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Abstract: In this paper, semiparametric estimation of a regression function in the third order

partially linear autoregressive model with first order autoregressive errors is mainly studied. We

suppose that the regression function has a parametric framework, and use the conditional least

squares method to obtain the parameter estimators. Then semiparametric estimators of the re-

gression function can be given by combining with the nonparametric kernel function adjustment.

Furthermore, under certain conditions, the consistency of the estimators is proved. Finally, simu-

lation research is presented to evaluate the effectiveness of the proposed method.
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§1. Introduction

A partially linear model is a kind of important statistical model developed in 1980s.

Due to the introduction of nonparametric components that represent model errors or other

systematic errors, the partially linear model contains both parametric and nonparametric

components; possess the common advantages of a parametric model and a nonparametric

model, while the adaptability is far beyond both of them; and it also has stronger explana-

tory power. Meanwhile, the so-called “curse of dimensionality” can be avoided. Owing

to the briefness, intuition, easy to be understood and the good statistical properties of

a parametric estimator, the linear model is widely used when we study the correlation

between variables. However, the parametric estimator of a linear model is obtained under
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the hypothesis that the mean value of errors term is zero, the variance is homogeneous

and unrelated to each other. Statistical inference has high accuracy, and the modeling

method is superior only when these hypotheses are established or approximated. Howev-

er, both empirical and theoretical studies show that the above hypothesis has a large gap

compared with the actual situation in many cases. The nonparametric method is based

on this consideration, and the distribution of the errors is weakened or not set, and the

statistical inference is carried out only through the sample.

An important application of a partially linear model is to deal with the time series

data, for example, the partially linear single-index model:

Yt = UT
t β + ψ(V T

t α) + εt, (1)

where (αT, βT)T are unknown parameter vectors, ψ(·) is an unknown regression function

over (−∞,∞), and εt represents random error. The linear part of the model depicts the

linear relationship between the response variable Yt and the explanatory variable Ut, and

the nonlinear part reflects the nonlinear relationship between Yt and Vt.

For the model (1), Carroll et al. [1] approximated ψ(·) locally by a linear function,

and fitted a parametric generalized linear model to obtain initial parameter estimators.

The final estimator was obtained by maximizing the local quasi-likelihood function until

convergence. Finally, they presented a class of asymptotically optimal estimators of the

unknown parameters and proved the asymptotic normality of parameter estimators. When

εt is a random variable with E(εt) = 0 and E(ε2
t ) = σ2, Xia et al. [2] considered another

equivalent form Yt = XT
t θ+ψ(XT

t η) + εt of the model (1) and used Nadaraya-Watson and

crossvalidation method to estimate (αT, βT)T and ψ(·). They further had the following

asymptotic normality results and the
√
n consistency about the estimators. The theory

and application of this model can be found in the paper [3].

In view of the complexity of the model (1), many scholars have studied several spe-

cial cases. For example, Gao and Liang [4] obtained piecewise polynomial approximator

of nonparametric components and pseudo-LS estimator of parametric components for the

second order partially linear autoregressive model. Gao and Yee [5] also considered the sec-

ond order partially linear autoregressive model and constructed kernel-based estimators

for both the parametric and nonparametric components. The proposed estimation not on-

ly had good asymptotic properties, but also was effective for both simulation research and

empirical analysis. Yu et al. [6] studied semiparametric estimation of regression functions

in autoregressive models. They supposed that the regression function had a parametric

framework. After the parameter was estimated through conditional least squares method,
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they adjusted it by a nonparametric factor, and furthermore proved the consistency of the

estimators. Farnoosh and Mortazavi [7] considered the first order nonlinear autoregres-

sive model with dependent errors which were defined as first order autoregressive AR(1).

Farnoosh et al. [8] studied the semiparametric estimation and properties of regression func-

tions in the second order partially linear autoregressive model. Amiri et al. [9] considered

semiparametric estimation of the first order functional autoregressive model. They used

the conditional nonlinear least squares method to construct the parametric estimators,

and took the recursive smooth kernel approach to estimate regression adjustment. Fur-

thermore, they investigated weak consistencies of the estimators.

This paper mainly studies the third order partially linear autoregressive model with

first order autoregressive errors:

Yt = φ1Yt−1 +φ2Yt−2 +f(Yt−3)+ut, ut = ρut−1 +εt, |φ2| < 1, φ2±φ1 < 1, |ρ| < 1, (2)

where {εt}∞t=0 is a sequence of random variables which is independent and also identically

distributed (i.i.d.) with zero mean and variance σ2, and Yt is independent with εt. We

assume that the regression function f(x) has a parametric framework {g(x, θ); θ ∈ Θ},
and through the conditional least squares method, we can get the parametric estimators

(θ̂, φ̂1, φ̂2, ρ̂). In order to avoid a misleading judgment, through multiplying by ξ̂(x) we

can obtain f̂(x) = g(x, θ̂)ξ̂(x) to make a adjustment to g(x, θ̂). Semiparametric estimator

f̃(x) = g(x, θ̂)ξ̃(x) of f(x) can be also gained. Related ideas and methods can be found

in [6, 10–12]. Furthermore, under certain conditions, we prove the strong consistency of

(θ̂, φ̂1, φ̂2, ρ̂) and the weak consistency of f̂(x) and f̃(x). At the same time, the statistical

simulation method is used to verify the validity of the theoretical results.

This article is an innovation and promotion of the model in the literature [6], and there

are two main points: First, we transform the nonlinear effects of first order autoregressive

term into linear effects, and add second order autoregressive term to the linear factors

and third order autoregressive term to the nonlinear factors. Because there are short-

term correlation in many time series. The use of nonlinear models with only first order

autoregressive terms is not sufficient to illustrate the problem completely. Second, we

improve the independent and identically distributed errors to the first order autoregressive

errors. The reason is that the former is ideal, but there is a certain dependence between the

error items in the financial or economic series. We have an innovation in the difficulty of

estimating methods. The semiparametric estimators f̂(x) and f̃(x) don’t have accurately

distributions, it can only be proved that their have the weak consistency (according to the

probability distribution). And we also use the stationary and reversible conditions in the
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autoregressive model to extend the independent and identically distributed errors to the

first order autoregressive errors.

§2. Estimation of Parameters and Regression Function

For the model (2),

ut = Yt − φ1Yt−1 − φ2Yt−2 − f(Yt−3), ut−1 = Yt−1 − φ1Yt−2 − φ2Yt−3 − f(Yt−4),

it is clear that

Yt = φ1Yt−1 + φ2Yt−2 + f(Yt−3) + ρ[Yt−1 − φ1Yt−2 − φ2Yt−3 − f(Yt−4)] + εt.

We need to estimate φ1, φ2, ρ, and the regression function f(·).
We assume that f(·) has a parametric framework,

f(x) ∈ {g(x, θ); θ ∈ Θ}.

g is a known function with a limited number of unknown parameters θ, where Θ ⊆ Rp is

the parameter space. So we should estimate θ, φ1, φ2, ρ. Set

θ0 = arg min
θ∈Θ, |φ2|<1, φ2±φ1<1, |ρ|<1

E{[Yt − Eθ(Yt |Yt−1, Yt−2, Yt−3)]

− ρ[Yt−1 − Eθ(Yt−1 |Yt−2, Yt−3, Yt−4)]}2,

where

Eθ(Yt |Yt−1, Yt−2, Yt−3) = φ1Yt−1 + φ2Yt−2 + f(Yt−3) = φ1Yt−1 + φ2Yt−2 + g(Yt−3, θ),

Eθ(Yt−1 |Yt−2, Yt−3, Yt−4) = φ1Yt−2 + φ2Yt−3 + f(Yt−4) = φ1Yt−2 + φ2Yt−3 + g(Yt−4, θ).

Through the conditional least squares method, we now define

Qn(θ, φ1, φ2, ρ) =
n∑
t=4
{[Yt − φ1Yt−1 − φ2Yt−2 − g(Yt−3, θ)]

− ρ[Yt−1 − φ1Yt−2 − φ2Yt−3 − g(Yt−4, θ)]}2,

and can obtain

(θ̂n, φ̂1n, φ̂2n, ρ̂n) = arg min
θ∈Θ, |φ2|<1, φ2±φ1<1, |ρ|<1

Qn(θ, φ1, φ2, ρ).
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Furthermore, we define 

∂Qn(θ, φ1, φ2, ρ)/∂θ = 0;

∂Qn(θ, φ1, φ2, ρ)/∂φ1 = 0;

∂Qn(θ, φ1, φ2, ρ)/∂φ2 = 0;

∂Qn(θ, φ1, φ2, ρ)/∂ρ = 0,

and can obtain

1=

n∑
t=4

[(Yt−φ̂1nYt−1−φ̂2nYt−2)−ρ̂n(Yt−1−φ̂1nYt−2−φ̂2nYt−3)]
[∂g(Yt−3, θ̂n)

∂θ
− ρ̂n∂g(Yt−4, θ̂n)

∂θ

]
n∑

t=4
[g(Yt−3, θ̂n)− ρ̂ng(Yt−4, θ̂n)]

[∂g(Yt−3, θ̂n)

∂θ
− ρ̂n∂g(Yt−4, θ̂n)

∂θ

] ;

φ̂1n =

n∑
t=4
{[Yt − φ̂2nYt−2 − g(Yt−3, θ̂n)]− ρ̂n[Yt−1 − φ̂2nYt−3 − g(Yt−4, θ̂n)]}(Yt−1 − ρ̂nYt−2)

n∑
t=4

(Yt−1 − ρ̂nYt−2)2
;

φ̂2n =

n∑
t=4
{[Yt − φ̂1nYt−1 − g(Yt−3, θ̂n)]− ρ̂n[Yt−1 − φ̂1nYt−2 − g(Yt−4, θ̂n)]}(Yt−2 − ρ̂nYt−3)

n∑
t=4

(Yt−2 − ρ̂nYt−3)2
;

ρ̂n =

n∑
t=4

[Yt − φ̂1nYt−1 − φ̂2nYt−2 − g(Yt−3, θ̂n)][Yt−1 − φ̂1nYt−2 − φ̂2nYt−3 − g(Yt−4, θ̂n)]

n∑
t=4

[Yt−1 − φ̂1nYt−2 − φ̂2nYt−3 − g(Yt−4, θ̂n)]2
.

Similar to the ideas of [6] and [11], we set

qn(x, ξ) =
1

hn

n∑
t=4

K
(Yt−3 − x

hn

)
[f(Yt−3)− g(Yt−3, θ̂n)ξ]2

+
1

hn

n∑
t=4

K
(Yt−4 − x

hn

)
[f(Yt−4)− g(Yt−4, θ̂n)ξ]2,

where K(·) is a kernel function and hn is the bandwidth. Set ∂qn(x, ξ)/∂ξ = 0, and we

can get

ξ̂(x) =

n∑
t=4

[
K
(Yt−3 − x

hn

)
f(Yt−3)g(Yt−3, θ̂n) +K

(Yt−4 − x
hn

)
f(Yt−4)g(Yt−4, θ̂n)

]
n∑
t=4

[
K
(Yt−3 − x

hn

)
g2(Yt−3, θ̂n) +K

(Yt−4 − x
hn

)
g2(Yt−4, θ̂n)

] ,

then

f̂(x) = g(x, θ̂n)ξ̂(x).

Note that

n∑
t=4

K
(Yt−3 − x

hn

)
f(Yt−3)g(Yt−3, θ̂n)
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≈
n∑
t=4

K
(Yt−3 − x

hn

)
(Yt − φ̂1nYt−1 − φ̂2nYt−2)g(Yt−3, θ̂n),

n∑
t=4

K
(Yt−4 − x

hn

)
f(Yt−4)g(Yt−4, θ̂n)

≈
n∑
t=4

K
(Yt−4 − x

hn

)
(Yt−1 − φ̂1nYt−2 − φ̂2nYt−3)g(Yt−4, θ̂n),

and we adjust ξ̂(x) by

ξ̃(x) =

n∑
t=4

K
(Yt−3 − x

hn

)
(Yt − φ̂1nYt−1 − φ̂2nYt−2)g(Yt−3, θ̂n)

n∑
t=4

[
K
(Yt−3 − x

hn

)
g2(Yt−3, θ̂n) +K

(Yt−4 − x
hn

)
g2(Yt−4, θ̂n)

]

+

n∑
t=4

K
(Yt−4 − x

hn

)
(Yt−1 − φ̂1nYt−2 − φ̂2nYt−3)g(Yt−4, θ̂n)

n∑
t=4

[
K
(Yt−3 − x

hn

)
g2(Yt−3, θ̂n) +K

(Yt−4 − x
hn

)
g2(Yt−4, θ̂n)

] ,
therefore the semiparametric estimator of f(x) can be obtained by

f̃(x) = g(x, θ̂n)ξ̃(x).

§3. Main Theoretical Results

In this section, we will prove the strong consistency of the parametric estimators

(θ̂n, φ̂1n, φ̂2n, ρ̂n) the weak consistency of the semiparametric estimators f̂(x) and f̃(x).

In order to obtain these properties, we need the following conditions: θ ∈ Θ, i, j, k =

1, 2, · · · , p, l = 3, 4,

C1 The sequence {Yt}∞t=0 is a stationary ergodic sequence of integrable random variables.

C2 ∂g/∂θi, ∂
2g/(∂θi∂θj), ∂

3g/(∂θi∂θj∂θk) exist and are continuous.

C3 E|(Yt − g)∂g/∂θi| < ∞, E|(Yt − g)∂2g/(∂θi∂θj)| < ∞, E|(∂g/∂θi) · (∂g/∂θj)| < ∞,

where g and its partial derivatives are evaluated at (θ0, Yt−l).

C4 There are functions H(0)(Yt−l), H
(1)
i (Yt−l), H

(2)
ij (Yt−l), H

(3)
ijk(Yt−l) such that

|g| 6 H(0),
∣∣∣ ∂g
∂θi

∣∣∣ 6 H(1)
i ,

∣∣∣ ∂2g

∂θi∂θj

∣∣∣ 6 H(2)
ij ,

∣∣∣ ∂3g

∂θi∂θj∂θk

∣∣∣ 6 H(3)
ijk ,

and

E|Yt ·H(3)
ijk(Yt−l)|<∞, E[H(0)(Yt−l)·H

(3)
ijk(Yt−l)]<∞, E[H

(1)
i (Yt−l)·H

(2)
jk (Yt−l)]<∞.
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C5 E(Yt |Yt−1, Yt−2, · · · , Y0) = E(Yt |Yt−1, Yt−2, · · · , Yt−m) a.s., t > m

E
[
U2
t (θ0)

∣∣∣∂g(Yt−l, θ0)

∂θi
· ∂g(Yt−l, θ0)

∂θj

∣∣∣] <∞,
where

Ut(θ0) = [Yt − E(Yt |Yt−1, Yt−2, Yt−3)]− ρ[Yt−1 − E(Yt−1 |Yt−2, Yt−3, Yt−4)]

= Yt − φ1Yt−1 − φ2Yt−2 − f(Yt−3)− ρ[Yt−1 − φ1Yt−2 − φ2Yt−3 − f(Yt−4)].

We assume that the matrices

Vl =
[
E
(∂g(Yt−l, θ0)

∂θi
· ∂g(Yt−l, θ0)

∂θj

)]
,

Wl =
[
E
(
U2
t (θ0)

∂g(Yt−l, θ0)

∂θi
· ∂g(Yt−l, θ0)

∂θj

)]
are positive definite.

C6 The sequence {Yt}t∈N is α-mixing.

C7 Y0 and Y1 have the same distribution π(·), and the density µ(·) is bounded, contin-

uous and strictly positive in a neighborhood of x.

C8 f(x) and g(x, θ) are bounded and continuous with respect to x, away from 0 in a

neighborhood of x. Set g0(x) = g(x, θ0).

C9 g(x, θ) has a continuous derivative with respect to θ, and the derivative at θ0 is

uniformly bounded with respect to x.

C10 The kernel function K : R1 → R+ is compactly symmetric bounded, such that

K(·) > 0 in a set of positive Lebesgue measures.

C11 hn = βn−1/5, where β > 0.

Remark 1 The rationality of the conditions of C1 –C5 can be referred to the literature

[13]. The proof of the following Lemma 3 is shown by its Corollary 2.2.

Remark 2 The rationality of the conditions of C6 –C11 can be referred to the liter-

atures [6] and [14].

Lemma 3 Under the conditions of C1 –C5, there exists a sequence estimators {θ̂n}
that can satisfy θ̂n

a.s.−−→ θ0. Suppose that for any nonzero vector of constants c′ = (c1, c2,

· · · , cp),

lim sup
n→∞

n∑
t=3

h(Yt−l, θ0, c)Ut(θ0)

(2nδ2
l ln lnn)1/2

= 1 a.s.,
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where

h(Yt−l, θ0, c) =
p∑
i=1

ci
∂g(Yt−l, θ0)

∂θi
, δ2

l = c′V −1
l WlV

−1
l c, l = 3, 4,

then

lim sup
n→∞

n1/2c′(θ̂n − θ0)

(2δ2
l ln lnn)1/2

= 1 a.s..

Lemma 4 Under the conditions of C1 –C11, we have

(i) n−4/5
n∑
t=4

K
(Yt−3 − x

hn

)
f(Yt−3)g(Yt−3, θ̂n)

P−→ βµ(x)f(x)g0(x),

(ii) n−4/5
n∑
t=4

K
(Yt−4 − x

hn

)
f(Yt−4)g(Yt−4, θ̂n)

P−→ βµ(x)f(x)g0(x),

(iii) n−4/5
n∑
t=4

K
(Yt−3 − x

hn

)
g2(Yt−3, θ̂n)

P−→ βµ(x)g2
0(x),

(iv) n−4/5
n∑
t=4

K
(Yt−4 − x

hn

)
g2(Yt−4, θ̂n)

P−→ βµ(x)g2
0(x).

Proof Observe that

n−4/5
n∑
t=4

K
(Yt−3 − x

hn

)
f(Yt−3)g(Yt−3, θ̂n)

= n−4/5
n∑
t=4

{
K
(Yt−3 − x

hn

)
f(Yt−3)[g(Yt−3, θ̂n)− g(Yt−3, θ0)]

}
+ n−4/5

n∑
t=4

K
(Yt−3 − x

hn

)
f(Yt−3)g(Yt−3, θ0)

, An +Bn.

With Lemma 3 and C8 – C10, we know

max
36t6n

|g(Yt−3, θ̂n)− g(Yt−3, θ0)| = O
(( ln lnn

n

)1/2)
,

and f0 > 0, K0 > 0 separately meet the conditions of |f(x)| 6 f0, |K(x)| 6 K0, then

|An| = n−4/5
∣∣∣ n∑
t=4

K
(Yt−3 − x

hn

)
f(Yt−3)[g(Yt−3, θ̂n)− g(Yt−3, θ0)]

∣∣∣
6 n−4/5

n∑
t=4

∣∣∣K(Yt−3 − x
hn

)∣∣∣|f(Yt−3)||g(Yt−3, θ̂n)− g(Yt−3, θ0)|

6 n−4/5 · n ·K0 · f0 ·O
(( ln lnn

n

)1/2)
= O

((ln lnn)1/2

n3/10

)
,

thus when n→∞, An
a.s.−−→ 0. According to C6,

n−4/5
n∑
t=4

K
(Yt−3 − x

hn

)
f(Yt−3)g(Yt−3, θ0)− n1/5E

[
K
(Y0 − x

hn

)
f(Y0)g(Y0, θ0)

]
P−→ 0.
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Set u = (y − x)/hn, then

n1/5E
[
K
(Y0 − x

hn

)
f(Y0)g(Y0, θ0)

]
=

β

hn

∫
K
(y − x

hn

)
f(y)g(y, θ0)µ(y) dy

= β

∫
K(u)f(hnu+ x)g(hnu+ x, θ0)µ(hnu+ x) du

= β

∫
K(u)f(x)g(x, θ0)µ(x)[1 + o(1)] du

= βµ(x)f(x)g0(x)[1 + o(1)],

so Bn
P−→ βµ(x)f(x)g0(x). Combining these results, we can obtain (i). The proof of (ii) is

similar to the proof of (i).

Note that

n−4/5
n∑
t=4

K
(Yt−3 − x

hn

)
g2(Yt−3, θ̂n)

= n−4/5
n∑
t=4

{
K
(Yt−3 − x

hn

)
g(Yt−3, θ̂n)[g(Yt−3, θ̂n)− g(Yt−3, θ0)]

}
+ n−4/5

n∑
t=4

K
(Yt−3 − x

hn

)
g(Yt−3, θ̂n)g(Yt−3, θ0).

Analogously, we can get (iii). The proof of (iv) is similar to the proof of (iii). �

Theorem 5 Under the conditions of C1 –C11, when n→∞, (θ̂n, φ̂1n, φ̂2n, ρ̂n)
a.s.−−→

(θ, φ1, φ2, ρ).

Proof Suppose that α̂n = (θ̂n, φ̂1n, φ̂2n, ρ̂n)′, α0 = (θ, φ1, φ2, ρ)′. The Taylor expan-

sion of Qn(α) about α0 is

Qn(α) = Qn(α0) + (α− α0)′
∂Qn(α0)

∂α
+

1

2
(α− α0)′

∂2Qn(α∗)

∂α2
(α− α0)

= Qn(α0) + (α− α0)′
∂Qn(α0)

∂α
+

1

2
(α− α0)′Vn(α− α0)

+
1

2
(α− α0)′Tn(α∗)(α− α0),

where Vn = [∂2Qn(α0)/(∂αi∂αj)], Tn(α∗) = [∂2Qn(α∗)/∂α2]− Vn.

The ergodic theorem yields:

1

n
(α− α0)′

∂Qn(α0)

∂α

a.s.−−→ 0,

1

2n
(α− α0)′Vn(α− α0)

a.s.−−→ (α− α0)′V (α− α0),

where V is a positive definite matrix of constants according to the strong laws for mar-

tingales in [15]. For given δ > 0, ε > 0 and let Nδ denote the open sphere of radius δ
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centered at α0. Through Egoroff’s theorem we can find an event E with P(E) > 1 − ε,
a positive δ∗ < δ, M > 0 and an n0 such that on E. For any n > n0, α ∈ Nδ∗ , there is

|(α−α0)′∂Qn(α0)/∂α| < nδ3, and the minimum eigenvalue of Vn/(2n) is greater than some

∆ > 0. Under the conditions of C1 – C4, it also implies that Rn = (α−α0)′Tn(α∗)(α−α0)/2

satisfies lim
n→∞

sup
δ→0

(|Tn(α∗)ij |/nδ) <∞ a.s., thus |(α− α0)′Tn(α∗)(α− α0)|/2 < nMδ3.

Using the Taylor expansion of Qn(α), for α on the boundary of Nδ∗ ,

Qn(α) > Qn(α0) + (−nδ3 + nδ2∆− nMδ3) = Qn(α0) + nδ2(∆− δ −Mδ).

Since ∆ − δ −Mδ can be made positive by initially choosing δ sufficiently small, Qn(α)

must attain a minimum at some α̂n in Nδ∗ , at which point the least squares equations

∂Qn(α)/∂αi = 0 must be satisfied.

Let εk = 2−k and δk = 1/k, k = 1, 2, · · · be given, and let {Ek} denote a sequence

of events and {nk} is an increasing sequence. For nk < n 6 nk+1 define α̂n on Ek to be

a root of ∂Qn(α)/∂αi = 0 within δk of α0 at which Qn attains a relative minimum and

define α̂n to be zero otherwise. Then α̂n
a.s.−−→ α0 on lim inf Ek and we complete the proof.

�

Theorem 6 Under the conditions of C1 –C11, when n→∞, f̂(x)
P−→ f(x).

Proof We can prove this theorem by using θ̂n
a.s.−−→ θ0 and Lemma 4. �

Theorem 7 Under the conditions of C1 –C11, when n→∞, f̃(x)
P−→ f(x).

Proof Observe that

f̃(x)− f̂(x) = g(x, θ̂n)

n∑
t=4

[
K
(Yt−3 − x

hn

)
utg(Yt−3, θ̂n) +K

(Yt−4 − x
hn

)
utg(Yt−4, θ̂n)

]
n∑
t=4

[
K
(Yt−3 − x

hn

)
g2(Yt−3, θ̂n) +K

(Yt−4 − x
hn

)
g2(Yt−4, θ̂n)

]
, g(x, θ̂n)

Cn +Dn
n∑
t=4

[
K
(Yt−3 − x

hn

)
g2(Yt−3, θ̂n) +K

(Yt−4 − x
hn

)
g2(Yt−4, θ̂n)

] .
From ut = εt + ρ̂nεt−1 + ρ̂2

nεt−2 + · · ·+ ρ̂tnε0, we know

n−4/5Cn = n−4/5
n∑
t=4

K
(Yt−3 − x

hn

) t∑
i=0

ρ̂t−in εig(Yt−3, θ̂n)

= n−4/5
n∑
t=4

t∑
i=0

K
(Yt−3 − x

hn

)
ρ̂t−in εi[g(Yt−3, θ̂n)− g(Yt−3, θ0)]

+ n−4/5
n∑
t=4

t∑
i=0

K
(Yt−3 − x

hn

)
ρ̂t−in εig(Yt−3, θ0)

, En + Fn.



36 Chinese Journal of Applied Probability and Statistics Vol. 36

According to Theorem B in [16], when n→∞, we have max
16i6n

|εi| = O((lnn)1/2), then

|En| 6 n−4/5
n∑
t=4

t∑
i=0

∣∣∣K(Yt−3 − x
hn

)∣∣∣|ρ̂t−in ||εi||g(Yt−3, θ̂n)− g(Yt−3, θ0)|

6 n−4/5
n∑
t=4

t∑
i=0

K0 · |ρ̂t−in | ·O((lnn)1/2) ·O
(( ln lnn

n

)1/2)
6 n−4/5 · n · K0

1− |ρ̂n|
·O
(( lnn ln lnn

n

)1/2)
= O

((lnn ln lnn)1/2

n3/10

)
,

thus when n→∞, En
a.s.−−→ 0. Besides,

E(Fn) = n−4/5E
[ n∑
t=4

t∑
i=0

K
(Yt−3 − x

hn

)
ρ̂t−in εig(Yt−3, θ0)

]
= 0,

E(F 2
n) = n−8/5

n∑
t=4

t∑
i=0

E
[
K2
(Yt−3 − x

hn

)
ρ̂2(t−i)
n ε2

i g
2(Yt−3, θ0)

]
+ 2n−8/5 ∑

46t1<t26n

∑
06i1<i26t

E
[
K
(Yt1−3 − x

hn

)
ρ̂t1−i1n εi1g(Yt1−3, θ0)

·K
(Yt2−3 − x

hn

)
ρ̂t2−i2n εi2g(Yt2−3, θ0)

]
6 n−8/5 · n · K2

0

1− ρ2
· σ2 · g2

0

= O
( 1

n3/5

)
,

when n→∞, we can get Fn
P−→ 0, so n−4/5Cn

P−→ 0. n−4/5Dn
P−→ 0 is likewise to be proved.

Using Lemma 4, we have

f̃(x)− f̂(x)
P−→ 0. �

§4. Simulation Research and Analysis

Under the conditions of C1 – C11, simulation research are presented to evaluate the

effectiveness of the proposed estimator f̃(x) for the model (2).

Set n = 500, and consider the following model:

Yt = Yt−1 − 0.5Yt−2 + f(Yt−3) + ut, ut = 0.4ut−1 + εt,

εt
i.i.d.∼ N(0, 0.152). We choose the Gaussian kernel function e−u

2/2/
√

2π to examine two

types of f(x) below:
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(i) f(x) = 4e−x
2

+ ax, we assume g(x, θ) = θe−x
2
,

(ii) f(x) = 3e−2x + a cosx, we assume g(x, θ) = θ1eθ2x,

a = 0.1, 0.2, 0.3. We use

Mean Square Error: MSE =
1

n

n∑
i=1

[f̃(xi)− f(xi)]
2,

Standard Error: SD =
√

MSE

to measure the accuracy of f̃(x), and repeat the process of calculation for 100 times.

Tables 1 and 2 separately list the estimated values of two functional forms under

different a and hn, as well as their MSE and SD. With the increase of a, the accuracy of

f̃(x) is weakened, but the overall fitting effect is better.

Table 1 The estimated value and accuracy of the parameters in f(x) = 4e−x2

+ ax

a θ̂ φ̂1 φ̂2 ρ̂ hn MSE SD

0.1 3.981702 0.9834588 −0.4958761 0.3983633

0.04 0.000897920 0.02996531

0.06 0.000768543 0.02772261

0.08 0.001356673 0.03683304

0.2 3.964253 0.9756316 −0.4813675 0.3892175

0.06 0.003106583 0.05573673

0.08 0.002677549 0.05174504

0.10 0.003066771 0.05537843

0.3 3.958722 0.9727935 −0.4808183 0.3851976

0.06 0.013360544 0.11558782

0.08 0.007429996 0.08619742

0.10 0.007890625 0.08882919

Table 2 The estimated value and accuracy of the parameters in f(x)=3e−2x+a cosx

a θ̂1 θ̂2 φ̂1 φ̂2 ρ̂ hn MSE SD

0.1 2.990853 −1.965372 0.9987291 −0.4944566 0.4089553

0.08 0.06551853 0.2559659

0.10 0.06550958 0.2559484

0.12 0.06551154 0.2559522

0.2 2.985854 −1.899653 0.9892157 −0.4909882 0.4092574

0.08 0.06845322 0.2616357

0.10 0.06844986 0.2616292

0.12 0.06845688 0.2616427

0.3 2.951269 −1.866859 0.9886543 −0.4897532 0.4085658

0.04 0.08151222 0.2855035

0.06 0.08145388 0.2854013

0.08 0.08149803 0.2854786
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Figures 1 and 2 are the comparison diagrams of the functions f(x) = 4e−x
2

+ 0.2x at

hn = 0.08 and f(x) = 3e−2x + 0.2 cosx at hn = 0.10. The full line shows the true value,

while the dotted line represents the estimated value. It also shows that the fitting effect

of f̃(x) is better.
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Figure 1 f(x) = 4e−x2

+ 0.2x, hn = 0.08
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Figure 2 f(x) = 3e−2x + 0.2 cosx, hn = 0.10

Furthermore, we compare this method with the kernel-based method (KBM) in [5].

Tables 3 and 4 separately list the estimated values of two methods under different func-

tional forms, as well as their MSE and SD. It is shown that our method is a little better

than the KBM.

Table 3 The estimated value and accuracy of two methods in f(x) = 4e−x2

+ ax

a Method θ̂ φ̂1 φ̂2 ρ̂ hn MSE SD

0.1
our 3.981702 0.9834588 −0.4958761 0.3983633 0.06 0.000768543 0.02772261

KBM 3.979881 0.9800375 −0.4898236 0.3963883 0.04 0.000932357 0.03053452

0.2
our 3.964253 0.9756316 −0.4813675 0.3892175 0.08 0.002677549 0.05174504

KBM 3.960278 0.9698756 −0.4776379 0.3805721 0.04 0.003938577 0.06275808

0.3
our 3.958722 0.9727935 −0.4808183 0.3851976 0.08 0.007429996 0.08619742

KBM 3.949898 0.9649873 −0.4780198 0.3800988 0.05 0.009063409 0.09520194

§5. Conclusion

This paper mainly studies the third order partially linear autoregressive model with

first order autoregressive errors. We suppose that the regression function f(x) has a para-

metric framework {g(x, θ); θ ∈ Θ}, and through the conditional least squares method, we
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Table 4 The estimated value and accuracy of two methods in f(x) = 3e−2x + a cosx

a Method θ̂1 θ̂2 φ̂1 φ̂2 ρ̂ hn MSE SD

0.1
our 2.990853 −1.965372 0.9987291 −0.4944566 0.4089553 0.10 0.06550958 0.2559484

KBM 2.983508 −1.957312 0.9877982 −0.4888532 0.4093445 0.08 0.13531774 0.3678556

0.2
our 2.985854 −1.899653 0.9892157 −0.4909882 0.4092574 0.10 0.06844986 0.2616292

KBM 2.935761 −1.858776 0.9801572 −0.4830928 0.4099735 0.07 0.12174942 0.3489261

0.3
our 2.951269 −1.866859 0.9886543 −0.4897532 0.4085658 0.06 0.08145388 0.2854013

KBM 2.947983 −1.860035 0.9879238 −0.4807645 0.4108756 0.07 0.14597015 0.3820604

get the parametric estimator g(x,θ̂). Semiparametric estimators g(x, θ̂)ξ̂(x) and g(x, θ̂)ξ̃(x)

can be given under the use of nonparametric kernel function method. Furthermore, un-

der certain conditions, we prove the consistency of the estimators. Finally, simulation

research under two types of models are presented to evaluate the effectiveness of the pro-

posed method in theory.

In recent decades, the research work of nonlinear time series has been deepened. The

theoretical studies have become increasingly completed and applied research has been

more widely used. However, there are still many problems need to be studied urgently,

such as the variable selection in the model (1). In the modeling, whether it is missing vari-

ables or selecting explanatory variables which are weakly or even independent of response

variables, or there are collinearity between selected variables, will have great influence on

the explanatory power and accuracy of the models. Therefore, it is necessary to establish

robust models with simple structure, clear meaning and accurate prediction in selecting

appropriate variables. That is also the research area way forward.
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