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§1. Introduction

In the past several years, the researches on the quantity of occupation time and

relevant derivatives become interesting topics in mathematical finance and risk theory.

The quantity can be used to simulate the amount of time that a stochastic process stays

within a certain range. One of the objectives for such topics is to study Laplace transforms

of occupation times. Using different approaches, many explicit expressions on Laplace

transforms of occupation times have been obtained for various of risk models. For example,

Pitman and Yor [1] considered a general diffusion risk model and derived some results on

occupation times by applying excursion theory; afterwards, Li and Zhou [2] considered

the same risk model and studied the joint Laplace transforms of occupation times by an
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alternative perturbation approach. In addition, many results related to occupation times

have also been obtained for a class of risk models with jumps. For instance, the analysis of

the occupation time of the negative surplus has been considered by Reis [3] for the classical

compound Poisson risk model, and by Zhang and Wu [4] for a compound Poisson risk

model with diffusion. For other respective investigations on risk models with jumps, see,

e.g., [5–10]. For more applications of occupation times in mathematical finance and risk

theory, see [11] and [12], etc.

All of the papers mentioned above assumed that the premium rate in risk model is a

constant. However, in practice, the insurance company (such as the catastrophic insurance

or traffic accident insurance) may adopt a low premium rate to attract customers to bring

more profits, when it faces a very good operation environment or sufficient cash flow.

Hence in recent years, more and more attention has been paid to two-step premium rate (or

variable premium rate) for risk models, which can be used as risk indicator for an insurance

portfolio. Asmussen[13; Chapter VII] investigated the risk model with barrier or threshold

strategy which may be regarded as a special case of two-step premium rate. Zhang et

al. [14] considered the classical risk model with a two-step premium rate. Karnaukh [15]

studied the risk process with stochastic income and two-step premium rate. For more

financial interpretation and application of the two-step premium rate, see [16,17], etc.

Recently, there are also many researches involving in the problem of controlled mar-

kets, that is, the problem of finding optimal barriers for a class of one-dimensional reflected

stochastic differential equations. See, for instance, [18–20], etc. Note that there are many

similarities between the studies of these problems and those of occupation times, because

both of them concern the exit (time) or boundary problem. As argued in [19], the reflected

stochastic differential equation model arises as an important approximating process in a

regulated financial market system. In a regulated market, the government would like to

implement its macro interventions on the prices of major commodities and services, as

well as the domestic interest rates and the foreign exchange rates, so the resulting price

dynamics are controlled by the price interval [a, b]. On the other hand, there are also

some differences in the study of occupation times and controlled markets. The studies of

occupation times usually focus on the total amount of time that the surplus of the risk

process falls within the range [0, b] so as to monitor the risk of an insurance company,

while controlled markets are usually studied to determine the optimal pricing barriers a

and b so as to minimize the risk and maximize the expected return in financial market

systems. For more practical examples related to regulated markets and their applications,

see [21–23] and the references therein.
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More recently, Li and Zhou [24] studied the joint Laplace transforms of occupation

times of the spectrally negative Lévy processes by adopting a fairly new approach. In their

model, the joint Laplace transform is identified with the probability that two independent

sequences of Poisson arrival times avoid the time durations when the spectrally negative

Lévy processes takes values from interval (0, a) and interval (a, b), respectively, before the

corresponding exit time. So inspired by [24] and [19], we consider the compound Poisson

risk model with two-step premium rate in this paper, and our objective is to derive the

explicit expressions of the joint Laplace transform of occupation times for the model.

The rest of the paper is organized as follows. In Section 2, we present the details of

our model and some preliminary outcomes. In Section 3 we then adopt a method similar

to [24] to find Laplace transforms of joint occupation times over disjoint intervals for the

compound Poisson process with two-step premium rate. Some briefly reviews on the scale

functions of Lévy processes and relevant identities for the compound Poisson process are

respectively presented in Appendix.

§2. Model Specification and Some Preliminary Outcomes

Consider the classical compound Poisson risk model with two-step premium rate, that

is, the process U is given by the following dynamic equations

dUt =


c1dt− d

(N(t)∑
k=1

Yk

)
, when Ut ∈ (−∞, a];

c2dt− d
(N(t)∑
k=1

Yk

)
, when Ut ∈ (a,+∞),

(1)

with initial surplus U0 = x, c1 > 0 and c2 > 0 being the premium rates when the dynamic

surplus are less than a and greater than a, respectively; N(t) being a Poisson process

representing the number of claims up to time t, and {Yk}k>1 being the sequence of claim

amounts with exponential distribution and parameter µ > 0. Note that there are two

dynamic parts on the right hand side of (1). The first part c1dt− d
(N(t)∑
k=1

Yk

)
means that

process U evolves linearly at rate c1 between successive claim arrival times when it is

below the threshold level a, while the second dynamic part c2dt− d
(N(t)∑
k=1

Yk

)
means that

the process U evolves linearly at rate c2 between successive claim arrival times when it

is above the level a. As discussed in Section 1, the second dynamic evolution rate of the

process U is not equal to the first one due to different operation environment or cash flow

of an insurance company.
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In order to give our main results for the model (1), we introduce the first passage

time of our interested process U . Define the first up-crossing and down-crossing time of

U by

τ+b := inf{t > 0;Ut > b} and τ−c := inf{t > 0;Ut < c}.

For 0 6 x 6 a and q > 0, it’s well known that

Ex
(
e−qτ

+
a ; τ+a < τ−0

)
=
W

(q)
c1 (x)

W
(q)
c1 (a)

(2)

and

Ex
(
e−qτ

−
0 ; τ−0 < τ+a

)
= Z(q)

c1 (x)−W (q)
c1 (x)

Z
(q)
c1 (a)

W
(q)
c1 (a)

, (3)

where Z
(q)
c (x) and W

(q)
c (x) (see (22) and (23) in the Appendix) respectively represent

the first and second scale function of the compound Poisson process with Poisson arrival

rate λ > 0, drift coefficients c and an exponential jump size with distribution function

F (x) = 1− e−µx, µ > 0.

In this paper, we are interested in the joint Laplace transform of the occupation

times of the disjoint sets (0, a) and (a, b) for the process given in (1) prior to it’s exit

from the set [0, b], which are the two primary objects in this paper. Here, 0 is chosen as

the lower boundary because τ−0 (i.e., the ruin time) is one of the important quantities of

an insurance company, and at that time the surplus of the company is negative. On the

other hand, the constant b > 0 is chosen as the upper boundary because b can be viewed

as the threshold level of surplus process of an insurance company. When the surplus is

above the threshold level b, insurance companies can be regarded as in a better operating

environment because they have sufficient cash flow; on the contrary, when the surplus is

lower than b, the insurance company can be regarded as in an early-warning environment.

Thus, it’s very useful to monitor the occupation time of the surplus process in [0, b] for an

insurance company. Now, define

f1(x) := Ex
{

exp
[
− q1

∫ τ−0

0
1(0,a)(Us)ds− q2

∫ τ−0

0
1(a,b)(Us)ds

]
; τ−0 < τ+b

}
and

f2(x) := Ex
{

exp
[
− q1

∫ τ+b

0
1(0,a)(Us)ds− q2

∫ τ+b

0
1(a,b)(Us)ds

]
; τ−0 > τ+b

}
for any 0 < a < b, 0 6 x 6 b and q1, q2 > 0. Then our objective is to derive the explicit

expressions of f1(x) and f2(x). Before this, we introduce the following result and it can

be seen as a special case in [25] and [26].
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Lemma 1 When c1 = c2 = c, for the compound Poisson risk model in (1), we have

Ex
(
e
−qτ−a +θU

τ−a ; τ−a < τ+b
)

= eθa
[
Z(q)
c (x− a, θ)− Z

(q)
c (b− a, θ)
W

(q)
c (b− a)

W (q)
c (x− a)

]
.

§3. Main Results

In this section, we will derive the explicit expressions of f1(x) and f2(x) through the

q-scale functions.

Theorem 2 For x ∈ [0, a], we have

f1(x) =
A1(q1; c1)

c1

[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ1(q1; c1)

]
eθ1(q1;c1)x

− A2(q1; c1)

c1

[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ2(q1; c1)

]
eθ2(q1;c1)x, (4)

f2(x) =
W

(q1)
c1 (x)

W
(q1)
c1 (a)

f2(a). (5)

For x ∈ [a, b], we have

f1(x) =
A1(q1; c1)

c1

[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ1(q1; c1)

]
× eθ1(q1;c1)a

[
Z(q2)
c2 (x− a, θ1(q1; c1))−

Z
(q2)
c2 (b− a, θ1(q1; c1))

W
(q2)
c2 (b− a)

W (q2)
c2 (x− a)

]
− A2(q1; c1)

c1

[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ2(q1; c1)

]
× eθ2(q1;c1)a

[
Z(q2)
c2 (x− a, θ2(q1; c1))−

Z
(q2)
c2 (b− a, θ2(q1; c1))

W
(q2)
c2 (b− a)

W (q2)
c2 (x− a)

]
, (6)

f2(x) =
A1(q1; c1)

c1

f2(a) eθ1(q1;c1)a

W
(q1)
c1 (a)

×
[
Z(q2)
c2 (x− a, θ1(q1; c1))−

Z
(q2)
c2 (b− a, θ1(q1; c1))

W
(q2)
c2 (b− a)

W (q2)
c2 (x− a)

]
− A2(q1; c1)

c1

f2(a) eθ2(q1;c1)a

W
(q1)
c1 (a)

×
[
Z(q2)
c2 (x− a, θ2(q1; c1))−

Z
(q2)
c2 (b− a, θ2(q1; c1))

W
(q2)
c2 (b− a)

W (q2)
c2 (x− a)

]
+
W

(q2)
c2 (x− a)

W
(q2)
c2 (b− a)

. (7)
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Here, the expressions of f1(a) and f2(a) are given by the following (12) and (17),

respectively.

Proof We start with the proof for (4) and (6). Actually, using the strong Markov

property and by (2) and (3), we have for x ∈ [0, a]

f1(x) = Ex
(
e−q1

∫ τ−0
0 1(0,a)(Us)ds−q2

∫ τ−0
0 1(a,b)(Us)ds; τ+a < τ−0 < τ+b

)
+ Ex

(
e−q1

∫ τ−0
0 1(0,a)(Us)ds−q2

∫ τ−0
0 1(a,b)(Us)ds; τ−0 < τ+a

)
= Ex

(
e−q1τ

+
a ; τ+a < τ−0

)
f1(a) + Ex

(
e−q1τ

−
0 ; τ−0 < τ+a

)
=
W

(q1)
c1 (x)

W
(q1)
c1 (a)

f1(a) + Z(q1)
c1 (x)− Z(q1)

c1 (a)
W

(q1)
c1 (x)

W
(q1)
c1 (a)

=
[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

]
W (q1)
c1 (x) + Z(q1)

c1 (x)

=
A1(q1; c1)

c1

[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ1(q1; c1)

]
eθ1(q1;c1)x

− A2(q1; c1)

c1

[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ2(q1; c1)

]
eθ2(q1;c1)x. (8)

Meanwhile, note that (8) holds by definition for x < 0, then for any x ∈ [a, b], we have

f1(x) = Ex
(
e−q1

∫ τ−0
0 1(0,a)(Us)ds−q2

∫ τ−0
0 1(a,b)(Us)ds; τ−a 6 τ

−
0 < τ+b

)
= Ex

[
e−q2τ

−
a f1(Uτ−a ); τ−a < τ+b

]
=
[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

]
Ex
[
e−q2τ

−
a W (q1)

c1 (Uτ−a ); τ−a < τ+b
]

+ Ex
[
e−q2τ

−
a Z(q1)

c1 (Uτ−a ); τ−a < τ+b
]
.

Hence for x ∈ [a, b], by (22), (23) and Lemma 1, we have

f1(x) =
[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

]
Ex
[
e−q2τ

−
a W (q1)

c1 (Uτ−a ); τ−a < τ+b
]

+ Ex
[
e−q2τ

−
a Z(q1)

c1 (Uτ−a ); τ−a < τ+b
]

=
[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

][A1(q1; c1)

c1
Ex
(
e−q2τ

−
a e

θ1(q1;c1)Uτ−a ; τ−a < τ+b
)

− A2(q1; c1)

c1
Ex
(
e−q2τ

−
a e

θ2(q1;c1)Uτ−a ; τ−a < τ+b
)]

+
q1A1(q1; c1)

c1θ1(q1; c1)
Ex
(
e−q2τ

−
a e

θ1(q1;c1)Uτ−a ; τ−a < τ+b
)
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− q1A2(q1; c1)

c1θ2(q1; c1)
Ex
(
e−q2τ

−
a e

θ2(q1;c1)Uτ−a ; τ−a < τ+b
)

=
A1(q1; c1)

c1

[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ1(q1; c1)

]
Ex
(
e−q2τ

−
a e

θ1(q1;c1)Uτ−a ; τ−a < τ+b
)

− A2(q1; c1)

c1

[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ2(q1; c1)

]
Ex
(
e−q2τ

−
a e

θ2(q1;c1)Uτ−a ; τ−a < τ+b
)

=
A1(q1; c1)

c1

[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ1(q1; c1)

]
× eθ1(q1;c1)a

[
Z(q2)
c2 (x− a, θ1(q1; c1))−

Z
(q2)
c2 (b− a, θ1(q1; c1))

W
(q2)
c2 (b− a)

W (q2)
c2 (x− a)

]
− A2(q1; c1)

c1

[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ2(q1; c1)

]
× eθ2(q1;c1)a

[
Z(q2)
c2 (x− a, θ2(q1; c1))−

Z
(q2)
c2 (b− a, θ2(q1; c1))

W
(q2)
c2 (b− a)

W (q2)
c2 (x− a)

]
. (9)

Equations (24) and (9) give iterative formulas of f1(x). In order to obtain an explicit

formula for f1(x), we should get the explicit expression for f1(a). By conditioning on the

first Poisson arrival time and the first claim size, we get

f1(a) =

∫ (b−a)/c2

0
λ e−λtdt

[ ∫ c2t

0
µ e−µye−q2tf1(a+ c2t− y)dy

+

∫ a+c2t

c2t
µ e−µye−q2tf1(a+ c2t− y)dy +

∫ ∞
a+c2t

µ e−µye−q2tdy
]

=

∫ (b−a)/c2

0
λ e−(λ+q2)tdt

[ ∫ c2t

0
µ e−µyf1(a+ c2t− y)dy

+

∫ a+c2t

c2t
µ e−µyf1(a+ c2t− y)dy + e−µ(a+c2t)

]
. (10)

Define

Bi(q1; c1)

= eθi(q1;c1)a
∫ (b−a)/c2

0
e−(λ+q2)tdt

×
∫ c2t

0
e−µy

[
Z(q2)
c2 (c2t− y, θi(q1; c1))−

Z
(q2)
c2 (b− a, θi(q1; c1))
W

(q2)
c2 (b− a)

W (q2)
c2 (c2t− y)

]
dy

+

∫ (b−a)/c2

0
e−(λ+q2)tdt

∫ a+c2t

c2t
e−µyeθi(q1;c1)(a+c2t−y)dy

= eθi(q1;c1)a
{{

1− [q2 − ψ(θi(q1; c1))]A1(q2; c2)

c2[θ1(q2; c2)− θi(q1; c1)]
+

[q2 − ψ(θi(q1; c1))]A2(q2; c2)

c2[θ2(q2; c2)− θi(q1; c1)]

}
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×
{ e−(λ+q2+µc2)(b−a)/c2 − 1

(λ+ q2 + µc2)[µ+ θi(q1; c1)]
− e−[λ+q2−θi(q1;c1)c2](b−a)/c2 − 1

[λ+ q2 − θi(q1; c1)c2][µ+ θi(q1; c1)]

}
+

[q2 − ψ(θi(q1; c1))]A1(q2; c2)

c2[θ1(q2; c2)− θi(q1; c1)]

×
{ e−(λ+q2+µc2)(b−a)/c2 − 1

(λ+ q2 + µc2)[µ+ θ1(q2; c2)]
− e−[λ+q2−θ1(q2;c2)c2](b−a)/c2 − 1

[λ+ q2 − θ1(q2; c2)c2][µ+ θ1(q2; c2)]

}
− [q2 − ψ(θi(q1; c1))]A2(q2; c2)

c2[θ2(q2; c2)− θi(q1; c1)]

×
{ e−(λ+q2+µc2)(b−a)/c2 − 1

(λ+ q2 + µc2)[µ+ θ2(q2; c2)]
− e−[λ+q2−θ2(q2;c2)c2](b−a)/c2 − 1

[λ+ q2 − θ2(q2; c2)c2][µ+ θ2(q2; c2)]

}}
− eθi(q1;c1)a

Z
(q2)
c2 (b− a, θi(q1; c1))
W

(q2)
c2 (b− a)

×
{ A1(q2; c2)

c2[−µ− θ1(q2; c2)]

{e−(λ+q2+µc2)(b−a)/c2 − 1

−(λ+ q2 + µc2)
− e−[λ+q2−θ1(q2;c2)c2](b−a)/c2 − 1

−[λ+ q2 − θ1(q2; c2)c2]

}
− A2(q2; c2)

c2[−µ− θ2(q2; c2)]

{e−(λ+q2+µc2)(b−a)/c2 − 1

−(λ+ q2 + µc2)
− e−[λ+q2−θ2(q2;c2)c2](b−a)/c2 − 1

−[λ+ q2 − θ2(q2; c2)c2]

}}
+

(e−µa − eθi(q1;c1)a)(e−(λ+q2+µc2)(b−a)/c2 − 1)

[µ+ θi(q1; c1)](λ+ q2 + µc2)
, i = 1, 2.

Then, equation (10) can be rewritten as

f1(a)
{

1−
[
λµ

A1(q1; c1)

c1W
(q1)
c1 (a)

B1(q1; c1)− λµ
A2(q1; c1)

c1W
(q1)
c1 (a)

B2(q1; c1)
]}

= λµ
A1(q1; c1)

c1

[
− Z

(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ1(q1; c1)

]
B1(q1; c1)

− λµA2(q1; c1)

c1

[
− Z

(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ2(q1; c1)

]
B2(q1; c1)

− λeµa
e−(λ+q2+µc2)(b−a)/c2 − 1

λ+ q2 + µc2
. (11)

Solving (11), we obtain

f1(a) =
`1(c1, c2, q1, q2)

`2(c1, c2, q1, q2)
, (12)

where

`2(c1, c2, q1, q2) = 1−
[
λµ

A1(q1; c1)

c1W
(q1)
c1 (a)

B1(q1; c1)− λµ
A2(q1; c1)

c1W
(q1)
c1 (a)

B2(q1; c1)
]
,

and

`1(c1, c2, q1, q2) = λµ
A1(q1; c1)

c1

[
− Z

(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ1(q1; c1)

]
B1(q1; c1)
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− λµA2(q1; c1)

c1

[
− Z

(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ2(q1; c1)

]
B2(q1; c1)

− λeµa
e−(λ+q2+µc2)(b−a)/c2 − 1

λ+ q2 + µc2
.

Combining (24), (9) and (12), we can finally get the solution of f1(x) given by (4)

and (6).

We now proceed to show (5) and (7). Again using the strong Markov property and

by (2), we have for x ∈ [0, a],

f2(x) = Ex
{

exp
[
− q1

∫ τ+b

0
1(0,a)(Us)ds− q2

∫ τ+b

0
1(a,b)(Us)ds

]
; τ−0 > τ+b

}
= Ex

{
exp

[
− q1

∫ τ+b

0
1(0,a)(Us)ds− q2

∫ τ+b

0
1(a,b)(Us)ds

]
; τ−0 > τ+b > τ+a

}
= Ex

(
e−q1τ

+
a ; τ+a < τ−0

)
f2(a)

=
W

(q1)
c1 (x)

W
(q1)
c1 (a)

f2(a). (13)

For x ∈ [a, b], by (22), (23) and Lemma 1, we have

f2(x) = Ex
{

exp
[
− q1

∫ τ+b

0
1(0,a)(Us)ds− q2

∫ τ+b

0
1(a,b)(Us)ds

]
; τ−0 > τ+b

}
= Ex

{
exp

[
− q1

∫ τ+b

0
1(0,a)(Us)ds− q2

∫ τ+b

0
1(a,b)(Us)ds

]
; τ−0 > τ+b > τ−a

}
+ Ex

{
exp

[
− q1

∫ τ+b

0
1(0,a)(Us)ds− q2

∫ τ+b

0
1(a,b)(Us)ds

]
; τ−0 > τ

−
a > τ+b

}
=

f2(a)

W
(q1)
c1 (a)

Ex
(
e−q2τ

−
a W (q1)

c1 (Uτ−a ); τ−a < τ+b
)

+
W

(q2)
c2 (x− a)

W
(q2)
c2 (b− a)

=
f2(a)

W
(q1)
c1 (a)

Ex
{

e−q2τ
−
a

[A1(q1; c1)

c1
e
θ1(q1;c1)Uτ−a − A2(q1; c1)

c1
e
θ2(q1;c1)Uτ−a

]
; τ−a < τ+b

}
+
W

(q2)
c2 (x− a)

W
(q2)
c2 (b− a)

=
A1(q1; c1)

c1

f2(a)

W
(q1)
c1 (a)

Ex
(
e−q2τ

−
a e

θ1(q1;c1)Uτ−a ; τ−a < τ+b
)

− A2(q1; c1)

c1

f2(a)

W
(q1)
c1 (a)

Ex
(
e−q2τ

−
a e

θ2(q1;c1)Uτ−a ; τ−a < τ+b
)

+
W

(q2)
c2 (x− a)

W
(q2)
c2 (b− a)

=
A1(q1; c1)

c1

f2(a) eθ1(q1;c1)a

W
(q1)
c1 (a)
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×
[
Z(q2)
c2 (x− a, θ1(q1; c1))−

Z
(q2)
c2 (b− a, θ1(q1; c1))

W
(q2)
c2 (b− a)

W (q2)
c2 (x− a)

]
− A2(q1; c1)

c1

f2(a) eθ2(q1;c1)a

W
(q1)
c1 (a)

×
[
Z(q2)
c2 (x− a, θ2(q1; c1))−

Z
(q2)
c2 (b− a, θ2(q1; c1))

W
(q2)
c2 (b− a)

W (q2)
c2 (x− a)

]
+
W

(q2)
c2 (x− a)

W
(q2)
c2 (b− a)

. (14)

Equations (13) and (14) give iterative formulas of f2(x). In order to obtain an explicit

formula for f2(x), we should get the explicit expression for f2(a). By conditioning on the

first Poisson arrival time and the first claim size again we get

f2(a) =

∫ (b−a)/c2

0
λe−λtdt

[ ∫ c2t

0
µe−µye−q2tf2(a+ c2t− y)dy

+

∫ a+c2t

c2t
µe−µye−q2tf2(a+ c2t− y)dy

]
+ e−q2(b−a)/c2

∫ ∞
(b−a)/c2

λe−λtdt

=

∫ (b−a)/c2

0
λe−(λ+q2)tdt

[ ∫ c2t

0
µe−µyf2(a+ c2t− y)dy

+

∫ a+c2t

c2t
µe−µyf2(a+ c2t− y)dy

]
+ e−(q2+λ)(b−a)/c2 . (15)

It can be checked that

Di(q2; c2) :=

∫ (b−a)/c2

0
e−(λ+q2)tdt

∫ c2t

0
e−µyeθi(q2;c2)(c2t−y)dy

=
1

µ+ θi(q2; c2)

[e−[λ+q2−θi(q2;c2)c2](b−a)/c2 − 1

−(λ+ q2) + θi(q2; c2)c2
− e−(λ+q2+µc2)(b−a)/c2 − 1

−(λ+ q2)− µc2

]
,

i = 1, 2.

Then, recalling the definition of B1(q1; c1) and B2(q1; c1) given right below (10), one

can rewrite equation (15) as

f2(a)
{

1− λµ

c1W
(q1)
c1 (a)

[A1(q1; c1)B1(q1; c1)−A2(q1; c1)B2(q1; c1)]
}

=
λµ

c2W
(q2)
c2 (b− a)

[A1(q2; c2)D1(q2; c2)−A2(q2; c2)D2(q2; c2)] + e−(λ+q2)(b−a)/c2 . (16)

Solving (16), we arrive at

f2(a) =
`3(c1, c2, q1, q2)

`4(c1, c2, q1, q2)
, (17)
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where

`4(c1, c2, q1, q2) = 1− λµ

c1W
(q1)
c1 (a)

[A1(q1; c1)B1(q1; c1)−A2(q1; c1)B2(q1; c1)],

and

`3(c1, c2, q1, q2) =
λµ

c2W
(q2)
c2 (b− a)

[A1(q2; c2)D1(q2; c2)−A2(q2; c2)D2(q2; c2)]

+ e−(λ+q2)(b−a)/c2 .

Finally, combining (13), (14) and (16) yields the desired expressions for f2(x) given

by (5) and (7). �

Remark 3 When c1 = c2, the surplus process U in (1) agrees with the classical

compound Poisson risk model with a constant premium rate, and so Theorem 2 provides

some new expressions of the Laplace transforms of the joint occupation times, which can be

seen as an extension of a special case of spectrally negative Lévy processes discussed in [24],

or an extension of a special case (the tax rate γ(x) ≡ 0) of classical compound Poisson risk

model with tax discussed in [10].

We conclude this paper with the following corollary. Define

f∞1 (x) := Ex
{

exp
[
− q1

∫ τ−0

0
1(0,a)(Us)ds− q2

∫ τ−0

0
1(a,∞)(Us)ds

]
; τ−0 <∞

}
,

then the following result gives the expression of joint Laplace transform of the occupation

times of the disjoint sets (0, a) and (a,∞) for the process given in (1).

Corollary 4 For any x, a > 0 and 0 < x 6 a, we have

f∞1 (x) =
A1(q1; c1)

c1

[ f∞1 (a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ1(q1; c1)

]
eθ1(q1;c1)x

− A2(q1; c1)

c1

[ f∞1 (a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ2(q1; c1)

]
eθ2(q1;c1)x, (18)

and for x > a, we have

f∞1 (x) =
A1(q1; c1)

c1

[ f∞1 (a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ1(q1; c1)

]
× eθ1(q1;c1)a

[
Z(q2)
c2 (x− a, θ1(q1; c1))−

q2 − ψ(θ1(q1; c1))

θ2(q2; c2)− θ1(q1; c1)
W (q2)
c2 (x− a)

]
− A2(q1; c1)

c1

[ f∞1 (a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ2(q1; c1)

]
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× eθ2(q1;c1)a
[
Z(q2)
c2 (x− a, θ2(q1; c1))−

q2 − ψ(θ2(q1; c1))

θ2(q2; c2)− θ2(q1; c1)
W (q2)
c2 (x− a)

]
. (19)

Here, the expression of f∞1 (a) is given by the following (21).

Proof First, by (4) and letting b→∞, we have

f∞1 (x) = lim
b→∞

{A1(q1; c1)

c1

[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ1(q1; c1)

]
eθ1(q1;c1)x

− A2(q1; c1)

c1

[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ2(q1; c1)

]
eθ2(q1;c1)x

}
=
A1(q1; c1)

c1

[ f∞1 (a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ1(q1; c1)

]
eθ1(q1;c1)x

− A2(q1; c1)

c1

[ f∞1 (a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ2(q1; c1)

]
eθ2(q1;c1)x. (20)

Next, by letting b→∞ in (6) and by (22), (23) together with some algebras, we have

f∞1 (x) = lim
b→∞

{A1(q1; c1)

c1

[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ1(q1; c1)

]
× eθ1(q1;c1)a

[
Z(q2)
c2 (x− a, θ1(q1; c1))−

Z
(q2)
c2 (b− a, θ1(q1; c1))

W
(q2)
c2 (b− a)

W (q2)
c2 (x− a)

]
− A2(q1; c1)

c1

[ f1(a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ2(q1; c1)

]
× eθ2(q1;c1)a

[
Z(q2)
c2 (x− a, θ2(q1; c1))−

Z
(q2)
c2 (b− a, θ2(q1; c1))

W
(q2)
c2 (b− a)

W (q2)
c2 (x− a)

]}
=
A1(q1; c1)

c1

[ f∞1 (a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ1(q1; c1)

]
× eθ1(q1;c1)a

[
Z(q2)
c2 (x− a, θ1(q1; c1))−

q2 − ψ(θ1(q1; c1))

θ2(q2; c2)− θ1(q1; c1)
W (q2)
c2 (x− a)

]
− A2(q1; c1)

c1

[ f∞1 (a)

W
(q1)
c1 (a)

− Z
(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ2(q1; c1)

]
× eθ2(q1;c1)a

[
Z(q2)
c2 (x− a, θ2(q1; c1))−

q2 − ψ(θ2(q1; c1))

θ2(q2; c2)− θ2(q1; c1)
W (q2)
c2 (x− a)

]
,

where f∞1 (a) is given by

f∞1 (a) = lim
b→∞

`1(c1, c2, q1, q2)

`2(c1, c2, q1, q2)

=
{

1−
[
λµ

A1(q1; c1)

c1W
(q1)
c1 (a)

B∞1 (q1; c1)− λµ
A2(q1; c1)

c1W
(q1)
c1 (a)

B∞2 (q1; c1)
]}−1
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×
{
λµ
A1(q1; c1)

c1

[
− Z

(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ1(q1; c1)

]
B∞1 (q1; c1)

− λµA2(q1; c1)

c1

[
− Z

(q1)
c1 (a)

W
(q1)
c1 (a)

+
q1

θ2(q1; c1)

]
B∞2 (q1; c1)

}
(21)

and

B∞i (q1; c1) = eθi(q1;c1)a
{{

1− [q2 − ψ(θi(q1; c1))]A1(q2; c2)

c2[θ1(q2; c2)− θi(q1; c1)]

+
[q2 − ψ(θi(q1; c1))]A2(q2; c2)

c2[θ2(q2; c2)− θi(q1; c1)]

} c2
(λ+ q2 + µc2)[λ+ q2 − θi(q1; c1)c2]

+
[q2 − ψ(θi(q1; c1))]A1(q2; c2)

[θ1(q2; c2)− θi(q1; c1)](λ+ q2 + µc2)[λ+ q2 − θ1(q2; c2)c2]

− [q2 − ψ(θi(q1; c1))]A2(q2; c2)

[θ2(q2; c2)− θi(q1; c1)](λ+ q2 + µc2)[λ+ q2 − θ2(q2; c2)c2]

}
− eθi(q1;c1)a

q2 − ψ(θi(q1; c1))

θ2(q2; c2)− θi(q1; c1)

× A1(q2; c2)[λ+ q2 − θ2(q2; c2)c2]−A2(q2; c2)[λ+ q2 − θ1(q2; c2)c2]
(λ+ q2 + µc2)[λ+ q2 − θ1(q2; c2)c2][λ+ q2 − θ2(q2; c2)c2]

− e−µa − eθi(q1;c1)a

[µ+ θi(q1; c1)](λ+ q2 + µc2)
, i = 1, 2.

Then we complete the proof. �

§4. Appendix

In this Appendix, we shall provide some preliminaries for the q-scale function related

to the Lévy process and some identities for the classical compound Poisson risk model.

As in [27], the scale functions {W (q); q > 0} corresponding to a Lévy process X are

defined as follows. For each q > 0, W (q) : [0,∞)→ [0,∞) is the unique strictly increasing

and continuous function with Laplace transform∫ ∞
0

e−θxW (q)(x)dx =
1

ψ(θ)− q
, θ > Φq,

where Φq is the largest solution of the equation ψ(θ) = q (there are at most two). For con-

venience, the domain of W (q) can be extended to the whole real line by setting W (q)(x) = 0

for all x < 0. In particular, write W = W (0) when q = 0. Further, define the function

Z(q)(x), closely related to W (q)(x), by

Z(q)(x) = 1 + q

∫ x

0
W (q)(z)dz, q > 0, x > 0,



274 Chinese Journal of Applied Probability and Statistics Vol. 36

and the so-called second scale function Z(q)(x, θ) by

Z(q)(x, θ) = eθx
{

1 + [q − ψ(θ)]

∫ x

0
e−θzW (q)(z)dz

}
, q, θ > 0, x > 0,

with Z(q)(x) = 1 and Z(q)(x, θ) = eθx for x < 0.

In the following parts, we are going to list the explicit expressions of W (q)(x), Z(q)(x)

and Z(q)(x, θ) for the compound Poisson process with Poisson arrival rate λ > 0, drift

coefficients c and an exponential jump size with distribution function F (x) = 1 − e−µx,

µ > 0. Its scale function W (q)(x) is given by

W (q)(x) := W (q)
c (x) =

A1(q; c)

c
eθ1(q;c)x − A2(q; c)

c
eθ2(q;c)x, x > 0, (22)

with A1(q; c) = [µ+ θ1(q; c)]/[θ1(q)− θ2(q; c)], A2(q; c) = [µ+ θ2(q; c)]/[θ1(q; c)− θ2(q; c)]
and

θ1(q; c) =
λ+ q − cµ+

√
(cµ− λ− q)2 + 4cqµ

2c
,

θ2(q; c) =
λ+ q − cµ−

√
(cµ− λ− q)2 + 4cqµ

2c
.

Further, the expressions of Z(q)(x) and Z(q)(x, θ) can be calculated as follows.

Z(q)(x) := Z(q)
c (x) = 1 + q

∫ x

0

[A1(q; c)

c
eθ1(q;c)y − A2(q; c)

c
eθ2(q;c)y

]
dy

= 1 +
qA1(q; c)

cθ1(q; c)

(
eθ1(q;c)x − 1

)
− qA2(q; c)

cθ2(q; c)

(
eθ2(q;c)x − 1

)
=
qA1(q; c)

cθ1(q; c)
eθ1(q;c)x − qA2(q; c)

cθ2(q; c)
eθ2(q;c)x, x > 0, (23)

and

Z(q)(x, θ) := Z(q)
c (x, θ) = eθx

{
1 + [q − ψ(θ)]

∫ x

0
e−θzW (q)

c (z)dz
}

= eθx
{

1 + [q − ψ(θ)]
{ A1(q; c)

c[θ1(q; c)− θ]
(
e(θ1(q;c)−θ)x − 1

)
− A2(q; c)

c[θ2(q; c)− θ]
(
e(θ2(q;c)−θ)x − 1

)}}
=
{

1− [q − ψ(θ)]A1(q; c)

c[θ1(q; c)− θ]
+

[q − ψ(θ)]A2(q; c)

c[θ2(q; c)− θ]

}
eθx

+
[q − ψ(θ)]A1(q; c)

c[θ1(q; c)− θ]
eθ1(q;c)x − [q − ψ(θ)]A2(q; c)

c[θ2(q; c)− θ]
eθ2(q;c)x,

θ > 0, x > 0. (24)
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applications to insurance risk theory [J]. Front Math China, 2014, 9(6): 1453–1471.

[10] WANG W Y, WU X Y, PENG X C, et al. A note on joint occupation times of spectrally negative
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