 195 193 193 1.102264

NEL-INIS 194 193 195 195 196 193 194 192 194 195 192 193 1.002342

t = 1 NLS-NIS 193 189 188 187 188 186 185 181 186 184 178 181 1.622890

NEL-NIS 190 184 184 182 183 183 178 178 179 173 175 175 1.627287

NLS-INIS 200 196 196 196 197 196 193 192 194 194 193 193 1.102428

NEL-INIS 199 195 194 194 195 190 192 194 194 190 191 192 1.08273

ε ∼ N(0, 1), Xj ∼ N(0, 1) (j = 1, 2, 3), Cov (Xi, Xj) = 0 (i, j = 1, 2, 3) for i 6= j and

c > 0 controls the signal level. In Example 6 we set random samples of size n = 100 and

d = [n/(2 lnn)] = 10. The results are reported in Table 4. It shows that the proposed em-

pirical likelihood-based screening methods perform better compared to the screening method

proposed by [6], which is affected by the heteroscedasticity.

From Example 3 – Example 6, we can know our proposed nonparametric empirical

likelihood-based screening procedure are better methods under the heteroscedasticity. In
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Table 3 Model selection results for Example 5

Unimportant explanatory

ε Method Z1 Z2 Z3 Z4 variables

N(0, 1) LS-INIS 196 196 195 0 1.523128

EL-INIS 196 194 191 0 1.527039

LS-INIS 200 198 198 193 1.103980

EL-INIS 199 199 198 188 0.853952

N(0, 22) LS-INIS 196 195 196 0 1.521642

EL-INIS 195 193 190 0 1.528437

LS-INIS 200 199 197 193 1.234326

EL-INIS 200 200 196 186 0.923824

t4 LS-INIS 196 193 193 0 1.522365

EL-INIS 198 193 195 0 1.526341

LS-INIS 200 199 196 193 1.210331

EL-INIS 200 198 196 182 0.812391

Table 4 Model selection results for Example 6

Unimportant explanatory

c Method X1 X2 X3 variables

1 LS-INIS 140 132 130 1.234648

EL-INIS 185 180 176 1.056392

1.5 LS-INIS 169 165 162 1.153876

EL-INIS 193 190 187 1.082694

2 LS-INIS 180 175 173 1.062794

EL-INIS 190 185 183 1.010843

symmetric and homoscedasticity, our propose methods are similar to the least squares

screening by iterative and our proposed methods have uncomplicated algorithm and more

easy compute.

A real data example To illustrate the application of our proposed method we

use the dataset reported by [24] analyzed by [25] and [6]. For this dataset, 120 12-week

old male rats were selected to harvest tissue from the eyes and subsequent microarray

analysis. By microarrays we analyze the RNA from the eyes of these animals contain

more than 31,042 different probe sets (Affymetric GeneChip Rat Genome 230 2.0 Array).

The intensity values were normalized using the robust multichip averaging method by
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[26] to obtain summary expression values for each probe set. Gene expression levels were

analyzed on a logarithmic scale.

Following [25] and [6] we were finding the genes that are related to the TRIM32

gene, which was recently found to cause Bardet-Biedl syndrome in [27] and is a genetically

heterogeneous disease of multiple organ systems, including the retina. More than 30,000

probe sets are represented on the Rat Genome 230 2.0 Array, but many of these are not ex-

pressed in the eye tissue. We use the dataset of the 18,975 probes that are expressed in the

eye tissue, were too slowly following [25]. So we used 2,000 probe sets that are expressed

in the eye and have the greatest marginal correlation with TRIM32 in the analysis. For

the subset of the data (n = 120, p = 2, 000), we apply the proposed empirical likelihood-

based screening methods and the method of [6] to model the relationships between the

expression of TRIM32 and expression of the 2,000 genes (p = 2, 000). NLS-SIS select-

s the following 7 probes: 1371755 at, 1373534 at, 1373944 at, 1376686 at, 1374669 at,

1376747 at, 1377880 at. NEL-SIS selects the following 5 probes: 1389584 at, 1379971 at,

1373944 at, 1376686 at, 1377187 at. NLS-ISIS selects the following 7 probes: 1371755 at,

1373534 at, 1373944 at, 1380033 at, 13782263 at, 1373776 at, 1374106 at. NEL-ISIS se-

lects the following 6 probes: 1385944 at, 1382835 at, 1373944 at, 1376686 at, 1373776 at,

1382263 at.

§5. Proofs

Lemma 7 (Proposition 1 in [12]) Suppose that Z1, Z2, . . . , Zn are independent and

identically distributed random variables with E(|Zi|w) < ∞ for some w > 3. In (4) and (5)

let gijk = Zi − z for all i = 1, 2, . . . , n and obtain new `(z). If |z − z0| = O(n−u) for some

u ∈ (1/w, 1/2), then
`(z)

n(z − z0)2σ−2
P→ 1 as n→ 1,

where z0 = E(Zi) and σ2 = E(Zi − z0)2.

Lemma 8 (Proposition 1 in [12]) For independent and identically distributed random

variables U1, U2, . . . , Un, suppose that exist three positive constants T1, T2 and ι such that

P{|Ui| > u} 6 T1 exp(−T2uι) for all u > 0. Define u0 = E(Ui), δ = max{2/ι − 1, 0},
C = 21+δ and H = n1/2σ/(2K), where σ2 = E(Ui − u0)2 and K > δ is a sufficiently large

positive constant depending only on T1, T2, ι and u0, then

P
{
± 1

nσ/2

n∑
i=1

(Ui − u0) > x
}
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6


exp

(
− x2

4C

)
, if 0 6 x 6 (C1+δH)1/(1+2δ);

exp
[
− 1

4
(xH)1/(1+δ)

]
, if x > (C1+δH)1/(1+2δ),

and more then for C1 →∞, there exist a positive constant C2 only depending on T1, T2 and

ι such that

P
{
`(0) <

nu20
C2
1

}

6


exp

(
− nu20

4Cσ2

)
+ exp(−C2C

ι
1), if n1/2|u0| 6 σ(C1+δH)1/(1+2σ);

exp
[
− 1

4

(n|u0|
2K

)1/(1+δ)]
+ exp(−C2C

ι
1), if n1/2|u0| > σ(C1+δH)1/(1+2δ).

Lemma 9 Under assumption A2, let Zijk = [Bk(Xij)]Yi. Then

P{|Zijk| > z} 6 2M1 exp(−M2z
−ι).

Proof For some τ > 0,

P{|Zijk| > z} = P{|Bk(Xij)| > zτ , |[Bk(Xij)]Yi| > z}

+ P{|Bk(Xij)| 6 zτ , |[Bk(Xij)]Yi| > z}

6 P{|Bk(Xij)| > zτ}+ P{|Yi| > z1−τ}. (6)

Note that P{|Bk(Xij)| > zτ} 6 MP{|Xij | > zτ} 6 MK1 exp(−K2z
ι1) for some positive

constant M > K1.

Hence from A2,

P{|Zijk| > z} 6MK1 exp(−K2z
ι1) +K1 exp(−K2z

ι2)

6MK1 exp(−K2z
ι1) +MK1 exp(−K2z

ι2)

6 2MK1 exp(−K2z
ι),

where ι = ι1ι2/(ι1 + ι2), then the result of Lemma 7 holds. �

Proof of the Theorem 1 Without loss of generality, we assume that Bk(Xij) for

k = 1, 2, . . . , p are not all 0, a.e., for some k, there exists ε1 > 0 such that

ε1 6 Bk{Xij} 6 1. (7)

From Theorem 12.7 of [28] that there exists a positive constant c2 such that

|fj(Xij)−B(Xij)
Tβj | < c2N

−d.
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According to absolute value inequality, then

|B(Xij)
Tβj | > c2N

−d + |fj(Xij)|.

From A4, A5 for j ∈M∗, we have

E|Bk(Xj)B
T(Xj)βj | > c2N

−d + E|fj(Xj)| > c2N
−d + c1N

1/2n−κ

> c4N
1/2n−κ,

where c4 = c1 + c2c3. From above and 7, then

E|Bk(Xj)Y | = E|Bk(Xj)B
T(Xj)βj | > c5N

1/2n−κ, (8)

where c5 = ε1c4.

We now prove that E[Bk(Xj)Y ] can be bounded by a uniform constant. we denote

E[Bk(Xj)Y ] as z0j . We know E[Bk(Xj)]
2 is bounded uniformly [28]. Note that

|z0j | 6 {E[Bk(Xj)]
2}1/2[E(Y 2)]1/2,

then |z0j | is bounded uniformly. According the type (8), it is acquired that nz20j > c
2
5Nn

1−κ

for j ∈ M∗. Then by Lemma 8 and Lemma 9, we can acquire the result of Theorem 1.

�

Proof of the Theorem 2 We know that

P{M∗ $ M̂γn} = P{∃ j ∈M∗ s.t. `j(0) < c25Nn
2τ}

6 s max
j∈M∗

P{`j(0) < c25Nn
2τ},

then the result holds. �

References
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