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Abstract: For calculating the predictive powers, we suggest an elegant expectation identity to

directly calculate the expectations. We calculate the predictive powers of the hypotheses with a

nonzero threshold for five different categories, which are non-sequential trials with classical power

and Bayesian power, and sequential trials with hybrid predictions, Bayesian predictions, and classi-

cal predictions. Moreover, the calculations of the various predictive powers are illustrated through

three examples. Finally, when calculating the average success probability in [9], it is tricky to find

the predictive distribution for the predictive power, whereas, it is straightforward to utilize the

expectation identity for the calculation.
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§1. Introduction

For financial and ethical reasons, an increasingly utilized feature in clinical trial prac-

tice is to allow a study to stop early for futility or efficacy. The researches in the literature

often assume normality for the prior and the likelihood. Many methods for addressing

futility or efficacy have been described in the literature, including means based on con-

ditional power [1–4], sequential monitoring [5–7], expected or predictive power [8–10], beta
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spending functions, and others. Some statisticians consider the determination of the sam-

ple sizes [11–13]. Other clinicians investigate the type I and II error probabilities [14, 15].

Many medical researchers exploit Bayesian approaches for futility or efficacy [9, 10,16,17]. A

few faculty members discuss some optimal adaptive designs in clinical trials [18].

Spiegelhalter et al. [8] have calculated the rejection region, the power or the conditional

power, and the predictive power or the conditional predictive power of the hypotheses

H0 : θ < 0 versus H1 : θ > 0 for five different categories, which are non-sequential trials

with classical power and Bayesian power, and sequential trials with hybrid predictions,

Bayesian predictions, and classical predictions in Sections 6.5 and 6.6. In this paper, we

will calculate the above quantities of the hypotheses H0 : θ 6 θ0 versus H1 : θ > θ0

(henceforth, hypotheses A) and H0 : θ > θ0 versus H1 : θ < θ0 (henceforth, hypotheses B)

for the five different categories, where θ0 is the threshold value of the hypotheses. Note

that θ0 6= 0 corresponds to a non-inferiority trial and θ0 = 0 corresponds to a superiority

trial. A detailed discussion of the non-inferiority issue of the hypotheses can be found in

the supplement of [13].

There are two ways to calculate the predictive powers: One way is to calculate the

predictive powers by using the predictive distributions, and the other way is to calculate

the expectations which are very involved and are always circumvented by Spiegelhalter et

al. [8] and other researchers. We prove and utilize an elegant new expectation identity to

calculate the predictive powers of the five different categories by directly calculating the

expectations without circumvention.

For the average success probability (ASP) in [9], we can also calculate it in two ways.

One way is to calculate the ASP by using the predictive distribution, and the other way

is to calculate the expectation by utilizing the new expectation identity.

The rest of the paper is organized as follows. In Section 2, we prove an elegant new

expectation identity and calculate the predictive powers of the hypotheses with a nonzero

threshold for five different categories. Moreover, we utilize the new expectation identity to

analytically calculate the ASP in [9]. Section 3 illustrates the calculations of the predictive

powers through three examples. Some conclusions and discussions are provided in Section

4.

§2. The Calculations of Predictive Powers Assuming

Normality

There are two ways to calculate the predictive powers: One way is to calculate the

predictive powers by using the predictive distributions, and the other way is to calculate
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the expectations which are very involved and are always circumvented by Spiegelhalter et

al. [8] and other researchers.

We have the following elegant expectation identity (1) which is very useful for the

calculation of the predictive power by directly calculating the expectation. The proof of

the theorem can be found in the supplement.

Theorem 1 Assume Z ∼ N(0, 1) with cumulative distribution function Φ(x), and let

a and b be real constants. Then

E[Φ(aZ + b)] = Φ
( b√

1 + a2

)
. (1)

As mentioned in the introduction section, Spiegelhalter et al. [8] have calculated the

rejection region, the power or the conditional power, and the predictive power or the

conditional predictive power of the hypotheses H0 : θ < 0 versus H1 : θ > 0 for five

different categories, which are non-sequential trials with classical power and Bayesian

power, and sequential trials with hybrid predictions, Bayesian predictions, and classical

predictions in Sections 6.5 and 6.6. In the later part of this section, we will utilize the

expectation identity (1) to calculate various predictive powers of hypotheses A and B with

a nonzero threshold by directly calculating the expectations.

2.1 Non-Sequential Trials

Suppose we have a normal prior θ ∼ N(µ, σ2/n0) and our future data Yn given θ

have distribution Yn | θ ∼ N(θ, σ2/n). We wish to calculate the predictive probability of

obtaining a “significant” result, when testing the hypotheses A and B.

2.1.1 Classical Power: Hybrid Classical-Bayesian Methods

By utilizing the expectation identity (1) for testing the hypotheses A, we have the

following corollary in which we have shown that the hybrid predictive power can be cal-

culated in two ways: One way is to calculate the hybrid predictive power by using the

predictive distribution, and the other way is to directly calculate an expectation. The

proof of the corollary can be found in the supplement.

Corollary 2 The hybrid predictive power is

P (SCε,θ0) =

∫
P (SCε,θ0 | θ)π(θ)dθ = Eθ[P (SCε,θ0 | θ)]

= Φ
[√ n0

n0 + n

(µ− θ0

σ/
√
n

+ zε

)]
, (2)

where Eθ takes expectation with respect to the random variable θ ∼ π(θ).
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Similarly, by using the expectation identity for testing the hypotheses B, the calcula-

tion of the hybrid predictive power

P (SC−ε,θ0) =

∫
P (SC−ε,θ0 | θ)π(θ)dθ = Eθ[P (SC−ε,θ0 | θ)]

can be found in the supplement. The expressions of the hybrid predictive powers for

“Classical power” are summarized in Table 1.

Table 1 The expected or predictive powers for non-sequential trials

H0 : θ 6 θ0, H1 : θ > θ0 (Hypotheses A) H0 : θ > θ0, H1 : θ < θ0 (Hypotheses B)

Hybrid

predictive

power

P (SCε,θ0 ) = Φ

[√
n0

n0 + n

(µ− θ0
σ/
√
n

+ zε
)]

P (SC−ε,θ0 ) = Φ

[√
n0

n0 + n

(
−
µ− θ0
σ/
√
n

+ zε
)]

Bayesian

predictive

power

P (SBε,θ0 ) = Φ

[√
(n0 + n)n0

n

µ− θ0
σ

+

√
n0

n
zε

]
P (SB−ε,θ0 ) = Φ

[
−
√

(n0 + n)n0

n

µ− θ0
σ

+

√
n0

n
zε

]

2.1.2 Bayesian Power

We wish to calculate the predictive probability of obtaining a “significant” Bayesian

result, and we shall denote such “Bayesian significance” as SBε,θ0 ≡ {P(θ 6 θ0 |data) < ε} or

SB−ε,θ0≡ {P(θ > θ0 |data) <ε}. By using the expectation identity for testing the hypotheses

A and B, the calculations of the Bayesian predictive, expected, or average powers

P (SBε,θ0) =

∫
P (SBε,θ0 | θ)π(θ)dθ = Eθ[P (SBε,θ0 | θ)],

P (SB−ε,θ0) =

∫
P (SB−ε,θ0 | θ)π(θ)dθ = Eθ[P (SB−ε,θ0 | θ)],

respectively can be found in the supplement. The expressions of the Bayesian predictive

powers for “Bayesian power” are also summarized in Table 1.

It is worthy to mention that the hybrid predictive power and the Bayesian predictive

power in Table 1 only utilize the historical data through the prior π(θ).

2.2 Monitoring Sequential Trials Using Predictions: Conditional

Power

This subsection deals with the concept of “futility” (see [8]), that is, given the data so

far, what is the chance of getting a “significant” result? Suppose we have a normal prior

θ ∼ N(µ, σ2/n0), our current data ym given θ have distribution ym | θ ∼ N(θ, σ2/m), our

future data Yn given θ have distribution Yn | θ ∼ N(θ, σ2/n) where σ2 is assumed known.
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We wish to calculate the predictive probability of obtaining a “significant” result, when

testing the hypotheses A and B.

2.2.1 Hybrid Predictions: Using a Prior and Current Data to Predict a

Future Classical Analysis

By utilizing the expectation identity (1) for testing the hypotheses A, we also have the

following corollary in which we have shown that the hybrid conditional predictive power

(HCPP) can be calculated in two ways: One way is to calculate the HCPP by using the

predictive distribution, and the other way is to directly calculate an expectation. The

proof of the corollary can be found in the supplement.

Corollary 3 The HCPP is

P (SCε,θ0 | ym,prior)

=

∫
P (SCε,θ0 | ym, θ)π(θ | ym)dθ = Eθ|ym [P (SCε,θ0 | ym, θ)]

= Φ
[√ n0n

(n0 +m)(n0 +m+ n)

√
n0(µ− θ0)

σ
+

√
m(n0 +m+ n)

n(n0 +m)

√
m(ym − θ0)

σ

+

√
(m+ n)(n0 +m)

n(n0 +m+ n)
zε

]
, (3)

where Eθ|ym takes expectation with respect to the random variable θ | ym ∼ π(θ | ym).

The word “prior” in P (SCε,θ0 | ym,prior) means that the prior distribution π(θ) ∼
N(µ, σ2/n0) where n0 > 0 is incorporated in the calculation of the HCPP through the

posterior distribution π(θ | ym). Therefore, the mathematical expression of the HCPP

involves the hyper parameters n0 and µ of the prior distribution π(θ). The word “pri-

or” in P (SCε,θ0 | ym, prior) can be omitted without much confusion, with the understand-

ing that the prior π(θ) is used to derive the posterior π(θ | ym). Note that the symbol

P (SCε | ym,prior) has been used in [8] in the special case of θ0 = 0.

By using the expectation identity for testing the hypotheses B, the calculation of the

HCPP

P (SC−ε,θ0 | ym, prior) =

∫
P (SC−ε,θ0 | ym, θ)π(θ | ym)dθ = Eθ|ym [P (SC−ε,θ0 | ym, θ)]

can be found in the supplement. The expressions of the hybrid conditional predictive

powers (HCPPs) for “Hybrid predictions” are summarized in Table 2.
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Table 2 The conditional expected or predictive powers for sequential trials

H0 : θ 6 θ0, H1 : θ > θ0 (Hypotheses A) H0 : θ > θ0, H1 : θ < θ0 (Hypotheses B)

Hybrid

conditional

predictive

power (HCPP)

P (SCε,θ0
| ym, prior)

= Φ



√
n0n

(n0 +m)(n0 +m + n)

√
n0(µ− θ0)

σ

+

√
m(n0 +m + n)

n(n0 +m)

√
m(ym − θ0)

σ

+

√
(m + n)(n0 +m)

n(n0 +m + n)
zε



P (SC−
ε,θ0
| ym, prior)

= Φ



−
√

n0n

(n0 +m)(n0 +m + n)

√
n0(µ− θ0)

σ

−

√
m(n0 +m + n)

n(n0 +m)

√
m(ym − θ0)

σ

+

√
(m + n)(n0 +m)

n(n0 +m + n)
zε


Bayesian

conditional

predictive

power (BCPP)

P (SBε,θ0
| ym, prior)

= Φ


√
n0 +m + n

(n0 +m)n

n0(µ− θ0) +m(ym − θ0)

σ

+

√
n0 +m

n
zε



P (SB−
ε,θ0
| ym, prior)

= Φ


−
√
n0 +m + n

(n0 +m)n

n0(µ− θ0) +m(ym − θ0)

σ

+

√
n0 +m

n
zε


Classical

conditional

predictive

power (CCPP)

P (SCε,θ0
| ym, n0 = 0)

= Φ

[√
m + n

n

√
m(ym − θ0)

σ
+

√
m

n
zε

] P (SC−
ε,θ0
| ym, n0 = 0)

= Φ

[
−

√
m + n

n

√
m(ym − θ0)

σ
+

√
m

n
zε

]

2.2.2 Bayesian Predictions: Using a Prior and Current Data to Predict

a Future Bayesian Analysis

We wish to calculate the predictive probability of obtaining a “significant” Bayesian

result, and we shall denote such “Bayesian significance” as SBε,θ0 ≡ {P(θ 6 θ0 | data) <

ε} or SB−ε,θ0 equiv{P(θ > θ0 |data) < ε}. By using the expectation identity for testing

the hypotheses A and B, the calculations of the Bayesian conditional predictive powers

(BCPPs)

P (SBε,θ0 | ym,prior) =

∫
P (SBε,θ0 | ym, θ)π(θ | ym)dθ = Eθ|ym [P (SBε,θ0 | ym, θ)],

P (SB−ε,θ0 | ym,prior) =

∫
P (SB−ε,θ0 | ym, θ)π(θ | ym)dθ = Eθ|ym [P (SB−ε,θ0 | ym, θ)],

respectively can be found in the supplement. The expressions of the BCPPs for “Bayesian

predictions” are also summarized in Table 2.

2.2.3 Classical Predictions: Using Only Current Data to Predict a Future

Classical Analysis

Classical predictions means that we ignore prior opinion both in the prediction and

in the reporting. By using the expectation identity for testing the hypotheses A and B,

the calculations of the classical conditional predictive powers (CCPPs)

P (SCε,θ0 | ym, n0 = 0) =

∫
P (SCε,θ0 | ym, θ)π(θ | ym, n0 = 0)dθ = Eθ|ym,n0=0[P (SCε,θ0 | ym, θ)],
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P (SC−ε,θ0 | ym, n0 = 0) =

∫
P (SC−ε,θ0 | ym, θ)π(θ | ym, n0 = 0)dθ = Eθ|ym,n0=0[P (SC−ε,θ0 | ym, θ)],

respectively can be found in the supplement. The expressions of the CCPPs for “Classical

predictions” are also summarized in Table 2.

It is worthy to mention that the HCPP and the BCPP in Table 2 utilize both the

historical data and the interim data, while the CCPP only utilizes the interim data.

2.3 The Average Success Probability in [9]

In [9], the average success probability (ASP) is defined by

ASP =

∫ ∞
−∞

P (SC,d2

α,δ0
| δ)π(δ | d1)dδ,

where SC,d2

α,δ0
is the classical rejection region of the hypotheses H0 : δ 6 δ0 versus H1 :

δ > δ0, P (SC,d2

α,δ0
| δ) is the classical power of the confirmatory trial, α is the significance

level, δ0 is the threshold value of the hypotheses, δ is the unknown true treatment effect of

the early and confirmatory trials, d1 and d2 are the observed treatment differences in the

treatment group and the control (or placebo) group means of the early and confirmatory

trials respectively.

There are two ways to analytically calculate the ASP. One way is to calculate the

ASP by using the predictive distribution,

d2 | d1 ∼ N
(
d1, 2σ

2
( 1

m1
+

1

m2

))
,

where σ2 is a common known variance of the observations from the treatment and control

groups, m1 and m2 are the per group number of patients of the early and confirmatory

trials respectively. Note that when deriving the predictive distribution d2 | d1 of the ASP,

the tricky part is

π(d2 | δ) = π(d2 | δ, d1),

since d1 | δ and d2 | δ are assumed independent, and thus the marginal distribution of d2 | δ
is equal to the conditional distribution of d2 | δ, d1. More details of the derivation of the

predictive distribution d2 | d1 of the ASP can be found in the supplement.

Alternatively, the ASP can be rewritten as

ASP = Eδ|d1
[P (SC,d2

α,δ0
| δ)],

where Eδ|d1
takes expectation with respect to the random variable δ | d1 ∼ π(δ | d1), and

we can utilize the new expectation identity to analytically calculate the expectation. The
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analytically formula of the ASP is found to be

ASP = Φ
[( d1 − δ0√

2/m2σ
− Zα

)√ m1

m1 +m2

]
. (4)

The analytically calculation of the ASP (4) by the two ways can be found in the supple-

ment.

Note that in [9], she used the one-dimensional numerical integration to calculate the

ASP. Although the numerical integration is accurate, it is time consuming. With the

analytical formula of the ASP given by the equation (4), we can calculate the number of

patients of the confirmatory trial m2, which is the solution of the equation (4), for a given

ASP. The solution of the equation (4) can be obtained by using the R function uniroot()

very quickly and very accurately [19].

§3. Applications

In this section, we will illustrate the calculations of the predictive powers through

examples.

Example 4 (Examples 2.6, 6.2, and 6.3 in [8]) Suppose we are designing a trial

for a new cancer treatment which it is hoped will raise 5-year survival from 20% to 40%.

This is equivalent to a hazard ratio of ln(0.40)/ ln(0.20) = 0.57, when assuming proportional

hazards, or a ln(hazard ratio) of θA = −0.56. We can take θA = 0.56, which is equivalent to

redefining the hazard ratio as control hazard divided by new intervention hazard instead of

its inverse. Therefore, the hypotheses are H0 : θ = 0 versus H1 : θ = θA = 0.56 > 0. Taking

σ = 2 and assuming ε = 0.025, 80% power is achieved at n = 7.85× 22/(0.56)2 = 100.

Consider an archetypal enthusiastic prior centred on the alternative hypothesis and with

5% prior probability that θ < 0. Hence θ ∼ N(µ, σ2/n0), where µ = 0.56, σ = 2, and µ −
1.645σ/

√
n0 = 0 hold, such that n0 = 1.6452σ2/µ2 = 34.5. The classical power evaluated

at the prior mean is 80% as designed, the expected power (the hybrid predictive power in

Table 1) averaging over the entire prior distribution is 0.66, showing the decline from the

conditional value of 0.80. Moreover, the expected Bayesian power (the Bayesian predictive

power in Table 1), averaged with respect to the prior distribution, is 0.78.

Example 5 ( [20]; Example 6.7 in [8]) Long-term tamoxifen therapy is used for

prevention of recurrence of breast cancer. The aim of the study is to estimate disease-free

survival benefit from tamoxifen over placebo, in patients who already have had 5 years of

taking tamoxifen without a recurrence. To detect a 40% reduction in annual risk associated
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with tamoxifen (hazard ratio = 0.6), with 85% power and a one-sided tail area of 5%, 115

events were required. The statistical model is the proportional hazards regression model, with

summary using the approximate hazard ratio analysis. If there are OT events on treatment,

and OC events on control, then ym = 2(OT − OC)/m is an approximate estimate of the

ln(hazard ratio) θ, with mean θ and variance 4/m. Prior distributions: An ‘enthusiastic’ (or

optimistic) prior was centred on a 40% hazard reduction and a 5% chance of a negative effect

(i.e., HR > 1), equivalent on the ln(HR) scale to a normal prior with mean µo = ln(0.6) =

−0.51 and standard deviation 0.31 (σ = 2, n0 = 41.4). Also a sceptical prior was adopted

with the same standard deviation as the enthusiastic prior but centred on µs = 0. The

estimated ln(HR) after the first interim analysis in 1993 is ym = 0.435, at that time m = 46

events have been observed, and a further n = 115− 46 = 69 events are to be observed.

Under the prior assumption Reference (the prior is neither used in the analysis nor in the

prediction), the three probabilities are

CCPPT = P (SC−ε,θ0 | ym, n0 = 0),

CCPPC = P (SCε,θ0 | ym, n0 = 0),

CCPPE = 1− CCPPT − CCPPC ,

for ‘tamoxifen superior’, ‘control superior’, and ‘equivocal’, respectively. Similarly, under the

prior assumption ‘When using prior in analysis’ (the prior is used both in the analysis as well

as the prediction), the three probabilities are

BCPPT = P (SB−ε,θ0 | ym,prior),

BCPPC = P (SBε,θ0 | ym, prior),

BCPPE = 1− BCPPT − BCPPC .

Under the prior assumption ‘When not using prior in analysis’ (the prior is not used in the

analysis, but it is used in the prediction), the three probabilities are

HCPPT = P (SC−ε,θ0 | ym,prior),

HCPPC = P (SCε,θ0 | ym,prior),

HCPPE = 1−HCPPT −HCPPC .

The analytical forms of the probabilities CCPPT , CCPPC , BCPPT , BCPPC , HCPPT , and

HCPPC can be obtained as in Table 2.

Table 3 illustrates the probabilities of eventual conclusions for the B-14 trial after the

first interim analysis in 1993. From Table 3, we observe that the sceptical analysis and
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the optimistic analysis both firmly predict an equivocal result at the end of the trial, and

the observations are reflected in the predictive powers. The chance of finding in favour of

tamoxifen is less than 0.017 in all cases, and thus we should stop the trial for futility.

Table 3 Probabilities of eventual conclusions for the B-14 trial after the first

interim analysis in 1993

Final conclusion
Reference

(CCPP)

When using

prior in analysis (BCPP)

When not using

prior in analysis (HCPP)

Sceptical ‘Optimistic’ Sceptical ‘Optimistic’

‘Tamoxifen superior’ 0.000 0.000 0.017 0.000 0.003

‘Equivocal’ 0.380 0.724 0.972 0.610 0.846

‘Control superior’ 0.619 0.276 0.011 0.390∗ 0.151

Example 6 ([9]) The ASPs when there are 128 and 172 patients per group when

the posterior distribution of δ given d1 = 2.5 is N(2.5, (2/m1)7.142) are given in Table 4.

Comparing Table 4 with Table I of [9], we find that the ASPs are the same. Though the

one-dimensional numerical integration used in [9] is accurate, it is time consuming.

Table 4 The ASP when there are 128 and 172 patients per group when the

posterior distribution of δ given d1 = 2.5 is N(2.5, (2/m1)7.142)

Sample size in the future trial m1 = 25 m1 = 70

m2 = 128/group (80% power) 0.633 0.692

m2 = 172/group (90% power) 0.677 0.756

Now we consider the inverse problem: Given an ASP and the number of patients of the

early trial m1, find the number of patients of the confirmatory trial m2. Table 5 displays the

m2 for a given ASP assuming the normal (m1 = 25 or 70) treatment effect. Note that there

is an NA in Table 5. The reason is that for the normal treatment effect with m1 = 25, the

limiting ASP is 0.892 as m2 →∞. That is, beyond the limiting ASP (0.892), we cannot find

m2. For the normal treatment effect with m1 = 70, the limiting ASP is 0.981 as m2 → ∞,

and thus for given ASPs equal to 0.8 and 0.9, we can find the corresponding m2.

Table 5 The m2 for a given ASP assuming the normal treatment effect

m1 = 25 m1 = 70

ASP = 0.8 664 221

ASP = 0.9 NA 536
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§4. Conclusions and Discussions

There are two ways to calculate the predictive powers: One way is to calculate the

predictive powers by using the predictive distributions, and the other way is to calculate

the expectations which are very involved and are always circumvented by [8] and other

researchers. We prove and utilize an elegant expectation identity (1) to calculate the

predictive powers by directly calculating the expectations without circumvention. The

calculations of the predictive powers of the hypotheses A and B with a threshold θ0 are

divided into five different categories. That is, non-sequential trials with classical power

and Bayesian power, and sequential trials with hybrid predictions, Bayesian predictions,

and classical predictions. For the ASP in [9], we can also calculate it in two ways: By

using the predictive distribution, and by utilizing the new expectation identity. Moreover,

the calculations of the various predictive powers are illustrated through three examples.

Finally, it indicates that the expectation identity can be utilized for the calculations of

other predictive powers for normal prior and likelihood. It is also worthy to mention that

in some cases such as the ASP in [9], it is tricky to find the predictive distribution for the

predictive power, whereas, it is straightforward to utilize the expectation identity for the

calculation of the predictive power.

Note that throughout the paper, we always assume that the variance σ2 is known.

This maybe not the truth especially for the early phase trial. However, in real applications

and literature (see for instance [8,9,13,21–24]), it is common practice to assume that the

variance σ2 is known to obtain analytical solutions, such as Φ(·) for powers and average

powers. For the unknown variance case, one might use the historical data to specify a

sampling prior for σ2 (see [25]). Alternatively, one might exploit a t statistic. As stated

in [21], the sampling distribution of t is a non-central t distribution (which only becomes

an ordinary Student t distribution if δ = 0). However, based on publications or early

phase trials, the estimate of σ2 is good enough, so that it provides some assurance to

the practioners that probably there is no need to have a prior for σ2 when designing the

confirmative trial.
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